
12 Object-Oriented Programming

12.1 Overview

A different perspective on computing is provided by object-oriented program-

ming. In this style of programming, certain objects are defined that respond

to messages passed to them. Figuratively, we can think of an object as a

computer dedicated to solving a particular type of problem. The input is

the message passed to the object, the object does the computation, and the

output is the value returned by the object. In this chapter, we see how such

objects are defined, and we illustrate the use of objects to define such data

structures as stacks and queues.

12.2 Boxes, Counters, Accumulators, and Gauges

In Chapters 3 and 5, the concept of data abstraction was discussed and il-

lustrated. We saw there that we can write programs that are independent

of the representation of the data and are based on certain predefined basic

procedures, including the constructors and selectors used on the data type.

The actual representation of the data was then used only in defining these

basic procedures. We develop the idea of data abstraction further by defining

certain objects that are combined with certain operations. It is not necessary

for users to know how these objects and operators are implemented in order

to use them. They only have to know the interface. An example of such an

object is a stack that has associated with it such operations as push! and

pop ! . This offers a degree of security in the handling of data and makes it

possible to change the internal representation of the object without the user's

being aware of any changes. Before looking at stacks and queues, we introduce

the Ccise expression, which makes it easier for us to define the various objects

we shall study.

12.2.1 The Case Expression

Scheme provides a special form with keyword case that selects one of a se-

quence of clauses to evaluate based upon the value of an argument (or mes-

sage) that it is passed. To see how case is used, let us first look at a procedure

that tells us whether a letter is a vowel or a consonant. We can define it as

(define vowel-or-consoneint

(lambda (letter)

(cond

((or (eq? letter 'a)

(eq? letter 'e)

(eq? letter 'i)

(eq? letter 'o)

(eq? letter 'u))

'vowel)

(else 'consonant))))

This procedure can also be defined using the special form case as follows:

(define vowel-or-consonant

(leUDbda (letter)

(case letter

((a e i u) 'vowel)

(else 'consonant))))

The value of letter is matched with each of the items (keys) in the list in

the first clause of the case expression. If there is a match, the expression

following the list of keys is evaluated and returned as the value of the case

expression. Thus if letter evaluates to one of a, e, i, o, or u, vowel is

returned. Otherwise, the next clause is evaluated, and since in this case it is

the else clause, consonant is returned. In case letter evaluates to one of the

five vowels, it is more convenient to use the case expression, which matches it

with the possible key values rather than the cond expression, which must list

a separate test for each possibility.

The syntax of case is

384 Object-Oriented Programming

(case target

(.keys expri expT2)

(else expri expr2 .))

where target is an expression that is evaluated and its value is compared

with the keys. Each clause begins with keys, which is a list of items each of

which is matched (using eqv?) with the value of target to decide which of the

clauses will be selected for evaluation. When the first such match is found, the

expressions expr . . . following the keys are evaluated in order and the value

of the last is returned (there is an implicit begin following each keys). If no

match is found and the optional else clause is present, then the expressions

expr ... in the else clause are evaluated. If no else clause is present, then

some unspecified value is returned. It is good programming style always to

include an else clause even if only for reporting an error.

Below are some additional simple examples demonstrating the use of case:

[1] (case 'b

((a) (display "a was selected: ") (cons 'a '()))

((b) (display "b was selected: ") (cons 'b '()))

((c) (display "c was selected: ") (cons 'c '()))

(else (display "None were selected.")))

b was selected: (b)

[2] (case (remainder 35 10)

((2468) "positive and even")

((13579) "positive and odd")

((-2 -4 -6 -8) "negative and even")

((-1 -3 -5 -7 -9) "negative and odd")

(else "zero"))

"positive and odd"

In the various objects we shall define in this chapter, we shall use internal

representations of the data, which are not supposed to be apparent to the user.

In order to secure the data structures used, we introduce, in Program 12.1,

the procedure for-eff ect-only, which evaluates its operand to perform the

side effects and then returns the string "unspecified value". Following our

usual convention, we will not display "unspecified value".

12.2.1 Boxes, Counters, Accumulators, and Gauges 385

Program 12.1 for-eflect-only

(define for-effect-only

(lambda (it em- ignored)

"unspecified value"))

12.2.2 Boxes

A box is a place in which a value can be stored until it is needed later. A new

box containing a given initial value is created by the procedure box-maker.

There are five operations that we shall perform on a box. We use one of

these operations to put a value into the box and another to show the value

in the box. The operation that puts a value into the box is called update!

and the operation that shows the value in the box is called show. Another

useful operation, called swap!
,
puts a new value into the box and returns the

old contents of the box. The operation called reset ! resets the value stored

in the box to its initial value. The ability to perform a reset operation is

somewhat unusual. The operation type, specified for all objects, tells what

kind of object is being sent a message. In this case the type is "box". In

general, the operations that are performed on an object are called methods.

In the case of a box, there are five methods: update
!

, show, swap
!

, reset
!

,

and type.

The objects, such as boxes, are themselves procedures. To apply one of

the methods to an object, we invoke the object on the (quoted) name of the

method followed by any additional arguments appropriate for that method.

We then say that we send the name of the method and any additional argu-

ments as a message to the object. We can use the call structure:

(object ' m.ethod-nam.€ operand ...)

where object is sent the message consisting of the quoted method name and

zero or more operands. On the other hand, we find it more suggestive and,

in fact, more flexible to introduce the procedure send, which is used to send

the message to the object. When we use send, we use the call structure

(send object ' m,ethod-name operand ...)

The following shows a typical construction of a box box-a that is initialized

386 Object-Oriented Programming

with (+ 3 4) and a box box-b that is initialized with 5. We shall describe

the actual mechanism for constructing boxes after looking at the example.

[I] (define box-a (box-maker (+ 3 4)))

[2] (define boi-b (box-maker 5))

[3] (send box-a 'show)

7

[4] (send box-b 'show)

5

[5] (send box-a 'update! 3)

[6] (send box-a 'show)

3

[7] (send box-b 'update! (send box-a 'swap! (send box-b 'show)))

[8] (send box-a 'show)

5

[9] (send box-b 'show)

3

[10] (send box-a 'reset!)

[II] (send box-a 'show)

7

[12] (send box-a 'type)

"box"

[13] (send box-a 'update 27)

Error: Bad method neune: update sent to object of box type.

In [3] , in order to see what is stored in box-a, we send the message show

to box-a, and in [5] , in order to change the value stored in box-a, we send

it the message update! and the new value 3. In [13], we forgot to include

the exclamation mark on the word update, and an error was signaled. The

sending of these quoted method names and arguments as messages to the

objects leads to a style of programming referred to as message-passing style.

