
Data and Operators

. . .it is not the thing done or made which is beautiful, but the doing. If we

appreciate the thing, it is because we relive the heady freedom of making it.

Beauty is the by-product of interest and pleasure in the choice of action.

Jacob Bronowski,

The Visionary Eye

Computing is an art form. Some programs are elegant, som,e are exquisite,

some are sparkling. My claim, is that it is possible to write grand programs,

noble programs, truly magnificent program,s.

Donald E. Knuth,

from an article by William Marling

in Case Alumnus

1.1 Introduction

Computer programming is many faceted.

It is engineering. Computer programs must be carefully designed. They

should be reliable and inexpensive to maintain. Like any other engineer-

ing discipline, computer programming has special challenges. The foremost

challenge is managing complexity. As programs grow larger, the number of

possible interactions between their pieces tends to grow much faster than the

volume of code. Abstraction is the primary technique for managing complex-

ity. An abstraction hides unnecessary detail and allows recurring patterns to

be expressed concisely. In this book we emphasize several powerful techniques

for building abstractions.

It is a craft. A program made with craftsmanship is both more serviceable

and more satisfying. Programming requires proficiency born of practice (hence

the many exercises in this book!). It requires great dexterity, though of a

mental rather than a manual sort. As woodworkers enjoy working with their

hands and fine tools, so programmers enjoy exercising their minds and working

with a fine programming language.

It is an art. Fine programs are the result of more than routine engineering.

They require a refined intuition, based on a sense of style and aesthetics that

is both personal and practical. As an artistic medium, programming is highly

plastic, unconstrained by physical reality. In programming, perhaps more

than in other arts, less is more. Simplicity is nowhere more practical than in

programming, where the bane is complexity. When just the right abstraction

for a problem has been found, it may be a thing of beauty. We hope you take

pleasure in the programs of this book.

It is not a science, but it is based on one: computer science. Though

our primary concern in this book is with the techniques of programming, we

will have occasion to introduce a number of important scientific results. We
hope you find the language and style of this book to be vehicles for deeper

understanding and appreciation throughout your study of computer science.

It is a literary endeavor. Of course, programs must be understood by

computers, which requires mastery of a programming language. But that

is not enough! Programs must be analyzed to understand their behavior,

and most programs must be modified periodically to accommodate changing

needs. Thus it is essential that programs be intelligible by humans as well as

by computers. The challenge is to convey the necessary details without losing

sight of the overall structure. This in turn requires creative use of abstrac-

tions and a good sense of style—habits we attempt to instill by example in

this book.

But this book is ultimately about more than the craft of engineering artistic

and literate programs. Programming teaches an algorithmic (step by well-

specified step) approach to problem solving, which in turn encourages an

algorithmic approach to gaining knowledge. This view of the world is pro-

viding numerous fresh insights in fields as diverse as mathematics, biology,

and sociology, as well as providing tools that assist and extend our minds in

almost every field of study. Thus programming ability, like mathematical and

writing ability, is an asset of universal value.

Programming ability and literary ability have another thing in common.

An essay or short story can be correct grammatically and can convey the

information that the author intended and still not be a literary work of art.

Computer programming has its own aesthetic, and good programmers strive to

produce programs that evoke appreciative responses in their readers. Writing

such programs requires both inspiration and the application of craftsmanship

that employs a thorough command of the programming language and the

metaphors it can support.

There are many languages from which to choose when designing a course

to teach the principles of programming. Scheme was selected because it is

an expressive language that provides powerful abstraction mechanisms for ex-

pressing the solutions to computational problems. This facilitates the writing

of clear and satisfying programs. It is especially good as a vehicle for teaching

Data and Operators

programming because the student is not required to learn unnecessary rules

and prohibitions before being able to write meaningful programs.

The programming language LISP (which stands for List Processing) was

developed around 1960 by John McCarthy. (See McCarthy, 1960.) Scheme

was derived from LISP by Gerald Jay Sussman and Guy Lewis Steele Jr.

around 1975. (See Sussman and Steele, 1975.) A number of people have been

involved in the evolution of Scheme since its inception and these developers

of the language have published a series of reports describing the current state

of the language. For the first such report, see Steele and Sussman, 1978. The

third revised report appeared in 1986. (See Rees and dinger, 1986.) The

fourth revision is expected in 1989. There is also a working group preparing

for an IEEE Standard for Scheme. A number of books about Scheme have

appeared since then, including:

• Structure and Interpretation of Computer Programs by Abelson and Suss-

man with Sussman, MIT Press and McGraw-Hill Book Company, 1985.

• The Little LISPer by Friedman and Felleisen, MIT Press, 1987 and SRA
Pergamon, 1989.

• The Scheme Programming Language, by Dybvig, Prentice-Hall, 1987.

• Programming in Scheme by Eisenberg, Scientific Press, 1988.

• An Introduction to Scheme by Smith, Prentice-Hall, 1988.

The following two publications are manuals for Scheme that accompany the

implementations of Scheme on microcomputers:

• Afac^cAeme-froo/smiM^'^, Semantic Microsystems, 1987.

• PC Scheme, by Texas Instruments, Scientific Press, 1988.

We encourage you to read them because each presents its own programming

philosophy. We are all using the same language, but we have somewhat dif-

ferent stories to tell.

As you read these pages, remember that you should care how elegant your

programs are. The task that confronts you is not only to learn a programming

language but to learn to think as a computer scientist and develop an aesthetic

about computer programs. Enjoy this as an opportunity to understand the

creative process better. Solve problems not only for their solutions but also

for an understanding of how the solutions were obtained.

1.2 The Computer

1.2 The Computer

We begin by briefly describing the components of a computer. At this stage,

it suffices to think of the computer as being composed of four components:

1. The input deuce, in this case the keyboard with the standard typewriter

keys and some additional ones. Each key can perform several functions.

On both the typewriter and the computer keyboard, we choose between

lower and upper case by depressing the Shift key. On the computer, we

can also hold down the Control (CTRL) key while pressing another key to

get another behavior, and on some computers, we can similarly hold down

the Alternate (ALT) key while pressing another key to get yet another

behavior. Finally, pressing and releasing the Escape (ESC) key before

pressing another key gives still another behavior. When a key is pressed,

the result is usually shown on the screen.

2. The processor, in which the computing is done. This contains the internal

memory of the computer, the arithmetic logic unit, and the registers where

the computations take place.

3. The output devices: the video monitor on which the interactive computing

is viewed, which we refer to as the screen, and the printer where printed

copy of the output is produced.

4. The external storage device. In microcomputers, this often consists of two

floppy disk drives. The user places diskettes into these drives and either

reads files from a diskette into the computer's internal memory or writes

from the internal memory to a file on a diskette. Many microcomputers

and all larger computers have an internal disk on which files can be stored

and accessed.

Implementations of Scheme are available on a wide variety of computers

ranging from larger mainframe computers that support many users to indi-

vidual workstations or personal computers.

1.3 Numbers and Symbols

In order to make a computer do something for us. we must communicate with

the computer in a language that it "understands." The English language,

which we are using for our communication m this paragraph, makes use of

words and certain grammatical rules that enable us to combine words into

Data and Operators

sentences. The words themselves consist of certain strings of characters, that

is, characters written one after the other with no blank spaces between them.

The computer languages also have their analogs of words, which we call sym-

bols. The characters used to make up the symbols are the same characters on

a standard typewriter keyboard, with a few additions and deletions. We shall

generally use the letters of the alphabet, the digits from through 9, and some

of the other characters on the keyboard. A few of the other characters on the

keyboard have special meaning, just as certain characters like the period and

comma have special meaning in English. In Scheme, the characters

()[]{};."''# \

have special meaning and cannot appear in symbols. Similarly, the characters

+ -
.

are used in numbers and may occur anywhere in a symbol except as the first

character. The following list contains examples of symbols in Scheme:

abed r cdr p2q4 bugs? one-two *nowft

Numbers are not considered to be symbols in Scheme; they form a separate

category. Thus, as you would expect, 10, -753, and 31 . 5 are Scheme numbers.

In the English language, not every combination of letters gives us a meaningful

word. We keep words that are meaningful in our minds or in a dictionary,

and when we see or hear a word, we retrieve its meaning in order to use it.

In much the same way, symbols may be assigned some meaning in Scheme. A
symbol used to represent some value is called a variable. The computer must

determine the meaning of each variable or number it is given. It recognizes

that the numbers have their usual meaning. Scheme also keeps the meaning

of certain variables that have been assigned values, and when it is given a

symbol, it checks to see if it is one of those that has been kept. If so, it can

use that meaning. Otherwise it tells us that the symbol has not yet been

given a meaning.

To carry the analogy with the English language a step further, words are

put together in sentences to express the thoughts you want to convey. The

Scheme analog of a sentence is an expression. An expression may consist of

a single symbol or number (or certain other items to be defined later), or a

list, which is defined to consist of a left parenthesis, followed by expressions

separated by blank spaces, and ending with a right parenthesis. We first

1.3 Numbers and Symbols 7

discuss the use of expressions involving symbols or numbers, and return to

discussing other types of data in Section 1.4.

When you turn on the computer and call up Scheme, you usually get a

message telling what implementation of Scheme you are using. Then a prompt

appears on the screen, prompting you to enter something. The nature of the

prompt depends on the implementation you are using. The prompt we use

in this book to simulate the output on the screen is a pair of square brackets

surrounding a number. Thus the first prompt will be

[1]

If you type a number after the prompt and then press the <RETURN> key

(sometimes referred to as the <ENTER> key),

[1] 7 <RETURN>

Scheme recognizes that the meaning of the character that you typed is the

number 7. We say that the value of the character you typed is the number 7

or that what you type has been evaluated to give the number 7. Scheme then

writes the value of what you type at the beginning of the next line and moves

down one more line and prints the next prompt:

[1] 7 <RETURN>

7

[2]

Let us review what we have just seen. At the first prompt, you enter 7 and

press <RETURN>. In general, an expression (or a collection of such expressions)

you enter in response to the prompt and before pressing <RETURN> is called

a program. In this example. Scheme reads your program, evaluates it to the

number 7, prints the value 7 on the screen at the beginning of the next line,

and then prints the next prompt one line lower. Thus Scheme does three

things in succession: it reads, it evaluates, and it prints. We refer to this

sequence of events performed by Scheme as its read-eval-print loop. After

printing the prompt, Scheme waits for you to type the next program. In the

example, when you press <RETURN>, Scheme completes one cycle of the loop

and begins another.

What happens when a symbol is typed after the prompt? Suppose first that

you type the symbol ten and press <RETURN>. If Scheme has not previously

been given a meaning for the symbol ten, we say that ten has not been bound

to a value. In the evaluate phase of the read-eval-print loop, no value is found

Data and Operators

for ten, and a message is printed informing you that an error was maxie and

describing the nature of the error. For example,

[2] ten <RETURN>

Error: variable ten not bound.

(The actual message printed depends on the implementation of Scheme you

are using.) How then do we assign a meaning or value to a symbol? Suppose

we want to assign the value 10 to the symbol ten. For this purpose we use

a define expression. (A define expression is an example of a special form: a

form of expression identified by a special symbol called a keyword, which in

this case is define.) The define expression is entered after the next prompt

as follows:

[3] (define ten 10) <RETURN>

In this example, Scheme evaluates the third subexpression, which has the value

10, assigns that value to the symbol ten, and finally, in our implementation

of Scheme, prints the next prompt. Since the value returned by a define

expression is never used, that value is not prescribed in the specification of

the language. For convenience in writing this book, we opt to suppress the

value returned by a define expression.

Now let's see what happens when we enter the symbol ten:

[4] ten <RETURN>

10

This time, Scheme successfully evaluates the variable ten, so it prints the

value 10.

We have seen that a variable is a symbol to which a meaning (i.e., a value)

can be given. When a value is given to a variable, we say that the variable is

bound to that value. In our previous example, the symbol ten is a variable

bound to the value 10. In general, if var represents a variable and expr

represents an expression whose value we would like to bind or assign to var,

we accomplish the assignment by writing

(define var expr)

The define expression is made up of a keyword, a variable name var, and an

expression expr.

Now let's suppose that ten is bound to 10 and we want Scheme to print not

the value 10 but instead to print the symbol ten. We want to have some way

1.3 Numbers and Symbols

of telling Scheme not to evaluate ten but to print its literal value ten. The

mechanism that Scheme provides for doing this is called quoting the symbol.

We quote a symbol by enclosing in parentheses the word quote followed by

the symbol:

(quote symbol)

For example, you quote the symbol ten by writing (quote ten). If you type

(quote ten) and then <RETURN> in response to a Scheme prompt, you see

[5] (quote ten) <RETURN>

ten

From now on, we shall omit the <RETURN> notation. It is understood that

each line that we type must be followed by <RETURN>. We use the word enter

when we want to indicate that something is to be typed in response to the

Scheme prompt. The value that Scheme prints in response to what we enter is

said to be the value that the expression "evaluates to" or that is "returned."

For example, we could have said, "If the symbol ten is bound to 10, and you

enter (quote ten), then Scheme evaluates it to ten, while if you enter ten,

Scheme evaluates it to 10."

In all cases, whether a symbol is bound to some value or not, when a

quoted symbol is entered, the literal symbol is returned. Thus if we enter

(quote abc3). Scheme returns abc3. It is not necessary to quote numbers,

for the value of a number as an expression is the number itself.

[6] (quote abc3)

abc3

[7] (quote 12)

12

An object whose value is the same as the object itself is called a constant. At

this point, the only constants we have seen are numbers.

It is somewhat inconvenient to have to type so much each time we want to

quote a symbol, so an abbreviation for the quoting process is also available

in Scheme. In order to quote a symbol, we need only place an apostrophe

immediately before the symbol. Thus to quote the symbol ten, we simply

write 'ten. The apostrophe is referred to as "quote," and the expression

'ten is verbalized as "quote ten." Thus the responses to the prompts [6]

and [7] can also be made as follows:

10 Data and Operators

[6] 'abc3

abc3

[7] '12

12

We can also assign to a variable a value that is the literal value of a symbol.