In Program 12.2, we define box-maker. It takes as its argument an initial

value stored in the box. It returns a procedure that takes an arbitrary num-

ber of arguments and is hence defined using the unrestricted launbda whose

parameter list is denoted by msg. Each invocation of box-maker returns an

object that we refer to as a box. Thus, in our experiment presented above,

box-a and box-b are examples (or instances) of boxes. Also, in [3] , the mes-

sage consists of the single item ' show, whereas in [5] , the message consists

of two items, the method name 'update! and the operand 3. In the code

given below for box-maker, we use 1st and 2nd to denote car and cadr.

12.2.2 Boxes, Counters, Accumulators, and Gauges 387

Program 12.2 box-maker

(define box-maker

(leunbda (init-value)

(let ((contents init-value))

(lambda msg

(case (1st msg)

((type) "box")

((show) contents)

((update!) (for-effeet-only (set! contents (2nd msg))))

((swap!) (let ((ans contents))

(set! contents (2nd msg))

ans))

((reset!) (for-effeet-only (set! contents init-value)))

(else (delegate base-object msg)))))))

Program 12.3 delegate

(define delegate

(lambda (obj msg)

(apply obj msg)))

respectively. We also use msg to denote the message, delegate is defined in

Program 12.3.

In order to be able to reset the box to its initial value, init-value, it is

necessary to preserve that value. Thus a local variable contents is introduced

to hold the current value stored in the box. It is initialized with init-value.

In the case clause that matches swap
!

, a let expression binds ans to the

current contents of the box. Then set! puts the new value into the box,

but the old value ans that was stored in the box is returned. Whenever

the else clause is reached, no match was found for the method name, so the

message is passed on (or delegatedy to another object, which attempts to

respond to it. (We find that it is more suggestive to use the procedure name

^ When an object cannot respond to a message, there are mechanisms other than delegation

which have been developed. One common mechanism is inheritance. We have chosen to

use delegation instead of inheritance; however, aJl programs expressible with inheritauice

are also expressible with delegation.

388 Object-Oriented Programming

Program 12.4 base-object

(define base-object

(lambda msg

(case (1st msg)

((type) "base-object")

(else invalid-method-name-indicator)))

)

Program 12.5 send

(define send

(lambda args

(let ((object, (car args)) (messag e (cdr args)))

(let ((try (apply object messag e)))

(if (eq? inval id-method-name- indicator try)

(error "Bad method name:" (car 1nessage)

"sent to object of 1

(object 'type)

"type.")

try)))))

delegate instead of apply to pass the message on to another object, although

the two procedures delegate and apply behave the same by our simplification

rule.) In this case, the object to which the message is delegated is the base-

object, which returns invalid-method-naiine-indicator, which is bound to

the string "uiLknown".

(define invalid-method-name-indicator "iinknown")

The procedure send then generates the appropriate invocation of error. The

definitions of base-object and send are contained in Programs 12.4 and 12.5.

We shall define many diff'erent types of objects in this chapter using object

makers similar to box-maker. These will each contain an else clause that

must handle method names for which there is no match. One of the major

advantages of using send is that all these else clauses will have exactly the

same call structure

(else (delegate object msg))

and send takes the appropriate action. When writing the definitions of the

object makers and when using the objects, we must remember that:

12.2.2 Boxes, Counters, Accumulators , and Gauges 389

1. Every object should respond to the method name type.

2. When no match is found for a method name, the else clause should delegate

the message to some object, which in some cases may be base-object.

3. Use send to pass messages to objects.

In this implementation of a box, the data structure used to store a value in

the box is just a variable. The user is not concerned with this fact when using

the box to store the value. We could have used a different data structure,

such as a cons cell, m which to store the value. In the program below for box-

maker, init-value is initially stored in the car position of a cons cell, which

we denote by cell. The procedure set-car! is used to change the value

stored in the box. This alternative version of box-maker is in Program 12.6.

Program 12.6 box-maker (Alternative)

(define box-maker

(lambda (init-value)

(let ((cell (cons init-value "any value")))

(lambda msg

(case (1st msg)

((type) "box")

((show) (car cell))

((update!) (for-effeet-only (set-car! cell (2nd msg))))

((swap!) (let ((sms (cju: cell)))

(set-car! cell (2nd msg))

ans))

((reset!) (for-effeet-only (set-car! cell init-value)))

(else (delegate base-object msg)))))))

12.2.3 Counters

A counter is an object that stores an initial value and each time it is called,

the stored value is changed according to some fixed rule. The counter has two

arguments: the initial value stored and the procedure describing the action

to be taken each time the counter is updated. For example, (counter-maker

10 subl) is a counter with initial value 10 that decrements the counter by

1 when it is updated. The counter responds to the method names: type,

update
!

, show, and reset ! . The definition of counter-maker follows:

390 Object-Oriented Programming

Program 12.7 counter-maker (Methods Disabled)

(define counter-maker

(lambda (init-v«ilue \in«iry-proc)

(let ((total (box-meJcer init-value)))

(lambda msg

(case (1st msg)

((type) "counter")

((update!) (let ((result (imary-proc (send total 'show))))

(send total 'update! result)))

((swap!) (delegate base-object msg))

(else (delegate total msg)))))))

The counter locally defines the box total, which contains the initial value

stored in the counter. When the counter receives the message consisting of the

method name update!, the unary update procedure unsury-proc is applied

to the value stored in the box total to obtain the new value which is then

stored in total. For example, if we wanted the counter to count up by 1 each

time it is updated, we can use addl as the unary update procedure. To create

a counter with initial value that increases the stored value by 6 each time

it is updated, we write:

(coimter-meJcer (launbda (x) (+ 5 x)))

The counter is not supposed to respond to swap ! . Thus if such messages are

sent to a counter, they are delegated to base-object rather than to a box,

which does respond to swap ! . Since the counter responds to the messages

show and reset ! the same as the box total, the else clause merely passes

these messages to total. Thus the message show displays the value currently

stored in the counter, and reset! resets the counter to its initial value. The

fact that the response of the counter to these messages can be found by passing

them to the box is called delegation. The work of the counter is "delegated"

to the behavior of the box.

The approach of catching the method names that are to be disabled, like

swap!, is only one way of supporting the interface. Another alternative is to

catch all the method names to be enabled. Thus, we can rewrite counter-

metker using this view. As long as we delegate to the base object all the

method names that are meaningless, we can use either approach. On one

hand we are throwing the illegal method names out (i.e., disabling them), and

on the other, we are delegating the legal ones (i.e., enabling them). In any

12. 2.S Boxes, Counters, Accumulators, and Gauges 391

Program 12.8 counter-maker (Methods Enabled)

(define counter-maker

(lambda (init-value unary-proc)

(let ((total (box-maker init-value)))

(lambda msg

(case (1st msg)

((type) "counter")

((update!) (send total 'update!

(unary-proc (send total 'show))))

((shoB reset) (delegate total msg))

(else (delegate base-object msg)))))))

event, both have the same effect, and each has aspects that recommend it. If

we are delegating to an object with many legal method names, and only a few

illegal ones, then we should disable illegal method names; otherwise we are

free to choose to enable legal method names. A version of counter-maker,

which enables legal method names, is presented in Program 12.8.

12.2.4 Accumulators

An accumulator is an object that has the initial value init-value. Each time

it receives a message consisting of the method name update! and a value v,

the binary update procedure binary-pro c is applied to the value stored in

the accumulator and v; the result is the new value stored in the accumulator.

For example, if ace is an accumulator that initially stores the value 100 and

has subtraction (-) as its binary update procedure, it is defined by

(define ace (accumulator-maker 100 -))

and

(send ace 'update! 10)

causes the number 90 to be stored in ace. If we then update ace with 25, we

write

(send ace 'update! 25)

and the number 65 is stored in the accumulator.

392 Object-Oriented Programming

Program 12.9 accumulator-maiker

(define accumulator-meiker

(IcUDbda (init-value binary-proc)

(let ((total (box-maker init-value)))

(leimbda msg

(case (1st msg)

((type) "accumulator")

((update!

)

(send total 'update!

(binary-proc (send total 'show) (2nd msg))))

((swap!) (delegate base-object msg))

(else (delegate total msg)))))))

The accumulator uses a box, called total, to store its values. In addition to

responding to the message consisting of update ! and a value, it uses delegation

to pass such messages as show and reset ! to the box total. Program 12.9

contains the code for accumulator-maJcer.

12.2.5 Gauges

A gauge is the last object to be defined in this section. A gauge is similar to

a counter, but it has two unary update procedures, one to count up and the

other to count down. The one to count up is called unary-proc-up, and the

one to count down is called unary-proc-down. The gauge responds to two

update messages up! and down!. It stores its values in a box called total.

When the gauge receives the message up
!

, the update procedure unary-proc-

up is invoked on the value stored in total to get the new value stored in total.

Similarly, when the gauge receives the message down!, the update procedure

unary-proc-down is invoked on the value stored in total to get the new value

stored in total. The gauge also responds to the messages show and reset

!

by delegation from total. For example, to create a gauge g with initial value

10, which either adds 1 or subtracts 1, we write

(define g (gauge-maker 10 addl subl))

and

(send g 'up!)

causes the number 11 to be stored in g, while

12.2.5 Boxes, Counters, Accumulators, and Gauges 393

Program 12.10 gauge-maker

(define gauge-mciker

(lambda (init-value unaury-proc-up uneory-proc-down)

(let ((total (box-maker init-value)))

(lambda msg

(case (1st msg)

((type) "gauge")

((up!) (send total 'update!

(unsury-proc-up (send total 'show))))

((down!) (send total 'update!

(unary-proc-down (send total 'show))))

((swap! update!) (delegate base-object msg))

(else (delegate total msg)))))))

(send g 'down!)

returns the number stored in g to 10. Program 12.10 contains the definition

of gauge-maker.

Exercises

Exercise 12.1: acc-max

Define an accumulator acc-meuc that has initial value and each time it is

updated, it compares the value stored with a new value and stores the majc-

imum of the two. Then test acc-meix by updating it in succession with the

numbers 3, 7, 2, 4, 10, 1, 5 and find the maocimum by passing acc-max the

shov message.

Exercise 12.2: double-box-meJter

Define a procedure double-box-maOcer that takes two arguments, iteml and

item2, and stores these values in two boxes, the left and right, respectively.

An instance of double-box-m€dcer responds to the following messages: show-

lelt, show-right, update-lelt
!

, update-right
•

, and reset !

.

Exercise 12.3: accumulator-maJcer, gauge-meiker

In the definitions of accmnulator-maker and gauge-meJcer method names

that are illegal have been disabled. Rewrite the last two lines of each of these

394 Object-Oriented Programming

procedures so that instead of disabling illegal method names, we enable legal

method names and disable all others.

Exercise 12. 4^ restricted-counter-maker

Our implementation of counter-maker places no restrictions on the possible

values that can be stored in the counter. Define restricted-counter-maker

to take an additional argument, a predicate pred. No value is stored in a

restricted counter unless it satisfies the predicate. If a value fails to satisfy

the predicate, then a reset occurs. For example, if the predicate is (lambda

(n) (and (> n 0) (< n 100))) and we try to bring the restricted counter

up to 105, it will reset to its initial value.

Exercise 12.5

Define the hour hand of a 12-hour clock as a restricted counter. (See the

preceding exercise.)

Exercise 12.6

Define a 12-hour clock that has both a minute and an hour hand. This clock

is to be constructed from two objects. One of them will be the 12-hour

clock, which displays only its hour hand, and the other, the minute hand,

will be built using a modified restricted counter. Such a counter is created

using modified-restricted-counter-meOcer, which includes an additional

argument. This new argument is a reset procedure that is invoked in place of

the built-in reset in the restricted-counter-maker. When the minute hand

of the clock is about to pass to 60 minutes, the reset procedure is used not

only to reset the minute hand to but also to update the hour hand. Do not

forget to initialize the clock. The new clock is itself to be an object created by

the procedure of one argument, clock-maQter, that responds to two messages:

show and update!. (See the preceding exercise.)

Exercise 12.7

As was done in Chapters 8 and 9, tag the objects by adding object-tag as

"object". Then define the simple procedures object? and make-object.

Wrap meike-object around (lambda msg . . .) and redefine send.

Exercise 12.8

Is it possible to implement an accumulator with a counter-maker instead of

a box-maker? Is it possible to implement a counter with an accumulator-

mcQcer instead of a box-maker?

12.3 Stacks 395

12.3 Stacks

As we saw in Chapter 11, a stack is an ordered collection of items into which

new items may be inserted at one end and from which items may be removed

from the same end. The end at which items may be inserted or removed is

called the top of the stack. The image that is often conjured up when thinking

of a stack is the rack of trays in a cafeteria, in which one takes the top one,

and trays are added from the top. As the stack builds up, the item that weis

put on first is buried deeper and deeper, and as things are removed from the

stack, the one that was put on first is the last one to be removed. The item

that was added to the stack last is the first one to be removed. Thus a stack

is referred to as a last-in-first- out data structure, or a LIFO.

The stack has several methods associated with it;

• empty?, which tests whether the stack is empty.

• push
!

, which adds an item to the top of the stack.

• top, which returns the item at the top of the stack.

• pop
!

, which removes an item from the top of stack.

• size, which returns the number of items on the stack.

• print, which prints the items on the stack.