For example, if we enter the following:^

[8] (define Robert 'Bob)

we bind the variable Robert to the symbol Bob. When we next enter Robert,

we get

[9] Robert

Bob

so that Scheme has evaluated Robert and returned the value Bob.

We have two types of data so far, numbers and symbols. How are they used?

The use of numbers should be no surprise, since we usually think of doing

arithmetic operations on numbers to get answers to problems. We shall take

a brief look at how we do arithmetic in Scheme in this section and then return

for a more complete look at using numbers in Chapter 3. To perform the

arithmetic operations on numbers, Scheme uses prefix notation; the arithmetic

operator is placed to the left of the numbers it operates on. The numbers on

which it operates are called the operands of the operator. Furthermore, the

operator and its operands are enclosed in a pair of parentheses. Thus to add

the two numbers 3 and 4, we enter (+3 4) and Scheme evaluates it and

returns the answer 7. On the computer screen it looks like this:

[10] (+ 3 4)

7

^ We are mixing lower and uppercase letters in ovir symbols and showing that Scheme

returns the same mix of lower and uppercase letters as their literal values. Thus, if we

enter 'Bob, Scheme retvims Bob. An implementation of Scheme that preserves the case of

letters is called case preserving, and in this book, we are assuming that the implementation

is case preserving. There are some implementations that are not case preserving, which

means that the case is changed to either all lowercase or all uppercase letters. Thus, in

some implementations, all letters are returned in lowercase, and when we enter ' Bob, Scheme

evaluates it to bob. Other implementations that are not case preserving return all uppercase

letters, so that if we enter 'Bob, Scheme evaluates it to BOB.

1.3 Numbers and Symbols 11

Multiplication is performed with the operator *, subtraction with — , and

division with /. How do we compute the arithmetical expression 3 x (12 — 5)?

In prefix notation, we place the multiplication operator * first followed by the

first number 3. The second operand to the operator * is the difference between

12 and 5, which itself is written as (- 12 5). Thus the whole arithmetic

expression is entered as

[11] (* 3 (- 12 5))

21

[12] (+ 2 (/ 30 15))

4

In general, Scheme uses this prefix notation whenever it applies any kind

of operator to its operands. We shall return to a more complete discussion

of numerical computations in Chapter 3. A number of experiments with

numerical operations are included in the exercises at the end of this section.

In summary, a symbol can be bound to a value using a special form that

begins with the keyword define. When a variable that has been bound to

a value is entered in response to a Scheme prompt, its value is returned. If

we want Scheme to return the literal value of the symbol instead of the value

to which it is bound, we quote the variable. The value of a quoted symbol is

just the literal value of the symbol.

It is possible to keep a record of the session you have in Scheme. The

particular mechanism for doing so depends on the implementation of Scheme

you are using. If you are using a version of Scheme that uses the windowing

capability of the computer, you may be able to send what is in the window

to a file. In some implementations, it is possible to run Scheme in an editor

and use the saving capability of the editor to preserve what you want from

the session in a file. Some versions offer a transcript facility that you turn

on at the beginning of the session and give it a filename, and then turn off

at the end of the session. The session is then preserved in the named file.

The manual for the Scheme you are using should identify the facility you have

available to save your Scheme sessions.

We strongly recommend that you try each of the things discussed in this

book at the computer to see how they work. Feel free to experiment with

variations on these ideas or anything else that occurs to you. You get a

much better feeling for computers and for Scheme if you "play around" at the

keyboard.

12 Data and Operators

Exercises

Exercise 1.1

Find out what method your implementation of Scheme has for recording your

Scheme session in a file. Bring up Scheme on the computer and record this

session in a file called "sessionl.rec." Enter each of the following to successive

prompts: 15, -200, 12345678901234, (quote alphabet -soup), 'alphabet-

soup, ' 'alphabet-soup. (Note: Experiment with entering even larger posi-

tive and negative whole numbers and decimals and see what is returned.)

Exercise 1.2

Assume that the following definitions have been made in the given order:

(define big-number 10500900)
(define small-number 0.00000025)

(define Cheshire 'cat)

(define number 1 big-number)
(define number2 'big-number)

What values are returned when the following are entered in response to the

prompt?

a. big-number b. small-number

c. 'big-niunber d. Cheshire

e. 'Cheshire f. number 1

g. number

2

h. ' number

1

Conduct the experiment on the computer in order to verify your answers.

Exercise 1.3

What is the result of entering each of the following expressions in response to

the Scheme prompt? Verify your answer by performing these experiments on

the computer.

a. (- 10 (- 8 (- 6 4)))

b. (/ 40 (* 5 20))

c. (/ 2 3)

d. (+ (* 0.1 20) (/ 4 -3))

Exercise I.4

Write the Scheme expressions that denote the same calculation as the following

arithmetic expressions. Verify your answers by conducting the appropriate

experiment on the computer.

1.3 Numbers and Symbols 13

a. (4x 7) -(13 + 5)

b. (3x(4 + (-5--3)))

c. (2.5^(5 X (1^10)))

d. 5 X ((537 X (98.3 + (375 - (2.5 x 153)))) + 255)

Exercise 1.5

If a, /?, and 7 are any three numbers, translate each of the following Scheme

expressions into the usual arithmetical expressions. For example:

(+ a (+ /9 7)) translates into a + (,3 + 7)

a. (+ a (- (+ /? 7) a))

b. (+ (* a /?) (* 7 /?))

c. (/ (- a /?) (- Q 7))

1.4 Constructing Lists

So far, we have seen two data types, symbols and numbers. Another important

data type in Scheme is lists. We all use lists in our daily lives—shopping lists,

laundry lists, address lists, menus, schedules, and so forth. In computing, it

is also convenient to keep information in lists and to be able to manipulate

that information. This section shows how to build lists and how to perform

simple operations on lists. In Scheme, a list is denoted by a collection of items

enclosed by parentheses. For example, (1 2 3 4) is a list containing the four

numbers 1, 2, 3, and 4. A special list that we make frequent use of is the

empty list, which contains no items. We denote the empty list by ().

Scheme provides a procedure to build lists one element at a time. This

procedure is called cons, a shortening of "constructor." We refer to cons as a

constructor of lists. We now look at how cons works. We shall first perform

a number of experiments and then describe its general behavior. Suppose we

want to build a list that contains only the number 1. We enter the following:

[1] (cons 1 '())

(1)

We see from this example that we enclosed three things in parentheses: the

variable cons, the number 1, and the empty list '(). The first entry tells us

1.^ Data and Operators

the name of the procedure we are applying, and the remaining two entries

tell what the procedure cons is operating on. The entries following the name

of the procedure are called the operands of the procedure. The values of

the operands are called the arguments of the procedure. In our case, the

first argument is the first item in the list we are constructing, and the second

argument is a list that contains the rest of the items in the list we are building.

Scheme first reads what we enter. In its evaluation phase, the operands are

evaluated, and the desired list is built. It then prints the list (1). (Note the

parallel between the application of cons and the application of the arithmetic

operations such as (+ 3 4). We again see that the operator is placed to the

left of the operands, using prefix notation.) Let us bind the variable Isl to

the list containing the number 1 by writing

[2] (define Isl (cons 1 '()))

[3] Isl

(1)

The define expression we entered at the prompt [2] binds the variable Isl

to the value obtained by evaluating the subexpression (cons 1 '()). That

subexpression evaluates to the list (1). Thus Isl is bound to the list (1).

Thus when the variable Isl is entered at the prompt [3], its value (1) is

returned.

We now create a list with 2 as its first element and the elements of Isl as

the rest of its elements. To accomplish this we write

[4] (cons 2 Isl)

(2 1)

[5] Isl

(1)

Once again, the two operands are evaluated—2 evaluates to itself and Isl

to the list (1) . Then a new list is formed having 2 as its first item and the

items of Isl as the rest of its items, giving us (2 1) . This is the value that is

returned. At prompt [5], we verify that Isl is unchanged. Let us next bind

the variable ls2 to a list like the one in [4]

.

[6] (define ls2 (cons 2 Isl))

[7] l82

(2 1)

[8] Isl

(1)

t.4 Constructing Lists 15

The expression entered at the prompt [9] binds the variable c to the literal

value of the symbol three. We can now create a list containing three as its

first element and the elements of ls2 as the rest of its elements by writing

[9] (define c 'three)

[10] (cons c ls2)

(three 2 1)

When we apply cons to its two operands, the operands are both evaluated.

The first operand, c, evaluates to three, and the second operand, ls2, evalu-

ates to the list (2 1). Then a new list is built with three as its first item and

the elements of the list (2 1) as the rest of its elements. The value (three

2 1) is returned.

Continuing our experiment, we bind the variable ls3 to the value of (cons

c ls2) using a define expression:

[11] (define ls3 (cons c ls2))

We now perform another experiment with cons. Let us build a list that

has as its first item the list ls2 and as the rest of its items the same items

as those in ls3. This is done by making ls2 the first operand and ls3 the

second operand of cons:

[12] (cons ls2 ls3)

((2 1) three 2 1)

[13] ls3

(three 2 1)

[14] (define ls4 (cons ls2 ls3))

The first operand of cons evaluates to the list (2 1), and the second operand

of cons evaluates to (three 2 1). Thus the procedure cons produces a new

list that has as its first item the list (2 1). followed by the elements in IsS.

This gives us the value that was returned by Scheme: ((2 1) three 2 1).

Notice that when ls3 was entered in response to the prompt [13] . (three 2

1), the original value of ls3, was returned, so cons did build a new list and

did not affect the list ls3.

We are now in a position to summarize the facts that we observed in the

experiments. The procedure cons takes two operands. We apply the proce-

dure cons to these operands by enclosing the procedure name cons followed

by its two operands in parentheses. In general, a procedure name followed by

its operands, all enclosed in a pair of parentheses, is called an application, and

16 Data and Operators

we say that the operator is applied to its operands. When an application is

evaluated by Scheme, all of the expressions in the list are evaluated in some

unspecified order. The value of the first expression (the operator) informs

Scheme of the kind of computation that is to be made (in our case, cons in-

forms Scheme that a list is to be constructed). Then the computation defined

by the procedure (the value of the operator) is performed on the arguments,

which are the values of the operands. We assume for now that the second

operand of cons evaluates to a list (which may be the empty list). Then a

new list is created containing the value of the first operand as its first item

followed by all of the items in the list to which the second operand evaluated.

It is this new list that is returned as the value of the application. Since cons

first evaluates its operands, the lists contain only values. So far, these values

may be numbers, the literal value of symbols, and lists of these items. As

we progress through the chapters of this book, we shall encounter other data

types, all of which can be included in lists.

We have assumed in the discussion that the second operand of the cons

application evaluates to a list. This is the usual situation that we shall en-

counter, but it is also possible for the second argument to cons not to be a

list. We shall discuss this case in the next section. Furthermore, we see in ls4

that a list may contain in it other lists. We say that the inner list is nested

within the outer list. The nesting may be several levels deep, for a nested

list may itself contain nested lists. Suppose we have a given list. Items that

are not nested within lists contained in the given list are called the top-level

items of the given list. Thus, if the given list is ((a b (c d)) e (f g) h),

the top-level items are the list (a b (c d)), the symbol e, the list (1 g),

and the symbol h.

We can also build the list (2 1) in one step by applying cons twice as the

next experiment illustrates:

[15] (cons 2 (cons 1 '()))

(2 1)

To construct the list ((2 1) three 2 1), we could write

[16] (cons (cons 2 (cons 1 '())) (cons 'three (cons 2 (cons 1 '()))))

((2 1) three 2 1)

The second and third cons's build the list (2 1), and the fourth, fifth, and

sixth build the list (three 2 1). Then the first cons constructs the desired

list.

1.4 Constructing Lists 17

We have used parentheses in writing several types of expressions—in the

application of a procedure to its arguments, in the special form with keyword

define, and in a list of values. When Scheme sees an expression enclosed

in parentheses, it assumes that the first item following the left parenthesis

evaluates to a procedure such as cons or is a keyword such as define. ^ It

then evaluates the expression according to what the first item tells it to do.

What happens when we enter an expression such as (2 1) in response to a

Scheme prompt?

[17] (2 1)

Error: bad procedure 2

This experiment shows that Scheme expected to see an application or special

form, and when the first item in the list is not an operator or a keyword, it

returned a message saying it detected an error. In this case it tried to treat

the list as an application but discovered as its first item the number 2, which

is not a procedure.

Is there some way to enter a list of items that is to be taken literally? The
answer is yes. Suppose we want to enter a list containing the following items:

three. 2. 1. We use the quote symbol (apostrophe) and place it in front of

the left parenthesis. This indicates that each of the items included in the

parentheses is to be taken with its literal value. Thus to get a list containing

the desired three items, we would enter '(three 2 1). The symbol three

should not be quoted within the parentheses since the outer quote already

indicates that it should be taken with its literal value. Let's look at some

more examples:

[18] '((2 1) three 2 1)

((2 1) three 2 1)

[19] '(a b (c (d e)))

(a b (c (d e)))

[20] (cons '(a b) ' (c (d e)))

((a b) c (d e))

We now have a way of indicating whether a list we enter consists of literal

values. If the expression beginning with a parenthesis is not quoted, Scheme

^ We shall use sever£il special forms in the coming chapters and then study their properties

more fvilly in Chapter 14. They are ceilled special because their operands are not evaluated

as in procedure applications. If (define ten 10) were evciluatedcis a procedure application,

the operands ten and 10 would first be evaluated, but since ten has not yet been bound,

an error would result. In this special form, the symbol ten is not evaluated.

18 Data and Operators

assumes that the expression is not a quoted list, and the first item in the list

is examined to determine the nature of the expression and the computation

that should follow. If the expression in parentheses is quoted, Scheme assumes

that each item is to be taken literally.

We have now seen several procedures: the arithmetic operators +, *, -, and

/, and the list-manipulating operator cons. Procedures form another type

of data in Scheme. We have now encountered four types of data: numbers,

symbols, lists, and procedures.