An experiment with stacks is given in Figure 12.11. The two stacks, r and

s, are created in [1] and [2]. In the definitions of r and s, we see that

stack-maker is a thunk, that is, a procedure of no arguments. Its definition

is given in Program 12.12.

In the code for stack-maker, we used a list as the internal representation

of the stack. The user need never know how it is represented, for if we change

the representation, we can alter the definitions of the methods so that when

their names are passed as messages to the stack, the results seen by the user

are the same as those produced by the above code. Even when the stack is

printed, it does not show the internal representation of the stack.

Exercise

Exercise 12.9

In arithmetic, parentheses are used to form groupings of numbers and oper-

ators. For example, one writes 3*(4 + 2). In more complicated expressions,

three different kinds of separators are used to form groupings: parentheses '(',

')', brackets '[',']', and braces '{','}'. Here is an expression that uses all three

396 Object-Oriented Programming

[I] (define r (stack-aaker)

)

[2] (define s (stack-maker))

[3] (send s 'print)

TOP:

[4] (send r 'print)

TOP:

[5] (send s 'eapty?)

tt

[6] (send s 'push! 'a)

[7] (send s 'push! 'b)

[8] (send s 'push! 'c)

[9] (send s 'top)

c

[10] (send s 'print)

TOP: c b a

[II] (send s 'empty?)

tf

[12] (send r 'empty?)

#t

[13] (send r 'push! 'd)

[14] (send s 'size)

3

[15] (send s 'pop!

)

[16] (send s 'pop !

)

[17] (send s 'print)

TOP: a

[18] (send r 'print)

TOP: d

Figure 12.11 Using stack operations

kinds of grouping symbols:

13 + 5*{[14-3*(12-7)]- 15}

Write a program that will scan a mathematical expression made up of the

four basic operations -r, — .=^. and / and the three kinds of separators and

test whether the separators are correctly nested. The examples (3 — 4] and

(5 — [2 + 4) + l] are not correctly nested. This is a natural problem for the use

of a stack, for whenever a left-grouping symbol is encountered, it is pushed

onto the stack, and whenever a right-grouping symbol is encountered, the

stack is popped and the left symbol that comes off the stack is compared to

the right symbol just encountered. If they are of different types, the nesting

is not correct. You can model the arithmetic expression as a list of numbers,

12.3 Stacks 397

Program 12.12 stack-maker

(define stack-meJ^er

(lambda

(let ((stk '()))

(lambda msg

(case (Ist msg)

((type) "stack")

((empty?) (null? stk))

((push!) (for-effeet-only

(set! stk (cons (2nd msg) stk))))

((top) (if (null? stk)

(error "top: The stack is empty.")

(car stk)))

((pop!) (for-effeet-only

(if (null? stk)

(error "pop!: The stack is empty.")

(set! stk (cdr stk)))))

((size) (length stk))

((print) (display "TOP: ")

(for-each

(Icunbda (x)

(display x)

(display " "))

stk)

(newline))

(else (delegate base-object msg)))))))

operators, and grouping symbols. Since Scheme uses these symbols as special

characters, one cannot use them as grouping symbols in the list modeling the

arithmetic expression. Thus use the strings "(",")", "C", "]", "{", and "}"

in place of the grouping symbols. The above arithmetic expression, in this

representation, looks like

(13 + 5 * "{" "[" 14 - 3 * "(" 12-7 ")" "]" - 15 "}")

Test your program on the examples given here and on several additional tests

you devise, some correctly and others incorrectly nested.

398 Object-Oriented Programming

12.4 Queues

A queue is an ordered collection of items into which items are inserted at

one end, called the rear, and from which items are removed at the other end,

called the front. People waiting in line for service normally form a queue in

which new people join the line at the rear and people are served from the

front. Similarly, processes waiting to be run on a computer are put into a

queue to await their turn. Stacks are called LIFO lists because the last one in

is the first one out. Queues are called FIFO lists because the first one in is the

first one out. Adding an item to the rear of the queue is called enqueuing the

item, and removing an item from the front of the queue is called dequeuing.

We implement a queue as an object with the following methods:

• empty?, which tests whether the queue is empty.

• enqueue
!

, which adds an item to the rear of the queue.

• front, which returns the Hem at the front of the queue.

• dequeue
!

, which removes the item from the front of the queue.

• size, which returns the number of items in the queue.

• print, which prints the items in the queue.

Our first implementation of a queue will imitate the way we implemented

a stack. The data structure we choose for the queue is a list, with the first

element of the list the front of the queue. To dequeue an element, we essen-

tially take the cdr of the list. To enqueue an element, we must put it at the

end of the list, so we can make a list of the element and append that onto

the end of the queue. The code for such an implementation is presented in

Program 12.13.

The implementation using lists as the data structure for the queue produces

the results we want, but it does it inefficiently. The trouble is that when we

enqueue an item, we use append! , which must cdr down q until the last pair

and then we attach the cdr pointer to the list containing the new item. The

longer the queue, the more "expensive" it is to cdr down q to get to the last

pair. It would be better to have an implementation that could attach the new

item to the end of the queue without having to cdr down the whole queue.

We accomplish this by introducing a second pointer called rear, which points

to the last cons cell in the queue. When the queue is empty, the pointer q
points to a cell formed by (cons ' () ' ()), and rear also points to that cell.

Only the cdr of q is used.

12.4 Queues 399

Program 12.13 queue-maker

(define queue-m8iker

(lambda ()

(let ((q '()))

(lambda msg

(case (1st msg)

((type) "queue")

((empty?) (null? q)

)

((enqueue!) (for-effeet-only

(let ((list-of-item (cons (2nd msg) '())))

(if (null? q)

(set! q list-of-item)

(append! q list-of-item)))))

((front) (if (null? q)

(error "front: The queue is empty.")

(car q)))

((dequeue!) (for-effeet-only

(if (null? q)

(error "dequeue!: The queue is empty.")

(set! q (cdr q)))))

((size) (length q))

((print) (display "FRONT: ")

(for-each

(lambda (i) (display x) (display " "))

q)

(newline))

(else (delegate base-object msg)))))))

Figure 12.14(a) shows a box-and-pointer representation of such a queue that

has in it the numbers 1 and 2, with 1 at the front. Figure 12.14(b) shows

how the new item 3 is added to the queue by setting the cdr of rear to be

(cons 3 ' ()) and then setting rear itself to point to the last cons cell in the

list. Our new definition of queue-maker is given in Program 12.15. A sample

session using a queue is given in Figure 12.16.

Exercises

Exercise 12.10

Add a message to the queue defined in Program 12.15 called enqueue-list

!

400 Object- Oriented Programming

^ rear
^--^

/ w w

1 2

rear
\^ ^
/ /p F w

>' >r >'

I 2 3

(a)

(b)

Figure 12.14 Box-and-pointer diagram for a queue

that takes as an argument a list Is and enqueues each of the elements of the

list to the queue preserving their order. For example, if the queue a contains

the elements 1, 2, 3, with 1 at the front, and if Is is (list 4 5 6), then

after invocation of (send a 'enqueue-list ! Is), the queue a contains the

elements 1, 2, 3, 4, 5, 6 with 1 at the front. Do not use append!. Why?

Exercise 12.11

Revise the definition of queue-maker in Program 12.15 to include a message

enqueue-maoiy ! that enqueues any number of items at one time. For example,

(send a ' enqueue-many ! 'x 'y 'z) has the same effect as

(begin

(send a 'enqueue! 'x)

(send a 'enqueue! 'y)

(send a 'enqueue! 'z))

Exercise 12.12: queue->list

Define a procedure queue->list that takes as its argument a queue q, with

size disabled, and returns a list of the elements in q without destroying the

queue. In order to do this, one can first enqueue a unique element such as

(list ' 0). Then cons the front of the queue onto the list, and also enqueue

the front onto the queue. Now dequeue the queue, so that what was at the

front is now at the rear of the queue. Repeat this operation of consing the front

of the queue to the list, enqueuing the front of the queue so that it is at the

rear, and then dequeuing the queue, until the unique element you enqueued

12.4 Queues 401

Program 12.15 queue-maier

(define queue-maker

(lambda ()

(let ((q (cons ' () '())))

(let ((rear q)

)

(lambda msg

(case (1st msg)

((type) "queue")

((empty?) (eq? rear q)

)

((enqueue!) (for-effeet-only

(let ((list-of-item (cons (2nd msg) '())))

(set-cdr! zeax list-of-item)

(set! rear list-of-item))))

((front) (if (eq? rear q)

(error "front: The queue is empty.")

(car (cdr q))))

((dequeue!) (for-effeet-only

(if (eq? rear q)

(error "dequeue!: The queue is empty.")

(let ((front-cell (cdr q))

)

(set-cdr! q (cdr front-cell))

(if (eq? front-cell rear)

(set! rear q))))))

((size) (length (cdr q))

)

((print) (display "FRONT: ")

(for-each

(lajnbda (x)

(display i)

(display " "))

(cdr q))

(newline)

)

(else (delegate base-object msg))))))))

reaches the front. When it is dequeued, you have a list of the elements that

are in the queue, and the queue is intact.

Exercise 12.13

Rework the previous problem with the method name size enabled.

402 Object- Onented Programming

[I] (define q (queue-mzJcer))

[2] (send q 'empty?)

#t

[3] (send q 'enqueue! 1)

[4] (send q 'enqueue! 2)

[5] (send q 'enqueue! 3)

[6] (send q 'size)

3

[7] (send q 'front)

1

[8] (send q 'print)

FRONT: 12 3

[9] (send q 'empty?)

»f

[10] (send q 'dequeue!)

[II] (send q 'print)

FRONT: 2 3

Figure 12.16 Using queue operations

Exercise 12.14

In the first version of a queue given in this section, the message enqueue!

contains the code (append! q list-of-item). Discuss the correctness and

the efficiency of the code for a queue if that line of code is replaced by (append

q list-of-item) or by (set! q (append q list-ol-item)).

12.5 Circular Lists

In the previous sections, we defined both the stack and the queue as objects.

In the internal representation of these objects, we used lists. In the case of the

queue, we used pointers to keep track of the front and the rear of the queue.

There is another way of treating stacks and queues that is more elegant. It

makes use of a data type known as a circular list. In this section, we first

implement circular lists as objects and then use them to define both the stack

and the queue, making use of delegation to take advantage of the properties

of the circular list.

In an ordinary list, the cdr pointer of the last cons cell points to the empty

list. This is denoted by placing a diagonal line in the right hand side of the

last cons cell. If, instead, the cdr pointer of the last cons cell of the list points

back to the first cons cell in the list, we say that the list is a circular list. The

12.5 Circular Lists 403

marker
1

1

1 1

/

<

r
^

b a

marker

(a)

M _

1

—^—

>

1 1

—

I

/
r^ ^^ n^ -^ 1

d c b a
(b)

Figure 12.17 Box-and-pointer diagrams for a circular list

box and pointer diagram for a circular list containing the three items c, b.

and a is shown in Figure 12.17a. Note that marker is a pointer to the cons

cell whose car is a. Then to make the list circular, (cdr marker) points back

to the cell whose car is c. To add an item d to this circular list, we cons d to

(cdr meorker) and then reset the cdr pointer of marker to point to the cons

cell with d as its car. (See Figure 12.17b.) Thus inserting d into a nonempty

circular list can be accomplished by invoking:

(set-cdr! Barker (cons 'd (cdr Barker)))

Similarly, to remove d from the resulting circular list, we note that (cdr (cdr

marker)) does not contain the item d. so we only have to write

(set-cdr! marker (cdr (cdr marker)))

to get back to the circular list in Figure 12.17a.

In general, we make an ordinary list circular by letting marker be a pointer

to the end of the list. Then we set the cdr pointer of marker to point to the

beginning of the list. The item to which the cdr pointer of marker points

is referred to as the head of the circular list. As an object, a circular list

responds to the following messages:

• empty?, which tests whether the circular list is empty.

• insert ! . which adds an item to the circular list.

404 Object- Onented Programmtng

• head, which returns the head of the circular list, that is, the item that is

just past the marker.

• delete
!

, which removes the head of the circular list.

• move!, which shifts the marker to point to the head of the circular list,

thus making a new item the head.

• size, which returns the number of items in the circular list.

• print, which displays the circular list.

The code for circular-list-meJcer is given in Program 12.18. Initially,

meirker is locally defined to be the empty list, and when the method name

empty? is received, it tests whether msorker is the empty list. The message

sent to insert an item into the circular list consists of two parts, the method

name insert! and the item to be inserted. There are two cases to consider

when inserting an item. If the list is empty, we first make a list consisting of

the item to be inserted and then change marker to point to that list. Then

we have to make the list circular, so we make the cdr pointer of meirker point

back to meirker itself. We now have a circular list containing only the one

item we inserted.

On the other hand, if the list is not empty, we use the fact that (cdr

meirker) points back to the head of the list when we cons the item to be

inserted (that is, (2nd msg)) onto (cdr meirker). Once we have added the

new item to the head of the list, we reset the cdr pointer of maorker to point

to the cell containing the new item, which becomes the new head of the list.

We use the word head in spite of the fact that a circular list does not have a

head or a tail. However, we may think of the cdr pointer of the cons cell to

which mairker points as pointing back to the head of the list to make the list

circular. And we may think of marker itself as pointing to the last cell in the

list.

If the list is empty when a delete ! message is received, an error is signaled.