Exercises

Exercise 1.6

Using the symbols one and two and the procedure cons, we can construct the

list (one two) by typing (cons 'one (cons 'two '())). Using the symbols

one, two, three, and four and the procedure cons, construct the following

lists without using quoted lists (you may use quoted symbols and the empty

list):

a. (one two three four)

b. (one (two three four))

c. (one (two three) four)

d. ((one two) (three four))

e. (((one)))

Exercise 1.1

Consider a list Is containing n values. If a evaluates to any value, how many
values does the list obtained by evaluating (cons a Is) contain?

Exercise 1.8

What is the result of evaluating '(a 'b)? (Try it!) Explain this result.

1.5 Taking Lists Apart

We have seen how to build lists using the constructor cons. We now consider

how to take a list apart so that we can manipulate the pieces separately and

build new lists from old. We accomplish this decomposition of lists using two

1.5 Taking Lists Apart 19

selector procedures, cax and cdr.' If Is represents a nonempty list of items,

car applied to Is gives the first item in Is, while cdr applied to Is gives the

list consisting of all items in Is with the exception of its first item. Both car

and cdr take one operand that must evaluate to a nonempty list. Both car

and cdr are not defined on an empty list, and applying them to an empty list

produces an error.

Let's look at the behavior of the selector catr. When its argument is a

nonempty list, it returns the first top-level item in the list. Thus we have

[1] (car '(1 2 3 4))

1

It is rather space consuming to indicate what a procedure returns by repro-

ducing what is seen on the computer screen. We sheill adopt a more efficient

notation in which we express the above by

(car '(1 2 3 4)) => 1

The double arrow "^^" is read as "evaluates to" or "returns." Here are some

other examples of applying the procedure car (As in the previous section, ls4

is bound to the list ((2 1) three 2 1).)

(car * (a b c d)) =^ a

(car ls4) => (2 1)

(car '((1) (2) (3) (4))) => (1)

(car '(ab (cd ef) gh)) => ab

(car '(((hen cow pig)))) ^^ ((hen cow pig))

(car •(())) =>

When the selector cdr is applied to an argument that is a nonempty list,

the list returned is obtained when the first item (the caur) of the eirgument

list is removed. Thus

(cdr '(1 2 3 4)) => (2 3 4)

(cdr ls4) =* (three 2 1)

' The symbol cdr is pronoiinced "coiild-er." The nsmies car and cdr had their origin in the

way the hst-processing language LISP wa^ originally implemented on the IBM 704, where

one could reference the "address" and "decrement" parts of a memory location. Thus car

is an acronym for "contents of address register," and cdr is an acronym for "contents of

decrement register."

20 Data and Operators

(cdr '(a (b c) (d e f))) =* ((b c) (d e f))

(cdr '((ant hill) (bee hive) (wasp nest)))

=* ((bee hive) (wasp nest))

(cdr '(!)) =>
(cdr '((1 2))) =* ()

(cdr '(())) =» ()

We now have three list-manipulating procedures: the constructor cons and

the two selectors car and cdr. By applying these in succession, we can do

almost anything we want with lists. For example, if we want to get the second

item in the list (a b c d), we first apply cdr to get (b c d) and then apply

car to the result to get b. We combine these applications of cdr and car into

one expression by writing

(car (cdr '(a b c d))) =* b

For the next example, let list-of-names be bound to the list ((Jane Doe)

(John Jones)). We look at how we retrieve Jane Doe's last name from this

list. If we first apply car to list-of-names, we get the list (Jeme Doe). We
now get the list (Doe) by applying cdr, and finally, we get Doe by applying

car. We want to emphasize the distinction between the list (Doe) containing

one item and the item Doe itself. All of these steps are combined in the

following expression:

(ccir (cdr (car list-of-names))) => Doe

In this example, we see that the procedures car and cdr are applied in

succession a number of times. The successive applications of car's and cdr's

is facilitated by the use of the procedures caar, cadr, caddr, . .
.

, cddddr. The

number of a's and d's between the c and r tells us how many times we apply

car or cdr, respectively, in order from right to left. For example, (cadr ' (a

b c)) is equivalent to (car (cdr '(a b c))) and is b. Similarly, (caddr

'(a b c)) is equivalent to (car (cdr (cdr '(a b c)))) and is c. We can

put up to four letters (a's or d's) between the c and r. We make use of these

procedures in the next example.

Consider the following situation. We ask our helper to prepare a menu that

has on it the two items: chicken soup and ice cream. He prepares the menu

by using a define expression to bind the variable menu to the list (chicken

soup ice cream):

(define menu '(chicken soup ice cream))

1.5 Taking Lists Apart 21

We find this unsatisfactory and want to use the items in the list menu to

produce the list ((chicken soup) (ice cream)), which groups together the

related items. We build the new list one step at a time:

(car menu) =^ chicken

(cadr menu) =^ soup

(cons (cadr menu) '()) =* (soup)

(cons (car menu) (cons (cadr menu) '())) ^^ (chicken soup)

(cddr menu) =^ (ice cream)

We now have the two items that will make up our final list. We use cons to

build the final answer. We first use cons to build a list around the list (ice

cream) to get ((ice cream)) and then use cons again to build a list that

has (chicken soup) as its first item and (ice cream) as its second item.

(cons (cddr menu) '()) =^ ((ice cream))

(cons (cons (ceir menu) (cons (cadr menu) '())) (cons (cddr menu) '()))

=* ((chicken soup) (ice cream))

The process shown here can be used to build and manipulate lists in just

about any way we want. As we learn more about Scheme, we shall discover

shortcuts that facilitate the manipulation of lists.

Up to now, we have assumed that the second argument to cons is a list. If

it is not a list, we can still apply cons; the result, however, is not a list but

rather a dotted pair. A dotted pair is written as a pair of objects, separated by

a dot (or period) and enclosed by parentheses. The first object in the dotted

pair is the car of the dotted pair, and the second object in the dotted pair

is the cdr of the dotted pair. Thus (cons 'a 'b) =* (a . b), and (car

'(a . b)) => a, while (cdr '(a . b)) =* b. Much of the work in this

book involves lists, which are built out of dotted pairs. For example, ' (a .

()) => (a), and ' (a . (be)) => (a b c). Thus any item built with

the constructor cons is referred to as a pair.

Exercise

Exercise 1.9

If a and /? evaluate to any values, what is

a. (ccir (cons q /?))

b. (cdr (cons q /?))

22 Data and Operators

The procedures cons, car, and cdr do not alter their operands. Let us

demonstrate this with an experiment.

[1] (define a 10)

[2] (define Is-b '(20 30 40))

[3] (car Is-b)

20

[4] (cdr Is-b)

(30 40)

[5] (cons a Is-b)

(10 20 30 40)

[6] a

10

[7] Is-b

(20 30 40)

After all of these operations involving car, cdr, and cons, the values of the

operands a and Is-b stayed the same when they were entered in [6] and [7]

as they were when they were defined in the beginning.

So far, we have encountered three procedures—car, cdr, and cons—that

help us manipulate lists and four procedures—+, *, -, and /—that allow us to

operate on numbers. Another group of procedures, called predicates, applies

a test to their arguments and returns true or false depending on whether the

test is passed. Scheme uses #t to denote true and #f to denote false. The

value of #t is #t and the value of #f is #f , so both of these are constants.* #t

and #f , representing true and false, are known as boolean (or logical) values.

They form a separate type of data to give us five distinct types: numbers,

symbols, booleans, pairs (including lists), and procedures. More data types

will be introduced in later chapters. We now look at several predicates that

apply to these five data types.

The first predicate tests whether its argument is a number, and its name is

number?. Like most other predicates, the name ends with a question mark,

signaling that the procedure is a predicate. Thus if we apply the predicate

number? to some object, #t is returned if the object is a number, and otherwise

#f is returned. If we make the following definitions,

(define num 35.4)

(define twelve 'dozen)

* In some implementations of Scheme, the empty hst () is returned instead of tf to indicate

false.

1.5 Taking Lists Apart 23

we get the following results:

(number? -45.67) =» #t

(number? '3) =* #t

(number? num) =^ #t

(number? twelve) ^^ #f

(number? 'twelve) ==* #f

(number? (+2 3)) => #t

(number? #t) ==* #f

(number? (car '(15.3 -31.7))) =» #t

(number? (cdr '(15.3 -31.7))) => #f

In the last example, the operand evaluates to (-31.7), which is a list, not a

number.

The predicate symbol? tests whether its argument is a symbol. With the

definitions of num and twelve given above, we get the following results:

(symbol? 15) => #f

(symbol? num) ^^ #f

(symbol? 'num) =^ #t

(symbol? twelve) =^ #t

(symbol? 'twelve) ^^ #t

(symbol? #f) => #f

(symbol? (car '(banana creeim))) =^ #t

(symbol? (cdr ' (banaina creaun))) ^^ #f

In the Icist example, (cdr ' (beuieina cream)) evaluates to a list, not a symbol.

There is also a predicate boolean? to test whether its argument is one of

the boolean values #t or #f

.

(boolean? «t) ==* «t

(boolean? (number? 'a)) =^ #t

(boolean? (cons 'a '())) => #f

A pair is an object built by the constructor cons, and the predicate pair?

tests whether its argument is a pair. For example, nonempty lists are con-

structed by cons, so they are pairs. We have

(pair? '(Ann Ben Carl)) ^ «t

(pair? '(!)) =^ #t

(pair? '()) => »f

(pair? '(())) => «t

24 Data and Operators

(pair? '(a (b c) d)) =» «t

(pair? (cons 'a '())) =* #t

(pair? (cons 3 4)) =» #t

(pair? 'pair) =* #f

There is also a predicate null? which tests whether its argument is the

empty list.

(null? '()) =* #t

(null? (cdr '(cat))) => «t

(null? (car '((ab)))) => #f

Exercises

Exercise 1.10

If the operands oc and evaluate to any values, what is

a. (symbol? (cons a /?))

b. (pair? (cons oc 0))

c. (null? (cons o; /?))

d. (null? (cdr (cons a '())))

Exercise 1.11

If a list Is contains only one item, what is (null? (cdr Is))?

We have given tests to determine whether an object is a number, a symbol,

a boolean, or a list, but we have not given a test to determine whether it is

a procedure. There is also a predicate procedure? which tests whether its

argument is a procedure.

(procedure? cons) ==* #t

(procedure? +) ==* #t

(procedure? 'cons) ^^ #f

(procediire? 100) =» #f

At this point, we have introduced five data types: numbers, symbols,

booleans, pairs, and procedures. As we progress through the book, we shall

meet other data types, such as strings, characters, vectors, and streams. A
question that we often ask is whether two objects are the same. Scheme offers

t.5 Taking Lists Apart 25

several different predicates to test for the sameness of its arguments. Which

predicate you use depends upon the information you seek and the data type

of the objects. We list a number of these sameness predicates below and in-

troduce others as the need arises. When both objects are numbers, we use the

predicate = to test whether its arguments represent the same number. The

predicate = is used only to test the sameness of numbers. It is safe to use it

only on integers, since the representation of nonintegers in the computer can

lead to undesirable results.

(= 3 (/ 6 2)) =^ #t

(= (/ 12 2) (* 2 3)) => »t

(= (car '(-1 ten 543)) (/ -20 (• 4 5))) => #t

(= (* 2 100) 20) ==> #f

There is also a predicate eq? to test the sameness of symbols. If its operands

evaluate to the same symbol, #t is returned. For this example, assume that

Garfield has been bound to 'cat.

(eq? 'cat 'cat) ^ #t

(eq? Garfield 'cat) ^ #t

(eq? Garfield Gcirf ield) =» #t

(eq? 'Garfield 'cat) ^ #f

(eq? (car ' (Garfield cat)) 'cat) =» #f

(eq? (car ' (Garfield cat)) 'Garfield) =^ «t

The predicate eq? returns #t if its two arguments are identical in all re-

spects; otherwise it returns #f . Symbols have the property that they are

identical if they are written with the same characters in the same order. Thus

we use eq? to test for the sameness of symbols. On the other hand, each appli-

cation of cons constructs a new and distinct pair. Two pairs constructed with

separate applications of cons will always test #f using eq? even if the pairs

they produce look alike. For example, let us make the following definitions:

[1] (define Is-a (cons 1 '(23)))

[2] (define Is-b (cons 1 '(23)))

[3] (define Is-c Is-a)

Then we have

26 Data and Operators

[4] (eq? (cons 1 '(2 3)) (cons 1 '(23)))

«f

[5] (eq? Is-a '(cons 1 '(23)))

#f

[6] (eq? Is-a Is-b)

ftf

[7] (eq? Is-a Is-c)

#t

In [4] , cons is applied twice to build two distinct pairs, so #f is returned

even though both of the pairs look alike as lists (1 2 3). In [5] , the variable

Is-a refers to the pair defined in [1] , which is distinct from the pair defined

by the cons in [5], so #f is returned. In [6], Is-b refers to the pair built

by the cons in [2] , which is distinct from that built in [1] , so eq? again

evaluates to #f . Finally, Is-c is defined to be the value of Is-a, which is the

pair built by the cons in [1] , so both Is-a and Is-c refer to the same pair,

and eq? evaluates to #t.

When we want to include numbers, symbols, and booleans in the types of

objects the predicate tests for sameness, we use the predicate eqv?. We shall

later see that eqv? also tests vectors, strings, and characters for sameness.

(eqv? (+ 2 3) (- 10 5)) => #t

(eqv? 5 6) =» «f

(eqv? 5 'five) =* #f

(eqv? 'cat 'cat) =* «t

(eqv? 'cat 'kitten) => «f

(eqv? (ccir '(a a a)) (car (cdr '(a a a)))) =* #t

We have not included lists among the data types we can test for sameness

using the predicates discussed. If we want a universal sameness predicate

that can be applied to test numbers, symbols, booleans, procedures, and lists

(and strings, characters, and vectors), we use the predicate equal?. In the

case of pairs constructed using separate applications of cons, equal? tests the

corresponding entries, and if they are the same, #t is returned. Thus equal?

tells us that the two lists (cons 'a '(be d)) and (cons 'a '(be d))are

the same, whereas eq? and eqv? claim that they are diff"erent.