If the list contains only one item (that is, if (cdr marker) points back to

meirker itself), then msurker is set equal to the empty list. Otherwise, we again

refer to the "head" of the list as the cons cell to which (cdr marker) points.

Then we reset the cdr pointer of marker to point to (cdr (cdr meo-ker)).

When we found the size of such objects as stacks and queues, we used

the procedure length on their internal list representations. This requires

cdring down the list while counting. We have given a more eflficient way of

doing this by keeping the size in a gauge and incrementing or decrementing

it appropriately when we insert or delete something from the circular list.

We have to be careful in writing the code for a circular list that we do

not get into an infinite loop, going around the circle of pointers indefinitely.

12.5 Circular Lists 405

Program 12.18 circular-list-maker

(define circular-list-maker

(lambda ()

(let ((meurker '())

(size-gauge (gauge-maker addl subl)))

(lambda msg

(case (1st msg)

((type) 'circular list")

((empty?) (null? marker))

((insert !) (send size-gauge 'up!)

(for-effeet-only

(if (null? marker)

(begin

(set I marker (cons (2nd msg) ' ()))

(set-cdr! marker marker))

(set-cdr! marker (cons (2nd msg] (cdr marker))))))

((head) (if (null? marker)

(error "head: The list is empty.")

(ceir (cdr meurker))))

((delete !) (for-effeet-only

(if (null? marker)

(error "delete!: The eirculeu: list is empty.")

(begin

(send size-gauge 'donnl)

(if (eq? maurker (cdr marker))

(set ! marker ' ())

(set-cdr! marker (cdr (cdr marker))))))))

((move !

)

(for-effeet-only

(if (null? marker)

(error "move!: The circular list is empty.")

(set! marker (cdr marker)))))

((size) [send size-gauge 'shoff))

((print) (if (not (null? marker))

(let ((next (cdr marker)))

(set-cdr! marker '())

(for-eaeh (leunbda (x) (display x) (display " "))

next)

(set-cdr! marker next)))

(newline)

)

(else (delegate base-object msg)))))))

4O6 Object-Oriented Programming

Program 12.19 stack-maiker

(define stack-maker

(laabda ()

(let ((c (circuleur-list-msJcer)))

(lanbda nsg

(case (1st msg)

((type) "stack")

((push!) (send c 'insert! (2nd nsg)))

((pop!) (send c 'delete!))

((top) (send c 'head))

((print) (display "TOP: ") (send c 'print))

((insert! head delete! nove !) (delegate base-object msg))

(else (delegate c msg)))))))

In order to avoid this in the case of print, we use the trick of temporarily

resetting the cdr pointer of meirker to point to the empty list. Then the

list is no longer circular, and we can use for-each without fear of looping

indefinitely.

We are now ready to look at the definitions of stack and queue making use

of a circular list. In implementing the stack, a circular list is used and the

marker stays fixed. When the stack receives a push! message, it sends it to

the circular list as an insert ! message. Similarly, the pop! message is sent to

the circular list as a delete! message. When the print message is received

by the stack, the word TOP: is first printed, and then the message is sent to the

circular list. The stack messages size and empty? are delegated to the circular

list. The code for stack-maker using a circular list is in Program 12.19.

The queue-maiker is similarly defined in terms of a circular list, but this

time, the marker is moved each time an item is inserted, so that it points to

the cell containing the new item. Again, most of the queue operations are

delegated to the circular list. The code for queue-maker making use of a

circular list is given in Program 12.20.

This is an elegant way of implementing both the stack-madcer and the

queue-msQcer. They take advantage of delegation by passing messages on to

the circular list. The circular list was flexible enough because we were able to

move the mairker to keep track of certain cells. Notice that we have gained

in eflficiency by making use of the internal gauge in the circular list to keep

the size of the stacks or queues. The circular list is, in general, a useful data

structure.

12.5 Circular Lists 407

Program 12.20 queue-maker

(define queue-maker

(lambda ()

(let ((c (circular-list-maker)))

(lambda msg

(case (1st msg)

((type) "queue")

((enqueue!) (send c 'insert! (2nd msg)) (send c 'move!))

((dequeue!) (send c 'delete!))

((front) (send c 'head))

((print) (display "FRONT: ") (send c 'print))

((insert! head delete! move!) (delegate base-object msg))

(else (delegate c msg)))))))

Exercises

Exercise 12.15

Redefine the stack-maker and queue-maLker procedures presented in Pro-

grams 12.19 and 12.20 so that, instead of the illegal method names being

disabled, the legal method names are enabled.

Exercise 12.16

Draw the box-and-pointer diagrams for a stack implemented using a circular

list. Start with the empty stack, push on the items a, b, c, and d, and then

pop these four items. Show the box and pointer diagrams for the successive

stages as the stack increases and decreases in size.

Exercise 12.17

Make the same sequence of box and pointer diagrams as in the previous ex-

ercise but this time for a queue.

Exercise 12.18

Redefine circular-list-maker in Program 12.18 keeping a local variable

that is initialized to zero to keep the size of the circular list without using a

gauge. Then do it without any local variables.

Exercise 12.19

When building a circular list, it is not necessary to build a circular structure.

Instead, the method names, which rely on the circular structure, must be

408 Object-Oriented Programming

redefined. For example, if before, the cdr of mcirker was a cell c, then using

a simple list, it would be necessary to test (null? (cdr marker)) and then

return c. This approach has a cost because there is an additional local variable

to maintain, which requires setting and testing. However, the benefit is that

no structures are built that can unintentionally enter infinite loops. Redefine

circulax-list-maker without actually using an explicitly circular structure.

Exercise 12.20

Add a method reverse to the circular-list-maJcer that reverses the cir-

cular list in such a way that the cdr pointer of each cons cell is changed to

point to the previous cell in the list instead of the next cell. The diagram

in Figure 12.21 shows a circular list containing four items before and after

reversing. As in the diagram, be sure your method moves the marker.

marker

marker^ \^

>r

i

y f

i

y r

i

>r

a
\

b
\

c
\

d

Figure 12.21 Reversing a circular list

12.6 Buckets and Hash Tables

In Chapter 11, we used a table to store the values computed by procedures

by memoizing those procedures. The values were retrieved from the table by

calling a procedure lookup. In this section, we construct objects that have

the properties of tables. These objects are called buckets. We also present a

second way of storing data using hash tables, which are vectors in which the

12.6 Buckets and Hash Tables 409

entry for each index is a bucket. In this way, large amounts of data can be

stored in relatively small vectors.

Buckets respond to two messages:

• update!, which adds (or alters) a bucket entry.

• lookup, which retrieves a bucket entry.

A bucket is a structure like a stack or queue whose internal representation can

be thought of as a flat list. Unlike a stack or queue, the order in which things

are entered into a bucket is unimportant, and a bucket can only get bigger.