(equal? 3 (/ 6 2)) => #t

(equal? 'cat 'cat) ==* #t

(equal? ' (a b c) (cons 'a ' (b c))) => #t

(equal? (cons 1 '(2 3)) (cons 1 '(2 3))) => «t

(equal? '(a (b c) d) '(a (b c) d)) => #t

1.5 Taking Lists Apart 27

(equal? '(a (b c)) '(a (c b))) =» #f

(equal? (cdr '(a c d)) (cdr '(b c d))) =» #t

Now for the obvious question: How do we know which one to use? When
a predicate must first test to determine the type of its arguments, it is less

efficient than one designed specifically for the type of its arguments. Thus for

numbers, = is the most efficient sameness predicate. Similarly, for symbols,

eq? is the most efficient predicate. For testing only numbers or symbols, eqv?

is more efficient than equal?. When we know that we shall be using numbers

or symbols, then eqv? is the sameness predicate we use. When the discussion

is limited to numbers, we use =.

When we respond to a prompt with a number or a quoted symbol, we

have seen that the number or symbol is returned. If we enter a symbol that

has been bound to a value, that value is returned. If we apply a procedure

such as car to a list (1 2 3) by entering (car ' (1 2 3)), the expression is

evaluated and the value 1 is returned and printed on the screen. On the other

hand, not every Scheme object is printable. If we enter only the name of a

procedure, such as car, the procedure, which is the value of car, is returned,

but not printed; instead a message is displayed, which indicates a procedure.

In this book, we indicate a procedure by printing angle brackets surrounding

the name of the procedure in italics. Thus, when we enter car, <car> is

displayed. In general, when we use <som€-symbol>, it denotes a procedure.

We now summarize our discussion of cons, car, cdr, and predicates by

writing some facts that apply to their use. The list is certainly not all inclusive,

and we recommend that you add your own entries to it to reinforce your

understanding of the use of predicates. Let a and /? be operands such that a

evaluates to any value and f3 evaluates to any nonempty list. We then have:

The number of items in (cons a /?) is one greater than the number of

items in /?.

(eq? a /?) => #t

implies

(eqv? a /?)==> #t

implies

(equal? a /?) =* #t

(eq? (cons a f5) (cons a (3)) ==> #f

(eqv? (cons a 0) (cons a /?)) =* #f

(equal? (cons a /3) (cons a /?)) =* #t

(boolean? (eqv? a /?)) =* #t

Data and Operators

(null? (cdr (cons a '()))) => #t

(equal? (cons (car /?) (cdr /?)) /3) => #t

(equal? (car (cons a (3)) a) ^^ #t

(equal? (cdr (cons a (3)) (3) =i* #t

(null? 13) => #f

(pair? 13) => #t

(pair? (cons a (3)) =i> #t

(pair? (cons a\ Q2)) =^ #t

We have been introduced to five basic data types (numbers, symbols, bool-

eans, pairs, and procedures), and we have seen a number of procedures to

manipulate and test the data. In Chapter 2 we shall develop the tools to

compute with lists, and in Chapter 3 we shall do the same for numbers.

Exercises

Exercise 1.12

Evaluate each of the following.

a. (cdr '((a (b c) d)))

b. (car (cdr (cdr '(a (b c) (d e)))))

c. (car (cdr '((1 2) (3 4) (5 6))))

d. (cdr (car '((1 2) (3 4) (5 6))))

e. (car (cdr (car '((cat dog hen)))))

f. (cadr '(a b c d))

g. (cadar '((a b) (c d) (e f)))

Exercise 1.13

We can extract the symbol a from the list (b (a c) d) using car and cdr

by going through the following steps:

(cdr '(b (a c) d)) => ((a c) d)

(car (cdr ' (b (a c) d))) => (a c)

(car (car (cdr ' (b (a c) d)))) ^^ a

For each of the following lists, write the expression using car and cdr that

extracts the symbol a:

1.5 Taking Lists Apart 29

a. (b c a d)

b. ((b a) (c d))

c. ((d c) (a) b)

d. (((a)))

Exercise 1.1

4

Decide whether the following expressions are true or false:

a. (symbol? (car ^(cat mouse)))

b. (symbol? (cdr '((cat mouse))))

c. (symbol? (cdr '(cat mouse)))

d. (pair? (cons 'hound '(dog)))

e. (pair? (car '(Cheshire cat)))

f. (pair? (cons '() '()))

Exercise 1.15

Decide whether the following expressions are true or false:

a. (eqv? (car '(a b)) (car (cdr ' (b a))))

b. (eqv? 'flea (car (cdr '(dog flea))))

c. (eq? (cons 'a ' (b c)) (cons 'a ' (b c)))

d. (eqv? (cons 'a ' (b c)) (cons 'a ' (b c)))

e. (equal? (cons 'a ' (b c)) (cons 'a ' (b c)))

f. (null? (cdr (cdr '((a b c) d))))

g. (null? (car '(())))

h. (null? (car '((()))))

30 Data and Operators

Procedures and Recursion

2.1 Overview

2.2 Procedures

In Chapter 1 we used several Scheme procedures such as those bound to the

numerical operators +, *, -, and /, the list-manipulating procedures bound to

cons, car, and cdr, and the predicates that test their arguments and return

#t or #f . One of the advantages of using the programming language Scheme

is that the number of procedures provided by the language is relatively small,

so we do not have to learn to use many procedures in order to write Scheme

programs. Instead, Scheme makes it easy for us to define our own procedures

as we need them. In this chapter, we discuss how to define procedures to

manipulate lists. In Chapter 3, we shall see how to define procedures to do

numerical computations. In this chapter, we also discuss how a procedure

can call itself within its definition, a process called recursion. Finally, we

introduce an elementary tracing tool to help us in debugging programs.

The notation f{x,y) is used in mathematics to denote a function; it has the

name / and hcis two variables, x and y. We call the values that are given to

the variables the arguments of the function. To each pair of arguments, the

function associates a corresponding value. In computing, we are concerned

with how that value is produced, and we speak about the sequence of com-

putational steps that we perform to get the value returned by the function as

an algorithm for computing the function's value. The way we implement the

algorithm on the computer to get the desired value is called a procedure for

computing the desired value. Iff is the name of the procedure with variables

X and y, we use a list version, (f x y), of the prefix notation f{x,y) used

in mathematics. In general, prefix notation places the procedure or function

name in front of the variables. In the list version of prefix notation, the whole

expression is surrounded by parentheses, and within the parentheses, the name
of the procedure comes first, followed by the variables separated by spaces.

Although we used a procedure taking two arguments in this illustration, the

number of arguments depends on the procedure being used. For example, we

have already seen the procedure cons takes two arguments, and the procedure

car takes one.

Procedures such as those bound to the values of +, cons, car, cdr, null?,

eqv?, and symbol? are provided by the system as standard routines. It is

impossible for the system to provide all procedures needed. Therefore, it

is important to be able to define procedures as they are needed. Scheme

provides an elegant way of defining procedures based upon the lambda calculus

introduced by the logician Alonzo Church. (See Church, 1941.) We illustrate

this method with an example.

When we write (cons 19 '()), we get a list with one number in it, (19). If

we write (cons 'bit '()), we get a list with one symbol in it, namely (bit).

Now let's write a procedure of one variable that returns a list containing the

value given to that variable as its only element. We do it with a lambda

expression,

(leuabda (item) (cons item '()))

A lambda expression is an example of a special form: a form of expression

identified by a special symbol called a keyword, in this Ccise lambda.^

If the procedure defined by this lambda expression is applied to 19, the

parameter item, which is in the list following the keyword lambda, is assigned

(bound to) the value 19. Then the following subexpression (known as the

body of the lambda expression) is evaluated with the parameter item bound

to 19. The value of the body so obtained is returned as the value of the

application. In this case, it returns the value of (cons item '()), which is

(19). In summary, when a procedure that is the value of a lambda expression

is applied to some value, the parameter is bound to that value, and the body

^ Speciad forms look like applications but are not, and in order to recognize them, we have

to memorize the keywords, such as lambda and define. We shadl see other keywords later,

but the list of keywords we have to memorize is small.

S2 Procedures and Recursion

of the lambda expression is evaluated with this parameter binding. The value

of the body is returned as the value of the application of the procedure.

The lambda expression has the syntax

(Icimbda (parameteT . . .) body)

The keyword lambda is followed by a list that contains the parameters. The

ellipsis (three dots) following parameter indicates that the list contains zero

or more parameters. The next subexpression is the body of the lambda expres-

sion. The value of a lambda expression is the procedure, which can be applied

to values appropriate for the evaluation of the body. These values must agree

in number with the number of parameters in the lambda expression's param-

eter list. When the procedure is applied, the parameters are bound to the

corresponding values, and the body is evaluated. The value of the body is

then the value of the application.

In general, when a procedure is applied, the syntax is

(operator operand . . .

)

where operator is a subexpression that evaluates to the procedure being ap-

plied, and the operands are subexpressions that evaluate to the arguments to

which the procedure is applied. We stress that the arguments are the values

of the operands. For example, in the application (* (+ 2 3) (-7 1)), the

operator * evaluates to the multiplication procedure, the two operands are

(+ 2 3) and (- 7 1), and the two arguments are 5 and 6. The value of the

application is then 30, the product of 5 and 6.

Thus to apply the procedure we defined above to build a list containing the

symbol bit, we enter

(dcimbda (item) (cons item '())) 'bit)

and we get as the result (bit). Similarly,

((lambda (item) (cons item '())) (* 5 6)) =J> (30)

It is awkward to write the whole expression

(lambda (item) (cons item '()))

each time we want to apply the procedure. We can avoid this by giving the

procedure a name and using that name in the procedure applications. This

2.2 Procedures S3

is done by choosing a name, say maike-list-of-one, for this procedure and

then defining make-list-of-one to have the desired procedure as its value.

We write

(define make-list-of-one (lambda (item) (cons item '())))

This is easier to read if we display the parts more clearly on separate lines as

follows:

(define make-list-of-one

(leimbda (item)

(cons item '())))

Scheme ignores any spaces in excess of the one space needed to separate

expressions. Scheme also treats <RETURN>'s as spaces until the one following

the last right parenthesis that is entered to close the first left parenthesis in

the expression. Thus Scheme reads the two ways of writing this definition

of make-list-of-one as the same Scheme expression. The indentation sets

off subexpressions, making the structure of the program easier to understand

at a glance. 2 To apply the procedure m«ike-list-of-one, we enter the

application

(make-list-of-one 'bit)

and (bit) is returned.

We have now written a program that builds a list containing one item.

Computer programs to perform various tasks are written by defining the ap-

propriate procedure to accomplish the desired tasks. As the tasks become

more complicated, there are usually different ways of defining the procedures

to achieve the desired results. It is the aim of this book to lead you through

a series of learning experiences that will prepare you not only to be able to

write such programs but to do so in a way that is efficient, elegant, and clear

to read.

A word is in order about the choice of names for procedures and parameters.

Since a symbol can have as many characters in it as we wish, programs will be

easier to read if we choose names that describe the procedure or parameter.

^ To make entering expressions easier, some implementations of Scheme provide automatic

indenting eind peirenthesis matching. The automatic indenting places the cursor in the

proper position for the steirt of the next line, and the parenthesis matching indicates the

left peu'enthesis that a right p£irenthesis is closing.

$4 Procedures and Recursion

Thus we used the name raeike-list-of-one for the procedure that converted

a value into a list containing the value. In the lambda expression in the

definition of the procedure make-list-of-one, we selected the name item

for the parameter to indicate that it is expecting to be bound to the item that

is to be included in the list.

Now let's write a procedure called make-list-of-two that takes two ar-

guments and returns a list whose elements are those two arguments. The

definition is:

(define make-list-of-two ; This procedure creates

(lambda (iteml item2) ; a list of two items,

(cons iteml (make-list-of-one item2))))

The parameter list following the keyword leiinbda consists of two parameters,

iteml and item2. You may be wondering about the semicolons in the first and

second lines of the program and the statements following them. When Scheme

reads an expression, it ignores all semicolons and whatever follows them on a

line. This allows us to make remarks about the program so that the reader

looking at it will know the intent of the programmer. Such remarks are called

documeniaiion and can make understanding programs easier. By choosing

the names of variables carefully, you can reduce the amount of documentation

necessary to understand a program. The documentation can also precede or

follow the program if each line is preceded by a semicolon. In the programs

in this book, we try to select variable names that make such documentation

unnecessary. When we wish to make points of clarification, we shall state

them in the accompanying discussion.

We apply the procedure maike-list-of-two to the two symbols one and

two by writing

(mcJce-list-of-two 'one 'two) =* (one two)

When we defined the procedure make-list-of-two, we used the parameters

iteml and item2. When we applied the procedure meike-list-of-two, its

two arguments were the values of the operands 'one and 'two.

In Section 1.5, we saw how to take a list containing four items (menu was

bound to the list (chicken soup ice cream)) and build a new list containing

the same items but grouped into two lists, each containing two items. We can

use the procedure make-list-of-two to give us another way of doing that

grouping. We define a procedure called regroup that has as its parameter

list-of-4, which will be bound to a list of four items. It returns a list with

the items in list-of-4 regrouped into two lists of two items each. In the

2.2 Procedures 35

course of writing the definition of regroup, we shall find it clearer to make

use of certain other procedures, which express what we want to appear in the

list of the two items we create. We use these procedures in the definition of

regroup and then define them afterward. The order in which the definitions

are written does not matter, and it is often more convenient to use a procedure

in a definition where it is needed, and then to define it later. In the definition

that follows, we make use of two such helping procedures, first-group and

second-group.

(define regroup

(lambda (list-of-4)

(mcike-list-of-two

(first-group list-of-4)

(second-group li8t-of-4))))

The procedure meike-list-of-two is used to create a list of two items, the

first item being a list consisting of the first two items in list-of-4 and the

second consisting of the last two items in list-of-4. To construct the first

grouping, we use a helping procedure first-group that we define as:

(define first-group

(lambda (Is)

(meike-list-of-two (car Is) (cadr Is))))

We define the helping procedure second-group as:

(define second-group

(lambda (Is)

(cddr Is)))

When first-group is applied to list-of-4, the parameter Is is bound to

the list of four items and the helping procedure make-list-of-two is applied

to build the desired list consisting of the first two items in the list of four

items. Similarly, the helping procedure second-group produces the rest of

the list of four items following the first two, that is, the list consisting of the

last two items.

Now to get the new menu, we simply apply the procedure regroup to menu,

and we get the desired list:

(regroup menu) =* ((chicken soup) (ice cream))

36 Procedures and Recursion

What is gained by using these procedures over the method used in Chap-

ter 1 in which everything was expressed in terms of cons, car, cdr, and so

forth? The version in Chapter 1 is hard to understand when it is scanned, for

we have to pause to work out what the constructors and selectors are doing.

In the new version, you can look at the code for regroup and see immediately

that it is making a list of two items; the first group is again a list of two

items, the first two items in the list of four items, and the second group is a

list consisting of the remaining two items in the list of four items. By carefully

choosing the names of the procedures and parameters, we can make the pro-

grams easy to read and understand. In our case, the use of the three helping

procedures, maJte-list-of-two, first-group, and second-group, make the

program easier to understand. Often the helping procedures can be used in

many programs. In reality, helping procedures are ordinary procedures that

we happen to want to make use of in writing some program. Any procedure

can be used as a helping procedure.

We have defined procedures to build lists containing one item and two items.

Scheme provides a procedure list, which takes any number of arguments and

constructs a list containing those arguments. For example,

(list 'a 'b 'c 'd) => (a b c d)

(list '(1 2) '(3 4)) =* ((1 2) (3 4))

(list) =* ()

We shall see how list is defined in Chapter 7.

There are two styles of writing programs, top-down and bottom-up program-

ming. In both, we are looking for the solution of some problem and want to

write a procedure that returns the desired solution as its value. For now, we

refer to this as the main procedure. In top-down style, we first write the defi-

nition of the main procedure. The main procedure often uses certain helping

procedures, so we write the definitions of the helping procedures next. These

in turn may require other helping procedures, so we write those, and so on. In

bottom-up style, we first write the definitions of the helping procedures that

we anticipate using, and at the end, we write the main procedure. We shall

use both styles of programming in this book.

We summarize this discussion by observing that the value of a lambda

expression with the syntax

(lambda (parameter . . .) body)

is a procedure. The ellipsis after parameter means that this is a list of zero or

more parameters. When the procedure is applied, the parameters are bound

to the arguments (i.e., the values of the operands), and the body is evaluated.

2.2 Procedures 37

We can give the procedure a name by using a define expression with the

structure

(define procedure-name lambda-expression)

where procedure-name is the variable used as the name of the procedure.'

We apply {call or invoke) such a named procedure by writing the application

{procedure-name operand . . .

)

where the number of operands matches the number of parameters in the def-

inition of the procedure. In general, when an application of the form

{operator operand . . .)

is evaluated, the operands and the operator are all evaluated in some un-

specified order. The operator must evaluate to a procedure. The values of

the operands are the arguments. The procedure binds the parameters to the

arguments and evaluates the body, the value of which is the value of the ap-

plication. Because the operands are first evaluated and it is their values, the

arguments, that the procedure receives, we say the operands are passed by

value to the procedure.

We have also encountered two expressions that are called special forms:

those with the keywords define and lambda. These expressions are not ap-

plications because not all the items in the expressions are evaluated initially.

For example, in a lambda expression, the parameter list is never evaluated

and its body is not evaluated initially. Most computer languages have some

keywords that have special meaning and cannot be used for other purposes.

In Scheme the number of such keywords for special forms is relatively small.

In Chapter 14, we shall see how we can add to Scheme our own special forms.

' Scheme also supports

(define {procedure-name parameter ...) body)

as a syntax for a define expression.

38 Procedures and Recursion

Exercises

When doing these exercises, you may find it convenient to save the defini-

tions of the procedures in a file. These procedures can then be used again.

They can be entered into Scheme from a file in which they were saved either

by using a transfer mechanism or by invoking a loading procedure. In some

implementations of Scheme, this is done with (load "filename'')

.

Exercise 2.1: second

Define a procedure called second that takes as its argument a list and that

returns the second item in the list. Assume that the list contains at least two

items.

Exercise 2.2: third

Define a procedure called third that takes as its argument a list and that

returns the third item in the list. Assume that the list contains at least three

items.

Exercise 2.3: f irsts-of-both

The procedure f irsts-of-both is defined as follows:

(define f irsts-of-both

(lambda (list-1 list-2)

(make-list-of-two (car list-1) (ceur list-2))))

Determine the value of the following expressions:

a. (f irsts-of-both '(1357) '(246))

b. (f irsts-of-both '((a b) (c d)) '((e f) (g h)))

Exercise 2.4-' juggle

Define a procedure juggle that rotates a three-element list. The procedure

juggle returns a list that is a rearrangement of the input list so that the

first element of this list becomes the second, the second element becomes the

third, and the third element becomes the first. Test your procedure on:

(juggle '(jump quick spot)) ==* (spot jump quick)

(juggle '(dog bites mEm)) =^> (man dog bites)

2.2 Procedures 39

Exercise 2.5: switch

Define a procedure switch that interchanges the first and third elements of a

three-element list. Test your procedure on the examples given in the previous

exercise.

2.3 Conditional Expressions

Suppose we want to define a predicate that tests whether a value is a number,

a symbol, an empty list, or a pair, and returns a symbol indicating its type.

The structure of the test can be written in natural language as:

If the value is a pair, return the symbol pair.

If the value is an empty list, return the symbol empty-list.

If the value is a number, return the symbol niuaber.

If the value is a symbol, return the symbol symbol.

Otherwise, return the symbol some-other-type.

This description of the procedure using English gives a sequence of steps that

we follow to carry out the computation. Such a sequence of steps describing a

computation is called an algorithm. We implement the kind of "case analysis"

given in tl s algorithm using a cond expression (the special form with keyword

cond). The keyword cond is derived from the word conditional. Using cond,

we write a procedure called type-ol that tests its argument and returns the

type of the item as described above:

(define type-of

(leUDbda (item)

(cond

((pair? item) 'pair)

((null? item) 'empty-list)

((number? item) 'niimber)

((symbol? item) 'symbol)

(else 'some-other-type))))

Let us analyze the cond expression. In this case, the cond expression has

five clauses, each represented by two expressions enclosed in parentheses. The

first clause, ((pair? item) 'pair), has as its first expression (pair? item),

which is a boolean or logical expression with the value #t or #f depending on

whether the value bound to item is or is not a pair. We shall also refer to the

boolean expression as the condition. If the condition evaluates to true, then

the second expression in the clause (the consequent), 'pair, is evaluated and

pair is returned. If the condition in the first clause evaluates to false, the

40 Procedures and Recursion

condition in the second clause ((null? item) 'empty-list) is evaluated.

If one of the subsequent conditions is true, then its consequent is evaluated

and that value is returned. The last clause has the keyword else as its

first expression, and if all of the preceding conditions are false, the expression

following else is evaluated, and its value is returned. The expression following

else is referred to as the alternative.

In general, the syntax of a cond expression is

(cond

{conditiorii consequenti)

{condition2 con3equent2)

iconditioun consequentn)

(else alternative))

where for each k = l,...,n, the expressions iconditiouk consequentk) and

(else alternative) are called clauses. The conditiorik and consequentk^ for

k = l,...,n, and the alternative are expressions, and else is a keyword.

Each of the conditional parts of the clauses is evaluated in succession until

one is true, in which case the corresponding consequent is evaluated, and

the value of the cond expression is the same as the value of the consequent

corresponding to the true condition. If none of the conditions is true, the

cond expression has the same value as the alternative, which is in the last

cond clause, known as the else clause.*

Scheme has another way of handling conditional expressions that have only

two cases. We can also use the special form with keyword if. Suppose we

want to write a procedure car-if-pair that does the following:

If its argument is a pair, return the car of the pair.

Otherwise, return the argument.

Here is the procedure car-if-pair using cond:

(define car-if-pair

(lambda (item)

(cond

((pair? item) (car item))

(else item))))

* The else clause is optional. Hit is omitted and all of the conditions are false, then Scheme

does not specify the value that is returned as the value of the cond expression. We shall

avoid using cond expressions that return unspecified values.

2.3 Conditional Expressions 4.I

or using an if expression, it can be written as:

(define ceur-if-pair

(leunbda (item)

(if (pair? item)

(c2u: item)

item)))

In general, the syntax of an if expression is

(if condition consequent alternative)

or

(if condition consequent)

In the first case, if condition is true, the value of consequent is returned as

the value of the if expression; if condition is false, the value of alternative

is returned as the value of the if expression. In the second case, the alter-

native is not present. In this "one-armed if," if condition is true, the value

of consequent is returned as the value of the if expression. If it is false, an

unspecified value is returned.

If expressions can be nested, enabling us to write the procedure type-of

given above as follows:

(define type-of

(lambda (item)

(if (pair? item)

'pair

(if (null? item)

'empty-list

(if (niimber? item)

'number

(if (symbol? item)

'symbol

' some-other-type)))))

)

Any cond expression can be written as nested if expressions, but as the num-

ber of cases increases, the nesting of the if expressions gets deeper, and the

meaning of the whole conditional expression is obscured. Thus, using a cond

expression is often advantageous when there are several cases.

42 Procedures and Recursion

The use of conditional expressions with either if or cond depends upon first

evaluating a condition. The condition may be simple, such as (null? Is),

or it may involve something like testing whether Is is a pair and whether its

020" is some symbol such as cat. A condition that involves a combination

of two or more simple conditions is called a compound condition. We build

compound conditions by combining simple conditions with the logical compo-

sition operators amd, or, and not. The compound condition mentioned above

can be written using and as follows:

(and (pair? Is) (eq? (car Is) 'cat))

The syntax of each of these logical operators is given below:

(etnd expri expr2 ... exprn)

(or expri expr2 ... exprn)

(not expr)

The and expression evaluates each of the subexpressions expri, expr2, . . .,

exprn in succession. If any one of them is false, it stops evaluating the rest

of the subexpressions, and the value of the and expression is #f . If all of the

subexpressions have true values, the value of the last subexpression is returned

as the value of the and expression.^

The or expression evaluates each of the subexpressions expri, expr2, ,

exprn in succession. If any one of them is true, it stops evaluating the rest

of the subexpressions, and the value of the or expression is the value of that

first true subexpression. If all of the subexpressions are false, the value of the

or expression is #f

.

The value of the not expression is #1 when expr has a true value, and it is

#t when expr is false.

We illustrate the use of and and or in the following examples:

(define s-eind-n-list?

(lambda (Is)

(euid (pair? Is)

(symbol? (car Is))

(pair? (cdr Is))

(number? (cadr Is)))))

^ Scheme has a convention of treating einy value that is not false as true. Thus (if 'cat

'kitten 'puppy) ^^ kitten, since the condition 'cat evaluates to cat, which is not false.

It is good programming style, however, for the conditions to be boolean expressions that

evaduate to either tt or tf

.

2.3 Conditional Expressions 4^

The predicate s-and-n-list? takes a list as its argument. The value of

the expression (s-aind-n-list? some-list) is #t if:

some-list is a pair,

and the first item in some-list is a symbol,

and the cdr of some-list is a pair,

and the second item in some-list is a number.

Otherwise, the value of (s-and-n-list? some-list) is #f . For example,

(s-and-n-list? '(a 1 b)) =* «t

while

(s-and-n-list? '(a b D) =» #f

The test to determine whether the list is a pair is necessary since we can only

take the Ceo: of a pair. If the list is empty, the evaluation of the car of the

list never takes place. The evaluation terminates on the first false value.

(define s-or-n-list?

(lambda (Is)

(and (pair? Is)

(or (symbol? (cau: Is))

(number? (car Is))))))

The predicate s-or-n-list? takes a list as its argument. The expression

(s-or-n-list? some-list) =^ #t if:

some-list is a pair,

and either the first item in some-list is a symbol or it is a number.

Otherwise (s-or-n-list? some-list) =* #f

.

There are occasions when we want to test whether a list contains precisely

one item, that is, whether the list is a singleton list. It is easy to define

a predicate singleton-list? that tests whether its argument is a pair and

whether it contains just one element. To test whether a pair contains just one

element, it is enough to test whether its cdr is empty. Thus we can write

Program 2.1 singleton-list?

(define singleton-list?

(lambda (Is)

(and (pair? Is) (null? (cdr Is)))))

44 Procedures and Recursion

This definition makes use of the fact that the empty list is not a pair. Thus

the nonempty list whose cdr is empty must contain just one item and is thus

a singleton list.