An entry in a bucket (much the same as in a table) consists of two parts:

the key and its associated value. When we memoize the Fibonacci procedure,

each table entry consists of the procedure's argument and the value of the

procedure when called with that argument. In our bucket, the procedure's

argument would be the key, and the value of the procedure for that argument

would be the associated value.

When we update a bucket, if the key is present, then the value associated

with the key is the argument to an updating procedure. The value returned

by this invocation of the updating procedure determines the new value to be

associated with this key. If the key is not present, then the new value to be

associated with this key is determined by invoking an initializing procedure.

The message lookup is like the procedure lookup introduced in the previ-

ous chapter for tables. In that use, we invoke (lookup key table success

fail), and in the object-oriented view, we invoke (send bucket 'lookup

key success fail). Thus if there is a value associated with key, that value

is passed to success, and if key is not in the table, fail is invoked on zero

arguments.

For update! messages there is some similarity with lookup because there

are separate responses to the existence or nonexistence of the key in the ta-

ble. The call structure for update! is (send bucket 'update! key proc-

if-present proc-if-absent). Again a search of the bucket for the key

occurs. If key exists with associated value, vai, that value is replaced with

the result of evaluating (proc-if-present val). If key does not exist, it is

added with the associated value (proc-if-absent key). A typical session

with a bucket is given as an example in Figure 12.22. Program 12.23 is an

implementation of a bucket-maker.

Recall that we defined memoize in the previous chapter as a mechanism for

improving the efficiency of any single-argument procedure proc. We can use

the bucket mechanism to obtain another version of nemoize (Program 12.24).

The key will be the argument, n, and its associated value will be the value of

(proc n).

410 Object-Oriented Programming

[I] (define b (bucket-maker))

[2] (send b 'lookup 'a (lambda (x) x) (lambda () 'no))

no

[3] (send b 'update! 'a (lambda (x) (addl x)) (lambda (x) 0))

[4] (send b 'lookup 'a (leunbda (x) x) (lambda () 'no))

[5] (send b 'update! 'a (lambda (x) (addl x)) (lambda (x) 0))

[6] (send b 'lookup 'a (lambda (x) x) (lambda () 'no))

1

[7] (send b 'update! 'q (lambda (x) (+ 2 x)) (lambda (x) 1000))

[8] (send b 'lookup 'q (lambda (x) x) (lambda 'no))

1000

[9] (send b 'update! 'q (lambda (x) (+ 2 x)) (lambda (x) 1000))

[10] (send b 'lookup 'q (lambda (x) x) (lambda 'no))

1002

[II] (send b 'update! 'q

(leimbda (x)

(send b 'lookup 'a (lambda (y) (- x y)) (lambda () 'no)))

(lambda (y) 'no))

[12] (send b 'lookup 'q (lambda (x) x) (lambda () 'no))

1001

Figure 12.22 Using bucket operations

Exercise

Exercise 12.21

The two invocations of send in memoize can be simplified to one by adding

a new method name to bucket-meiker (see Programs 12.23 and 12.24) that

combines the update and lookup into one operation and thus avoids one of the

two searches. Rewrite bucket-meiker to run the definition of raemoize below.

(define memoize

(lambda (proc)

(let ((bucket (bucket-meiker)))

(leuabda (arg)

(send bucket 'update! -lookup arg (lambda (val) val) proc)))))

Requiring no upper bound on the size of a bucket has its own cost. As

the bucket gets bigger, we discover that the search for updating and looking

information up in the bucket gets more and more expensive. Let us consider

another program that uses a bucket. Suppose we have a list of strings, like

12.6 Buckets and Hash Tables 411

Program 12.23 bucket-maker

(define bucket-maker

(lanbda ()

(let ((table '()))

(lambda msg

(case (1st msg)

((type) "bucket")

((lookup)

(let ((key (2nd msg)) (succ (3rd msg)) (fail (4th msg)))

(lookup key table (lambda (pr) (succ (cdr pr))) fail)))

((update!

)

(for-ef feet-only

(let ((key (2nd msg))

(updater (3rd msg))

(initializer (4th msg)))

(lookup key table

(lambda (pr)

(set-cdr! pr (updater (cdr pr))))

(lambda

(let ((pr (cons key (initializer key))))

(set! table (cons pr table))))))))

(else (delegate base-object msg)))))))

Program 12.24 memoize

(define memoize

(lambda (proc)

(let ((bucket (bucket-maker))

)

(lambda (arg)

(send bucket 'update! arg (lambda (val) val) proc)

(send bucket 'lookup <urg

(lambda (val) val) (lambda «f))))))

the contents of a book. We would like to find the word count frequency of

the articles a, an, and the and possibly some others. We could solve this as

follows:

412 Object-Oriented Programming

(define word-frequency

(lambda (string-list)

(let ((b (bucket-maker)))

(f or-each

(lambda (s) (send b 'update! s addl (lambda (s) 1)))

string-list)

b)))

This defines the procedure word-frequency, which, when passed a text (a

list of strings), returns a bucket that has each of the different strings in the

text as a key and the number of times that string appears in the text as its

associated value. Now suppose that the variable string-list is bound to

some text; for example, the text might start with ("four" "score" "and"

"seven" "years" "ago" "our" "fathers" ...). By writing

(define word-frequency-bucket (word-frequency string-list))

we define a bucket, called word-frequency-bucket, that contains each of

the different words in our text as keys and the frequency of that word as its

associated value. To see how many times the three strings "a", "an", and

"the" appear in the text, we write:

(map

(lambda (s)

(cons s (send word-frequency-bucket 'lookup s

(lambda (v) v)

(lambda () 0))))

'("a" "an" "the"))

This returns a list of the form (("a" . 7) ("an" . 0) ("the" . 10)).

If we were maintaining a frequency count for a book with 1,000 different

words, then the bucket would be a list of 1,000 items, and searching it would

be expensive. We next show how to avoid this problem.

We have now seen two ways of handling the building of tables for such

purposes as memoizing. The first method was to use lists or buckets, which

has the disadvantage that when the table gets long, lookup becomes a costly

operation. The other method was to use a large vector so that each entry can

be stored with a unique index and can be accessed randomly. This has the

disadvantage that the vector has a predetermined fixed length and can hold a

limited number of entries. We are now ready to look at a surprisingly simple

solution to avoid the long searches and to allow for an unlimited number of

12.6 Buckets and Hash Tables 413

entries. We create a vector that holds one bucket per index. This way we can

partition the pairs by placing individual keys and their associated values in a

bucket as a function of what the key is.