Exercises

Exercise 2.6

Assume that a, b, and c are expressions that evaluate to #t and that e and f

are expressions that evaluate to #f. Decide whether the following expressions

are true or false.

a. (and a (or be))

b. (or e (cmd (not f) a c))

c. (not (or (not a) (not b)))

d. (and (or a f) (not (or be)))

Exercise 2.1

Decide whether the following expressions are true or false if expr is some

boolean expression.

a. (or (symbol? expr) (not (symbol? expr)))

b. (amd (null? expr) (not (null? expr)))

c. (not (and (or expr #f) (not expr)))

d. (not (or expr #t))

Exercise 2.8

Decide whether the following expressions are true or false using s-cind-n-

list? as defined in this section.

a. (s-2uid-n-list? *(2 pair 12 dozen))

b. (s-and-n-list? '(b 4 u c a j))

c. (s-aoid-n-list? '(a ten))

d. (s-and-n-list? '(a))

Exercise 2.9

Decide whether the following expressions are true or false using s-or-n-list?

as defined in this section.

a. (s-or-n-list? '(b))

2.3 Conditional Expressions ^5

b. (s-or-n-list? '(c 2 m))

c. (s-or-n-list? '(10 10 10 10))

d. (s-or-n-list? '())

2.4 Recursion

We saw in Section 2.2 that certain procedures use other procedures as helping

procedures. In this section, we define procedures that use themselves as help-

ing procedures. When a procedure calls itself within the body of the lambda

expression defining it. we say that the procedure is recursive. To introduce the

idea of a recursive procedure, we set as our goal the definition of a procedure

last-item. that, when applied to a nonempty list, returns the last top-level

item in the list. Here are some examples of applications of last-item:

(last-itea '(12345)) =* 5

(last-item '(a b (c d))) =^ (c d)

(last-item '(cat)) => cat

(last-item '((cat))) =^ (cat)

It is a good idea to begin with the simplest cases of the arguments to which

the procedure is applied. In this case, the simplest nonempty list is a list

containing only one item. For example, if the list is (a), then the last item is

also the first item, and applying cair to this list produces the last item. This

would work with any list containing only one top-level item, for the car of the

list is both its first and its last toi>-level item. Let us use the variable Is as

the parameter in the definition of last-item. How can we test whether Is

contains only one top-level item? When Is contains only one top-level item,

its cdr is the empty list. Thus the boolean expression (null? (cdr Is))

returns #t when—and indeed only when—the nonempty list Is contains only

one top-level item. Thus, we may use a cond expression to test whether we

have the case of a one-item list and return the car of the list if that is the

case. We can then begin our program as follows:

(define last-item

(lambda (Is)

(cond

((null? (cdr Is)) (car Is))

...)))

46 Procedures and Recursion

If we now consider a list Is containing more than one top-level item, the cdr

of that list contains one fewer top-level items, but still includes the last item

of the original list. Each successive application of cdr reduces the number of

top-level items by one, until we finally have a list containing only one top-level

item, for which we have a solution. In this sense, application of cdr to the

list reduces the problem to a simpler case. This leads us to consider the list

obtained by evaluating (cdr Is),^ which contains all of the items of Is except

its first item. The last item in (cdr Is) is the same as the last item in Is. For

example, the list (a b c) and the list (b c), which is its cdr, have the same

Icist item, c. Thus if we call the procedure last-item as a helping procedure

to be applied to (cdr Is), we get the desired last item of the original list,

and that solves our problem. Thus to complete the definition of last-item,

we add the else clause to handle the case where the list contains more than

one item:

Progreun 2.2 last-item

(define last-item

(lambda (Is)

(cond

((null? (cdr Is)) (car Is))

(else (last-item (cdr 1 s))))))

To see that this docs define the procedure last-item so that it returns the

correct result for any nonempty list Is, we consider first a list (a) containing

only one item. Then the condition in the first cond clause is true, and (ceir

Is) does give us the last (which is also the first) item, a, in the list. Thus last-

item works on any list containing only one item. Now let's consider the case

in which Is is a list (a b) containing two items. Then its cdr, (b), contains

one item, so the procedure last-item does work on (cdr Is), allowing us to

use it as a helping procedure in the else clause to get the correct result. Thus

last-item solves the problem for any list of two items. Now we use the fact

that last-item works on the cdr of any three-item list to conclude that it

^ It is common practice, when the context is clear, not to include the phraise obtained by

evaluating. We say, "the hst (cdr Is)" instead of "the list obteuned by evaJuating (cdr

Is)" whenever the context makes it clear that we want the value of (cdr Is) rather thain

the litereJ hst whose first iten> is cdr euid whose second item is Is. When we weint the

Utereil list, eind the context is not cleair, we indicate so by quoting it.

2.4 Recursion 4^

works on the three-item list itself. We can continue this process of increasing

by one the number of items in the list indefinitely, showing that last-item

solves the problem for any list.

Since the procedure last-item called itself as a helping procedure, last-

item is a recursive procedure. Our strategy in general in designing a recursive

procedure on a list is first to identify the "simplest case" and write the expres-

sion that solves the problem for that case as the consequent in the first cond

clause. We call this simplest case the base case or terminattng condition. We
then identify a simplifying operation, which on repeated application to the

list produces the base case. Then in each of the other cases, we solve the

problem with some expression that calls the recursive procedure as a help-

ing procedure applied to the simplified list. In our example, the base case is

the list consisting of only one item. The simplifying operation is cdr, and in

the other cases, we see that the expression that solves the problem applies

last-item to the simplified list (cdr Is).

To give us a better intuition about how last-item works, we shall apply

last-item to the list (a b c). What is (last-item '(a b c))? We shall

walk through the evaluation of this expression. The parameter Is is bound

to the argument (a b c), and the cond expression is evaluated. In this case,

(cdr Is) is not empty, so the alternative in the else clause is evaluated.

This tells us to apply last-item to (cdr Is). Since (cdr Is) is (b c),

we must evaluate (last-item ' (b c)). We thus bind the parameter Is to

the argument (be) and enter the cond expression. Once again, (cdr Is)

is not empty, so we evaluate the alternative in the else clause. This tells us

to apply last-item to (cdr Is), which now is (c). Thus we must evaluate

(last-item ' (c)). We now bind the parameter Is to the argument (c) and

enter the cond expression. This time (cdr '(c)) is the empty list. Thus the

consequent is evaluated to give (car ' (c))

—

c as the value of the expression.

The recursion in the illustration stops when the list is simplified to the

base case. In that case, the condition in the first cond clause is true. We
call the condition used to stop the recursion the ierminaUng condition. In

our example, the terminating condition is (null? (cdr Is)). Generally,

whenever a recursive procedure is defined, a terminating condition must be

included so that the recursion will eventually stop. (In Chapter 15 on streams,

we shall see examples in which a terminating condition is not needed.) We
usually begin the definition of a recursive procedure by writing the terminating

condition as the first cond clause. We then proceed with the rest of the

definition.

In the preceding discussion we introduced the substitution model. Using the

substitution model, we can determine the value of an expression by substitut-

48 Procedures and Recursion

ing values for parameters. Through the first eight chapters, the substitution

model suffices. From Chapter 9 on, however, there will be times when the

substitution model does not work. From time to time, we use it to clar-

ify a computation; most of the time, however, we use the general approach:

the environment model. In that approach we just remember the bindings of

variables and avoid any substitutions.

Let us next define a procedure member? that decides for us whether its first

argument is equal? to one of the top-level items in the list that is its second

argument. For example,

1. (member? 'cat '(dog hen cat pig)) ==> #t

2. (member? 'fox '(dog hen cat pig)) =* #f

3. (member? 2 '(1 (2 3) 4)) =* #f

4. (member? ' (2 3) ' (1 (2 3) 4)) => #t

5. (member? 'cat '()) =* #f

In Example 3, 2 is not a top-level item in the list (1 (2 3) 4), so #f is

returned. We begin the definition of member? by determining the base case.

Regardless of what item is, if Is is the empty list, #f is returned. This is the

simplest case and will be taken as our base case. To test for the base case,

we use the predicate null? so the terminating condition is (null? Is). The

consequent for the terminating condition is #f . We can therefore begin the

definition of member? as a procedure having two parameters, item and Is:

(define member?

(leunbda (item Is)

(cond

((null? Is) «f)

...)))

Now given any list, what is the simplifying operation that simplifies Is to

the empty list? It is again the procedure cdr. Assume that Is is not empty.

If we know the value of (member? item (cdr Is)) , how do we get the value

for (member? item Is)? Well, when is the latter statement true? It is true

if either the first item in Is is the same as item or if item is a member of

the rest of the list following the first item. This can be written as the or

expression:

(or (equal? (car Is) item) (member? item (cdr Is)))

Thus in the case when Is is not empty, the above expression is true exactly

2.4 Recursion 4^

when the expression (member? item Is) is true. We then complete the defi-

nition of member? with

Program 2.3 member?

(define member?

(lambda (item Is)

(cond

((null? Is) «f)

(else (or (equal? (car Is) item)

(member'' item (cdr Is)))))))

The procedure member? is recursive since it calls itself. Let us review the

reasoning used in the program for member?. If the terminating condition

(null? Is) is true, then item is not in Is, and the consequent is false. Oth-

erwise we look at the alternative, which is true if either item is the first item

in Is or if item is in (cdr Is) and is otherwise false.

When member? calls itself with argument (cdr Is), its parameter is bound

to the value of (cdr Is), which is a shorter list than the parameter's previous

binding to Is. In each successive recursive procedure call, the list is shorter,

and the process is guaranteed to stop because of the terminating condition

(null? Is).

In order to use a list as the first argument to member? (as in Example 4),

we used the predicate equaJ.? to make the sameness test in the else clause. If

we know that the items to which item is bound will always be symbols, we

can use eq? in place of equsd.?. The procedure so defined using eq? is named

memq? to distinguish it from member?, which is defined using equatl? for the

sameness test. Similarly, if we know that the items to which item is bound

will always be either symbols or numbers, we can use eqv? for the sameness

test and call the procedure so defined memv?.''

We have now defined the procedure last-item, which picks the last top-

level item out of a list, and the procedure member?, which tests whether ein

item is a top-level element in a given list. We continue illustrating how to

define recursive procedures with the definition of another useful procedure

^ Scheme provides the three procedures member, nemq, and memv, written without the ques-

tion mark. These behave somewhat differently from the ones we defined with the question

mark in that if item is not found, false is returned, but if item is found in Is, the subUst

whose car is item is returned. For example, (memq 'b '(a b c)) ^^ (b c).

50 Procedures and Recursion

for manipulating lists. The procedure remove-lst removes the first top-level

occurrence of a given item from a list of items. For example,

1. (remove-lst 'fox '(hen fox chick cock))

^* (hen chick cock)

2. (remove-lst 'fox '(hen fox chick fox cock))

=> (hen chick fox cock)

3. (remove-lst 'fox '(hen (fox chick) cock))

=* (hen (fox chick) cock)

4. (remove-lst 'fox '()) =*
5. (remove-lst '(1 2) '(1 2 (1 2) ((1 2))))

—> (1 2 ((1 2)))

In general, the procedure remove-lst takes two arguments, an element item

and a list Is. It builds a new list from Is with the first top-level occurrence of

item removed from it. We again begin looking at the simplest case, in which

Is is the empty list. Since item does not occur at all in the empty list, the

list we build is still the empty list. The test for the base case is then (null?

Is), and the value returned in its consequent is (). Thus the definition of the

procedure remove-lst begins with

(define remove-lst

(Isunbda (item Is)

(cond

((null? Is) '())

...)))

If Is is not empty, the procedure that simplifies it to the base case is again

cdr. If we already know (remove-lst item (cdr Is)), that is, if we have

a list consisting of the first top-level occurrence of item removed from (cdr

Is), how do we build up a list that is obtained by removing the first top-level

occurrence of item in Is? There are two cases to consider. Let's first consider

the example in which we remove the first occurrence of a from the list (a b

c d). Since a is the first item in the list, we get the desired result by merely

taking the cdr of the original list. This is the first case we consider. If the first

top-level item in Is is the same as item, then we get the desired list by simply

using (cdr Is). This case can be added to the definition of remove-lst by

writing

2.4 Recursion 51

(define reaove-lst

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

...)))

The only case left to be considered is when Is is not empty, and its first

top-level item is not the same as item. Consider the example in which we

apply remove-lst to remove the letter c from the list (a b c d). The list

is not empty and its first item is not c. Thus the list we build begins with

a and continues with the items in (b d). But (b d) is just the list obtained

by removing c from (b c d). The final result is then (a b d). which was

obtained by building the list

(cons (car ' (a b c d)) (remove-lst 'c (cdr '(a b c d))))

In general, the list we are building now begins with the first element of Is

and has in it the elements of (cdr Is) with the first top-level occurrence of

item removed. But this is obtained when we cons* (car Is) onto (remove-

lst item (cdr Is)) , so the final case is disposed of by adding the else clause

to the definition, which is given in Program 2.4.

Program 2.4 remove-lst

(define remove-lst

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

(else (cons (car Is) (remove-lst item (cdr Is)))))))

To get a better understanding of how recursion works, let's walk through

the evaluation of an application of the procedure remove-lst; for example

(remove-lst 'c '(abed))

* Scheme programmers use the verb cons, which has am infinitive "to cons", tenses "cons,

cons'd, has cons'd" , participle "consing" , and conjugation "I cons, he conses, etc." We shall

make frequent use of these words.

52 Procedures and Recursion

Since the list (a b c d) is not empty and the first entry is not c, the alter-

native in the else clause is evaluated. This gives us

(cons 'a (remove-lst 'c '(bed)))

To get the value of this expression, we must evaluate the remove-lst subex-

pression. Once again, the list (b c d) is not empty, and the first item in the

list is not the same as c. Thus the alternative in the else clause is evaluated.

This gives us as the value of the whole expression above:

(cons 'a (cons 'b (remove-lst 'c '(c d))))

Once again, to get the value of this expression, we must evaluate the remove-

lst subexpression. Now the list (c d) is not empty, but its first item is the

same as c. Thus the condition in the second cond clause in the definition of

remove-lst is true and the value of its consequent is (d). Thus the above

expression has the value

(cons 'a (cons 'b '(d)))

which can be simplified to give the value

(a b d)

This is the value returned by the procedure call. In the next section, we shall

see how the computer can help us walk through a procedure application.

In order to be able to remove a sublist from a given list, as in Example

5, the predicate equal? was used to test for sameness in the second cond

clause. If we know that all of the arguments to which item will be bound are

symbols, we can use eq? to test for sameness. The procedure defined using eq?

instead of equal? is named remq-lst. Similarly, if we restrict the arguments

to which item will be bound to symbols or numbers, we can use eqv? to test

for sameness in the second cond clause, and we name the procedure so defined

remv-lst.

Exercises

Exercise 2.10

Rewrite the definitions of the three procedures last-item, member? and

remove-lst with the cond expression replaced by if expressions.

2.4 Recursion 53

Exercise 2.11

The definition of member? given in this section uses an or expression in the

else clause. Rewrite the definition of member? so that each of the two subex-

pressions of the or expression is handled in a separate cond clause. Compare

the resulting definition with the definition of remove-lst.

Exercise 2.12

The following procedure, named mystery, takes as its argument a list that

contains at least two top-level items.

(define mystery

(Icunbda (Is)

(if (null? (cddr Is))

(cons (car Is) ')

(cons (car Is) (mystery (cdr Is))))))

What is the value of (mystery ' (1 2 3 4 5))? Describe the general behav-

ior of mystery. Suggest a good name for the procedure mystery.

Exercise 2.13: subst-lst

Define a procedure subst-lst that takes three parameters: an item new, an

item old, and a list of items Is. The procedure subst-lst looks for the first

top-level occurrence of the item old in Is and replaces it with the item new.

Test your procedure on:

(subst-lst 'dog 'cat '(my cat is clever))

^=* (my dog is clever)

(subst-lst 'b 'a ' (c a b a c)

)

^=> (c b b a c)

(subst-lst '(0) '() '((*) (1) () (2)))

=« ((0) (1) (•) (2))

(subst-lst 'two 'one '()) ^
In order to be able to include lists as possible arguments to which the param-

eters new and old are bound, use equal? to test for sameness. Also define

procedures substq-lst and substv-lst that use eq? and eqv? respectively,

instead of equal? to test for sameness.

54 Procedures and Recursion

Exercise 2.14: insert-right-lst

The procedure insert-right-lst is like remove-lst except that instead of

removing the item that it is searching for, it inserts a new item to its right.

For example,

(insert-right-lst 'not 'does '(my dog does have fleas))

=> (my dog does not have fleas)

The definition of insert-right-lst is

(define insert-right-lst

(lambda (new old Is)

(cond

((null? Is) '())

((equal? (car Is) old)

(cons old (cons new (cdr Is))))

(else (cons (car Is)

(insert-right-lst new old (cdr Is)))))))

Define a procedure insert-left-lst that is like insert-right-lst except

that instead of inserting a new item to the right of the item it is searching

for, it inserts it to its left. Test your procedure on

(insert-left-lst 'hot 'dogs '(I eat dogs))

^^ (I eat hot dogs)

(insert-left-lst 'fun 'games '(some fun))

=^ (some fiin)

(insert-left-lst 'a 'b '(a b c a b c))

^^ (a a b c a b c)

(insert-left-lst 'a 'b '()) => ()

Exercise 2.15: list-of-first-items

Define a procedure list-of-first-items that takes as its argument a list

composed of nonempty lists of items. Its value is a list composed of the first

top-level item in each of the sublists. Test your procedure on:

(list-of -first-items '((a) (b c d) (e f))) ^=> (a b e)

(list-of-first-items '((1 2 3) (4 5 6))) ==» (1 4)

(list-of-f irst-items '((one))) ^^ (one)

(list-of-first-items '()) =* ()

2.4 Recursion 55

Exercise 2.16: replace

Define a procedure replace that replaces each top-level item in a list of items

Is by a given item new-item. Test your procedure on:

(replace 'no '(sill you do ae a favor))

=^^ (no no no no no no)

(replace 'yes '(do you like ice creaa))

^^ (yes yes yes yes yes)

(replace 'shy '(not)) ^^ (shy)

(replace 'maybe '()) ^^ ()

Exercise 2.17: remove-2iid

Define a procedure reinove-2nd that removes the second occurrence of a given

item a from a list of items Is. You may use the procedure remove-lst in

defining reiBove-2iid. Test your procedure on:

(re2cve-2iid 'cat '(my cat loves cat food))

^^ (my cat loves food)

(reB0Te-2nd 'cat '(my cat loves food))

=* (my cat loves food)

(reBove-2nd 'cat '(my cat and your cat love cat food))

=^ (my ca- and your love ca- food)

(remove-2nd 'cat '()) ^ ()

Exercise 2.18: remove-last

Define a procedure remove-last that removes the last top-level occurrence

of a given element item in a list Is. Test your procedure on:

(remove-last 'a '(bananas)) =»> (b a n a n s)

(remove-last 'a '(banana)) ^^ (b a n a n)

(remove-last 'a '()) ^^

Exercise 2.19: sandwich- 1st

Define a procedure sandwich- 1st that takes two items, a and b. and a list

Is as its arguments. It replaces the first occxirrence of two successive b's in

Is with b a b. Test your procedure on:

(sandsich-lst 'mea- 'bread '(bread cheese bread bread))

=^> (bread cheese bread meat bread)

(sandwich-lst 'meat 'bread '(bread jam bread cheese bread))

=^ (bread jas bread cheese bread)

(sandHich-lst 'meax 'bread '()) =^

56 Procedures and Recursion

Exercise 2.20: list-of-symbols?

Define a procedure list-of-symbols? that tests whether the top-level items

in a given list Is are symbols. Write your definitions in three ways, first using

cond, then if, and finally and and or. Test your procedures with:

(list-of-symbols? '(one two three four five)) =^ #t

(list-of-symbols? '(cat dog (hen pig) cow)) =* #f

(list-of-symbols? ' (a b 3 4 d)) =» #f

(list-of-symbols? '()) =J> #t

Exercise 2.21: all-same?

Define a procedure all-same? that takes a list Is as its argument and tests

whether all top-level elements of Is are the same. Test your procedure with:

(all-same? '(a a a a a)) => #t

(all-same? '(a b a b a b)) ^ #f

(all-same? '((a b) (a b) (a b))) => »t

(all-same? '(a)) => #t

(all-same? '()) ^ #t

2.5 Tracing and Debugging

We have now walked through several programs to understand their behavior.

We had to evaluate expressions ourselves and make decisions as to which

branches of conditional expressions to follow. The computer is able to do

both of these, so we can take advantage of its power to relieve us of this kind

of work. The tool we develop here enables us to walk through or, as it is

technically known, trace our programs. We can also use this tool to find and

correct errors in our programs, a process called debugging.

The computer can help us walk through or trace our programs if we make

use of a procedure writeln (read as "write-line") that prints its arguments

directly to the computer screen. Some Scheme implementations provide the

procedure writeln, and if the one you are using does not make it available,

you can enter its simple definition.® The procedure writeln takes any number

of arguments. When we evaluate

® A more complete discussion of writeln and related procedures that write to the screen

is presented in Chapter 7. You may enter the definition of writeln given in Program 7.5 if

your implementation of Scheme does not provide it.

2.5 Tracing and Debugging 57

(writeln ezpri expr2 ... exprn)

the expressions expri expr2 . . exprn are all evaluated; then their values are

printed on the screen in order from left to right with no blank spaces between

them. When the last value is printed, the cursor moves to the beginning of

the next line. Like every other procedure, writeln must return a value, but

we are not concerned with this value. In fact, different implementations of

Scheme may return different values. Since it is unspecified in Scheme what

value writeln returns, we shall assume in our implementation that the value

returned is not printed on the screen.

For example, if the variable Jack is bound to the value Jill and the variable

Punch is bound to the value Judy, the evaluation of (writeln Punch Jack)

will print

JudyJill

on the screen with no space between the words. If we evaluate the expression

(writeln 'Punch 'Jack), then the screen shows

PunchJack

We can control the spacing and print sentences on the screen if we use

another type of data called strings. A string is any sequence of keyboard

characters. In Scheme, a string is written as a sequence of characters enclosed

with double quotes: ". Thus "This is a string. " is an example of a string.

If we want to include a double quote or a backslash in a string, we must precede

it by a backslash. ^'^ Thus, we can write the string "He said \"Hello\".",

which hcis "Hello" within double quotes. If we evaluate the expression

(writeln "This is a string.")

then

This is a string.

appears on the screen. Note that the double quotes are not printed with the

string. Thus the evaluation of the expression

^° A cheu-acter, such as a backslash, which is used to change the normal meaning of what

follows it is referred to €is an escape character.

58 Procedures and Recursion

(writeln "He said \"Hello\".")

prints

He said "Hello".

A string is another example of a constant in Scheme. Thus if we enter a

string in response to a prompt, the string is returned, including the double

quotes.

[1] "This is a string."

"This is a string."

If we evaluate

(writeln "My friends Jack and " Jack ".")

we see on the screen:

My friends Jack emd Jill.

The first occurrence of Jack is in the string, so it is printed literally as Jack.

The second occurrence of Jack is not in a string, so it is evaluated, and its

value Jill is printed. This time we have a space between the words and and

Jill, since the blank space is included after the word eind in the string. The

la^t string in the writeln expression contains only the period.

The procedure writeln is usually evaluated as one of a sequence of ex-

pressions that are evaluated consecutively. This is accomplished by using the

special form with keyword begin. A begin expression has any number of

subexpressions following the keyword begin. Each of these subexpressions is

evaluated consecutively in the order that it appears and the value of the last

subexpression is returned as the value of the begin expression. For example,

[2] (begin

(writeln "The remove-lst expression")

(writeln "is applied to the list (1 2 3 4)")

(writeln "to build a new list without the number 2.")

(remove-lst 2 '(1 2 3 4)))

The remove-lst expression

is applied to the list (12 3 4)

to build a new list without the number 2.

(1 3 4)

2.5 Tracing and Debugging 59

When the preceding begin expression is evaluated, the four subexpressions are

evaluated consecutively. The first three are writeln expressions, which print

their arguments on the screen, with a new line starting after each writeln

expression is evaluated. The values returned by the writeln expressions are

ignored. The value of the last expression is the only value returned—that is

the (13 4) that appears on the last line.

We want to stress that what is printed on the screen is not the value of the

writeln expressions. Instead, what is printed on the screen is done as a side

effect. A side effect causes some change to take place (in this case, the change

was printing on the screen), but it is not a value that is returned. When using

a begin expression, all of the subexpressions before the last one are included

for their side effects and not for the values that they return. The value of

the last subexpression is the only one returned. Here is another example to

illustrate that only the value of the last subexpression is returned.

[3] (begin

(+ 3 4)

(- 5 11)

(* 10 10))

100

The values of the first two subexpressions are ignored. In this case, the first

two subexpressions did not produce any side effects, so although they were

evaluated, we do not see any evidence of it and there really was no point in

putting them there!

The syntajc of the begin expression is

(begin expri expr2 ... exprn)

where the expressions expri, expr2, ... exprn are evaluated in their given

order, and the value of the last one, expTn, is returned.

We now have all the tools we need to use writeln to help us walk through

an application of remove- 1st to remove the letter c from the list (a b c

d). We "wrap" a helping procedure entering around the condition of each

cond clause as we enter it and wrap a helping procedure leaving around the

consequent (or alternative) as we leave the cond clause. The definitions of

these helping procedures are given after the main program. The procedure

entering takes three arguments: the value of the condition, the value of Is,

and the identifying number of the cond clause: 1 for the first, 2 for the second,

and 3 for the last. It tells us, using a writeln statement, which cond clause we

are entering and the value of Is. The procedure leaving takes two arguments:

60 Procedure3 and Recursion

the value of the consequent (or alternative) and the identifying number of the

cond clause. It tells us which cond clause we are leaving and the value of the

consequent. When we run the program, we thus get a written record each

time we enter or leave a cond clause. Inserting such writeln expressions into

the definition of a procedure to study the evaluation of the procedure is one

way of tracing the procedure. Program 2.5 contains the code for the procedure

that traces remove-lst. The definition of the helping procedure entering is

in Program 2.6, and of the helping procedure leaving is in Program 2.7.

When we enter a cond clause, the condition is the entering expression whose

parameter test is bound to the value of the original condition of remove-lst.

If test is true, it writes the fact that we are entering the cond clause with

the appropriate identifying number and the current value of the variable Is.

In any event, test is returned as the value of the condition. If test is false,

the next cond clause is entered. If test is true, the consequent of that cond

clause is evaluated. If the else clause is entered, we use the quoted symbol

else as the first argument of entering. Scheme treats the symbol else as

true (since it is not false) so the alternative is evaluated.

The consequent (or alternative) in each cond clause of remove-lst-trace

is a leaving expression. It has the value of the original consequent (or alter-

native) of the cond clause of remove-lst as the binding of its first parameter,

result. When the leaving expression is evaluated, it tells us the identifying

number of the cond clause and the value to which result is bound. It then

returns result.

Now let's apply remove-lst-trace to see how this tracing information

helps us see what is happening during the evaluation.

[1] (remove-lst-trace 'c '(a b c d))

Entering cond-clause-3 with Is = (a b c d)

Entering cond-clause-3 with Is = (b c d)

Entering cond-clause-2 with Is = (c d)

Leaving cond-clause-2 with result = (d)

Leaving cond-clause-3 with result = (b d)

Leaving cond-clause-3 with result = (a b d)

(a b d)

This output tells us that we first entered the third cond clause with Is bound

to (a b c d). With this binding, the leaving expression in the alternative is

evaluated, so that its first operand

(cons 'a (remove-lst-trace 'c '(b c d))) (1)

2.5 Tracing and Debugging 61

Progrson 2.5 remove-lst-trace

(define remove-lst-trace

(lambda (item Is)

(cond

((entering (null? Is) Is 1)

(leaving '()!))

((entering (equal? (car Is) item) Is 2)

(leaving (cdr Is) 2))

((entering 'else Is 3)

(leaving

(cons (car Is) (remove-lst-trace item (cdr Is)))

3)))))

Program 2.6 entering

(define entering

(lambda (test input cond-clause-number)

(begin

(if test (writeln " Entering cond-clause-"

cond-clause-number " with Is = " input))

test)))

Program 2.7 leaving

(define leaving

(leuobda (result cond-clause-number)

(begin

(writeln "Leaving cond-clause-"

cond-clause-number " with result = " result)

result)))

62 Procedures and Recursion

is evaluated. Thus remove- Ist-trace is called again, and a is waiting to be

consed onto the value obtained before we can leave cond clause 3. The next

message on the screen tells us that we are entering the third cond expression

again with argument (b c d). This time, the alternative

(cons 'b (remove-lst-trace 'c '(c d))) (2)

is evaluated, and b is waiting to be consed onto its value before we can leave

cond clause 3. As before, remove-lst-trace is called again before the leaving

writeln expression is evaluated. This time, the first item in (c d) is the same

as c, and we are told that we entered the second cond clause with Is bound

to (c d). When we enter the consequent, the first operand in the leaving

expression evaluates to (d). Then the writeln expression prints on the screen

that we are leaving the second cond clause with the result bound to (d),

and the value (d) is returned.

Cons expression (2) is waiting for the value of the remove-lst-trace call,

and now that value is (d) . With this value, the cons expression in (2) evaluates

to (b d). We can now complete the evaluation of the leaving expression,

which tells us that we are leaving cond clause 3 with result bound to (b

d). But this is just the value that cons expression (1) is waiting for as the

value of its remove-lst-trace invocation. Using the value (b d) as its last

argument, cons expression (1) evaluates to (a b d). It was the first operand

in the application of leaving in the third cond clause. Now that it has

been evaluated, the writeln expression writes its message, which says that

we are leaving cond clause 3 with result bound to (a b d). The leaving

invocation now returns the value to which result is bound, (a b d), and

that becomes the value of the original procedure call. The trace we made
here illustrates well the order in which we enter and leave the cond clauses.

We see that we do not leave the cond clause until a value is found for the

recursive invocation of remove-lst-trace, and the evaluation of the cons

expression can be completed.

In the previous example, we entered only the second and third cond clauses.

If we invoke remove-lst-trace to remove an item from a list that does not

contain it, we enter only the first and third cond clauses, eis the following trace

illustrates:

2.5 Tracing and Debugging 63

[2] (remove-lst-trace 'e ' (a b c d))

Entering cond-clause-3 with Is = (abed)
Entering cond-clause-3 with Is = (b c d)

Entering cond-clause-3 with Is = (c d)

Entering cond-clause-3 with Is = (d)

Entering cond-clause-1 with Is =

Leaving cond-clause-1 with result =

Leaving cond-clause-3 with result = (d)

Leaving cond-clause-3 with result = (c d)

Leaving cond-clause-3 with result = (b c d)

Leaving cond-clause-3 with result = (a b c d)

(abed)

Analyze the trace to be sure you can explain it in a manner similar to that

used in the previous example.

We have used writeln expressions to trace a program by printing certain

information about places in the program where the evaluation is being made

and the values of certain variables at that place. This helps us understand

how programs work. It is also an excellent tool for finding errors in programs.

If a program is not doing what you expect it to do, you can put a writeln

expression at certain places in the program where you think the error may be

and look at the values of variables to compare them with what you expect at

that place. By studying these values, you can frequently pinpoint the source

of the error and make the appropriate changes to cause the program to work

correctly. When the program is corrected and runs as you want, the writeln

expressions used to locate the errors should be removed. Tracing a program

with the writeln expressions placed at strategic points is a helpful and often

used debugging tool.

Exercise

Exercise 2.22

In the first trace, the second and third cond clauses were entered. In the

second trace, the first and third cond clauses were entered. Can you give

a remove-lst-trace invocation that enters only the first and second cond

clauses? Explain.

64 Procedures and Recursion

The last example of recursion in this chapter is the procedure snapper,

which takes three arguments: an item x, an item y, and a list Is. It builds

a new list in which each top-level occurrence of x in Is is replaced by y, and

each top-level occurrence of y in Is is replaced by x. We are "swapping" x

and y in Is. For example,

(swapper 'cat 'dog '(my cat eats dog food))

^=> (my dog eats cat food)

(swapper 'John 'mary '(John loves mary)) ^^ (mary loves John)

(swapper 'a 'n '(b n a n a n)) =^ (banana)
(swapper 'a 'b ' (c (a b) d)) =* (c (a b) d)

(swapper 'a 'b '()) =^> ()

In the fourth example, the a and b in the list are not at top level, so they are

not swapped.

In order to define swapper, we begin with an analysis of the base case.

What is the simplest case for this problem? If Is is empty, there is nothing

to swap and the empty list is returned. Thus we take cis the base case for Is

the empty list, and we begin the definition as follows:

(define swapper

(lambda (x y Is)

(cond

((null? Is) '())

...)))

A nonempty list is simplified to the base case using the simplifying oper-

ation cdr. What is returned if we invoke (swapper x y (cdr Is))? The

result will be (cdr Is) with the items x and y interchanged. But this differs

from (snapper x y Is) only in that the first item in (swapper x y Is) is

missing. We will get (swapper x y Is) from (swapper x y (cdr Is)) by

consing the correct first item onto (swapper x y (cdr Is)). There are three

possibilities for this first item: it can be x, y, or neither. First, if (car Is) is

X, we should cons y onto (swapper x y (cdr Is)), so the next cond clause

in our definition can be added:

(define swapper ,

(leunbda (x y Is)

(cond

((null? Is) '())

((equal? (car Is) x)

(cons y (swapper x y (cdr Is))))

...)))

2.5 Tracing and Debugging 65

Program 2.8 swapper

(define swapper

(lanbda (x y Is)

(cond

((null? Is) '())

((equal? (car Is) x)

(cons y (swapper X y (cdr Is))))

((equal? (car Is) y)

(cons X (swapper X y (cdr Is))))

(else

(cons (car Is) (swapper x y (cdr Is)))))))

Second, if (car Is) is y, we should cons x onto (swapper x y (cdr Is)),

so the next cond clause can be added:

(define swapper

(lambda (x y Is)

(cond

((null? Is) '())

((equal? (car Is) x)

(cons y (swapper x y (cdr Is))))

((equal? (car Is) y)

(cons X (swapper x y (cdr Is))))

...)))

Finally, if (car Is) is neither x nor y, then we just cons (ceir Is) itself

onto (swapper x y (cdr Is)), giving us the else clause and completing the

definition given in Program 2.8.

If we invoke the procedure swapper with the arguments 'b, 'd, and '(a

b c d b). it should return the list (a d c b d) in which b and d have been

interchanged. Let's walk through the program to see how it constructs this

answer. In the first procedure call, Is is bound to (a b c d b). This list is

not empty, and its car is neither b nor d, so the else clause is evaluated and

gives as the answer the cons expression:

(cons 'a (swapper 'b 'd ' (b c d b))

)

Let's refer to the value of this cons expression as answer- J , and that is the

value that we are looking for to solve the problem. At this point, however.

66 Procedures and Recursion

we have not yet evaluated the recursive invocation of swapper, so let's give

its value the name answer-2. We can now rewrite answer- 1 as

answer- 1 is: (cons 'a answer-2)

answer-2 is: (swapper 'b 'd '(bed b))

We see that answer- 1 is waiting for the value of answer-2, so we move on to

evaluating answer-2 and we shall return to get the value of answer-1 when

answer-2 is known.

To evaluate answer-2, we observe that the list (b c d b) begins with b, so

the second cond clause is the one with the true condition, and evaluating its

consequent gives us

answer-1 is: (cons 'a answer-2)

answer-2 is: (cons 'd answer-3)

answer- 3 is: (swapper 'b 'd '(c d b))

We still do not have a value for answer-3, so we once again set aside answer-2

until we have a value for answer-3. Note that we are making a table of these

various answers, with each successive entry placed below the preceding one.

We shall often refer to this table, so we give it the name return table.

To evaluate answer-3, we see that (c d b) is not empty, and does not

begin with b or d, so the alternative in the else clause is evaluated. We get

for answer-3

(cons 'c (swapper 'b 'd '(d b)))

and we give the invocation of swapper within answer-3 the name answer-4-

This gives us the return table:

answer-1 is: (cons 'a answer-2)

answer-2 is: (cons 'd answer-3)

answer-3 is: (cons 'c answer-^)

answer-4 is: (swapper 'b 'd ' (d b))

We have added answer-3 to our return table to wait until we have the value

of answer-4 •

For the invocation of swapper in answer-4 1 ^^^ condition in the third cond

clause is true, so our return table now becomes

answer-1 is: (cons 'a answer-2)

answer-2 is: (cons 'd answer-3)

answer-3 is: (cons 'c answer-4)

answer-4 is: (cons 'b answer-5)

answer- 5 is: (swapper 'b 'c '(b))

We have added answer-4 to our return table to wait for a value for answer-5.

2.5 Tracing and Debugging 67

For the invocation of swapper in answer-5, the condition in the second

cond clause is true, so the return table now becomes

answer-} is: (cons 'a answer-2)

answer-2 is: (cons 'd answer-3)

answer-3 is: (cons 'c answer-4)

answer-4 is: (cons 'b answer-5)

answer-5 is: (cons 'd answer-6)

answer- 6 is: (swapt>er 'h 'd '())

Once again we have added answer-5 to the return table to wait until we

have a value for answer-6. In the invocation of swapper in answer-6, the

terminating condition in the first cond clause is true, and the value () is

returned for answer-6.

What effect does this termination have on the return table? Although we

have a value for answer-6 , the computation does not stop, for we have to get

the values of each of the waiting variables in our return table. Until now,

on each recursive invocation of swapper, a new row was added to the return

table waiting for a value. This time we got a value for answer-6 , so we do

not have to add a row to the return table. Instead we replace the swapper

expression in the last row by its value () . We can now work our way back up

the table one row at a time, replacing each variable on the right side by the

value it has on the next row below. We shall write these replacements in a

new table, starting with the value for answer-6.

answer-6 is: ()

answer-5 is: (d)

answer-4 is: (b d)

answer-3 is: ([c b d)

answer-2 is: (d c b d)

answer- 1 is: (a d c b d)

The last row gives us the anticipated value for our invocation of swapper.

Let's take another look at the definition of the procedure swapper. In the

last three cond clauses, something is consed onto

(swapper x y (cdr Is))

What that something should be is determined by testing the value of (ceo-

Is). We can write a helping procedure swap-tester that makes the test and

returns the correct value to be consed onto

(swapper x y (cdr Is))

68 Procedures and Recursion

Assuming that we have such a test procedure, we can rewrite the definition

of swapper as follows:

(define swapper

(lambda (x y Is)

(cond

((null? Is) '())

(else (cons (swap-tester x y (car Is))

(swapper x y (cdr Is)))))))

We now define the helping procedure swap-tester to distinguish the three

cases for us:

(define swap-tester

(Icunbda (x y a)

(cond

((equal? a x) y)

((equal? a y) x)

(else a))))

When swap-tester is called within swapper, the arguments x, y, and icax

Is) are substituted for the parameters x, y and a, respectively, and swap-

tester returns the correct value to be consed onto

(swapper x y (cdr Is))

The use of such helping procedures often simplifies the writing and reading of

programs. We shall make frequent use of this technique.

We could also have achieved the same effect without using the helping

procedure swap-tester by using in swapper the cond expression of swap-

tester in place of calling swap-tester. This leads to another version of

swapper:

(define swapper

(lambda (x y Is)

(cond

((null? Is) '())

(else (cons (cond

((equal? (car Is) x) y)

((equal? (car Is) y) x)

(else (car Is)))

(swapper x y (cdr Is)))))))

2.5 Tracing and Debugging 69

In this section, we have seen how to use writeln expressions to trace or

debug a program. We have also seen how a return table is created when a

recursive procedure is evaluated.

Exercises

Exercise 2.23

Identify what is printed on the screen and what is returned in each of the

following:

a. (begin

(writeln "(* 3 4) = " (• 3 4))

(= (3 4) 12))

b. (begin

(writeln "(cons 'a '(be)) has the value " (cons 'a ' (b c)))

(writeln "(cons 'a ' (b c)) has the value " ' (a b c))

(writeln "(cons 'a ' (b c)) has the value (a b c)")

(cons 'a '(be)))

c. (begin

(writeln "Hello, how aure you?")

(writeln "Fine, thanX you. How are you? " 'Jack)

(writeln "Just great! It is good to see you again, " 'Jill)

"Good-bye. Have a nice day.")

Exercise 2.24-' describe

With describe defined as

(define describe

(lambda (s)

(cond

((null? s) (quote '()))

((nunber? s) s)

((synbol? s) (list 'quote s))

((pair? s) (list 'cons (describe (ceir s)) (describe (cdr s))))

(else s))))

evaluate each of the following expressions:

a. (describe 347)

b. (describe 'hello)

70 Procedures and Recursion

c. (describe '(12 button my shoe))

d. (describe ' (a (b c (d e) f g) h))

Describe what describe does in general.

Exercise 2.25

Write a trace similar to the one used in remove-lst-trace to trace the pro-

cedure swapper, showing the binding of the parameter Is each time the cond

expression is entered and whenever a cond clause is exited. Invoke the traced

procedure swapper-trace on the arguments b, d, and (a b c d b) used in

the example in this section.

Exercise 2.26

In the return table built for the invocation of swapper in this section, the

computation did not stop when the terminating condition was true and the

first cond clause returned () . Instead, the variables in the table were evaluated

one by one until the value of the first was obtained to provide the value of

the original invocation. This program behaved in this way because after each

invocation of swapper, a cons still had to be completed. There was still

an operation to perform after swapper was invoked. Do a similar analysis,

building the return tables, on the two procedures last-item in Program 2.2

and member? in Program 2.3. In the first case, consider (last-item ' (a b

c)), and in the second case, consider (member? 'c '(abed)). In these

two examples, there is no procedure waiting to be done after the recursive

invocations of the procedure. Such programs are called iterative. We shall

discuss the behavior of iterative programs more thoroughly in the chapter on

numerical recursion.

Exercise 2.27

Does the answer change if cond clause 2 and cond clause 3 are interchanged

in the definition of swapper? Does the same thing hold if cond clauses 1 and

2 are interchanged in swap-tester?

Exercise 2.28: tracing, test-tracing

A more generally applicable tracing tool than the procedure leaving given

in Program 2.7 is the procedure tracing defined by

(define tracing

(lambda (message result)

(begin

(writeln message result)

result)))

2.5 Tracing and Debugging 71

Similarly, the procedure test-tracing defined by

(define test-tracing

(lambda (test message input)

(begin

(if test (tracing message input))

test)))

is useful for tracing the test part of a conditional expression. Rewrite the

definition of remove-lst-trace using test-tracing and tracing instead of

entering and leaving in such a way as to produce exactly the same output

as that generated using entering and leaving.

72 Procedures and Recursion