A rather naive solution to the word frequency problem would be to associate

a bucket with each letter. This would create 26 buckets, and if we were lucky,

the average length of each bucket would be 1000/26 (approximately 40). Then

we could use the first or last letter of a string to determine which bucket to

update. Of course, words in English being what they are, the z-bucket will

not carry its load. The choice of function and the length of the vector vary

with the nature of the data being stored. The function must take a key and

replace it by some nonnegative integer that can reference the vector. This

function is called a hash function because it hashes up the data and turns

them into integers, which are then used to access the vector. The important

point here is that we want the hash function to spread the data evenly in the

buckets. For the Fibonacci numbers example, a reasonable hash function is

the remainder with the size of the vector. Here is how to create hash tables.

Program 12.25 hash-table-maker

(define hash-table-maker

(lambda (size hash-fn)

(let ((v ((vector-generator (lambda (i) (bucket--maker))) size)))

(lambda msg

(case (1st msg)

((type) "hash table")

(else

(delegate (vector-ref v (hash-fn (2nd msg))) msg)))))))

An empty bucket is placed at each index of the vector, v. Then, using the

key, an index is determined by applying the hash-fn to the key. The value

at that index is a bucket that responds to the same messages as heish tables.

By delegating to the bucket the original message, the same information is

forwarded to the bucket. We now write the new definition of memoize using

a hash table in Program 12.26. In order to write this new memoize we only

need to supply arguments to hash-table-maker. Everything else remains

unchanged. This version of memoize is restricted to numerical data since

its associated hash function invokes remainder on its argument. The hash

function can be as general as the problem for which it is being used demands.

414 Object-Oriented Programming

Program 12.26 memoize

(define memoize

(let ((hashf (lambda (x^ (remainder x 1000))))

(let ((h (hash-table-maker 1000 hashf)))

(lambda (proc)

(lambda (arg)

(send h 'update arg (lambda (v) v) proc)

(send h 'lookup arg (lambda (v) v) (lambda #f)))))))

Similarly we can rewrite word-frequency by including a hash table where

we earlier had a bucket. For this, we need a way of converting the first letter

of each string into an integer. The code that assigns to each keyboard char-

acter a unique integer (see Appendix Al) provides us with just the help we

need. Scheme has a procedure string-ref that takes a string and an inte-

ger as arguments and returns the character in the string having that integer

as its index. Scheme also has the procedure char->integer, which takes a

character as its argument and returns the integer associated with that char-

acter. We shall study the character data type more fully in Chapter 15. We
use these two procedures now to define the hash function for the procedure

word-frequency:

(define word-frequency

(let ((naive-hash-function

(lambda (s)

(remainder (char->integer (string-ref s 0)) 26))))

(let ((h (hash-table-maker 26 naive-hash-function)))

(lambda (string-list)

(f or-each

(lambda (s) (send h 'update! s addl (lambda (s) 1)))

string-list)

h))))

A popular hash function for strings is one that sums the (char->integer

(string-ref s i)) for i = to (subl (string-length s)) and finds the

remainder with the length of the vector. The important aspect of the choice

of hash function is that it must spread the data randomly into the buckets so

that each bucket carries its load.

The advantage of hash tables is that when order is not important, a table

can be stored in a vector so that retrieval and updating are far more effi-

cient than in simple linear search. The disadvantage is that we rely on a

12.6 Buckets and Hash Tables 415

hash function that cannot know in advance what the data will look like. To

demonstrate this, consider the following definition of new-bucket-maker:

(define neH-bucket-maker

(lambda ()

(hash-table-maker 1 (lambda (d) 0))))

This hash table is as inefficient as a bucket. We chose the vector too small,

and we chose the hash function too naively. Of course, this would never be

done. In practice, most systems discourage the user from worrying about the

size of the hash table or the nature of the hash function.

Exercises

Exercise 12.22

Construct a list of strings from some paragraph in this section, and run word-

frequency over that list. Determine how many of each of the articles o, an,

and the were used.

Exercise 12.23

Using the list of strings from the previous exercise, introduce a hash function

that uses a large prime number for the vector length and uses the sum of

integers corresponding to characters hash function as described in this section.

Exercise 12.24

Include a message re-initialize ! in the definition of bucket-maker and

hash-table-maker. In both cases, this method returns the object to its

initial state.

Exercise 12.25

Lists that can only grow can get expensive.

a. Include a remove ! message in bucket-maker that removes the key and its

associated value from a bucket. The operation guarantees that if b is a

bucket, then the following expression is always false.

4I6 Object-Oriented Programming

(begin

(send b 'remove! key)

(send b 'lookup key (lambda (v) #t) (lambda () #f)))

is always false.

b. Include a remove! message in hash-table-maker that removes the key

and its associated value from the hash table. If b is a hash table, then the

expression above is always false.

Exercise 12.26: store!

Define a procedure store! that takes a hash table (or bucket), a key, and a

value and is defined so that if b is a hash table (or bucket), then

(begin

(store! b key value)

(send b 'lookup key (leuobda (v) (equal? value v)) (lambda () #f)))

is always true. Do this without adding any new messages to hash-table-

maker (or bucket-maker).

Exercise 12.27

Include an image message in bucket-maker whose value is a list of the key-

value pairs. Design it so that in the event of a subsequent update to an existing

key, that update will not mutate the list previously returned by the image

message. If b is a bucket and (send b 'lookup key number? (lambda ()

#1)) is true then

(let ((prs (send b 'image)))

(send b 'update! key addl (lambda (k) 0))

(= (cdr (assoc key prs)) (cdr (assoc key (send b 'image)))))

is always false.

Exercise 12.28

Using the previous exercise, include an image message in hash-table-maker

whose value is a list of key-value pairs. Design it so that in the event of a

subsequent update to an existing key, that update will not mutate the list

previously returned by the image method. If b is a hash table and (send

b 'lookup key number? (lambda () #f)) is true, then the equation of the

previous exercise holds. Hint: You may be tempted to use append, but here

is an example where if you defined bucket-maker correctly, you should be

able to use append !

.

12.6 Buckets and Hash Tables 4^7

The next four problems are related. Work them in order and you will discover

an interesting generalization of delegation.

Exercise 12.29: theater-maker

Consider the definition of theater-maJter below. When entering a theater,

there is usually a line to purchase tickets. Sometimes what is showing at the

theater attracts a massive audience. When that happens, the doors to the

theater may close while there is still a line to purchase tickets. By using a

gauge for modeling the flow of patrons into the loge and a ticket queue where

each patron waits, we can model these facets of a theater. What are the

advantages of using delegate in the else clause of theater-maker? What are

the disadvantages?

(define theater-maker

(lEunbda (capacity)

(let ((ticket-line (queue-maker)

)

(vacancies (gauge-maker capacity addl subl)))

(lambda msg

(case (1st msg)

((type) "theater")

((enter!) (if (zero? (send vacancies 'show))

(display "doors closed")

(begin

(send ticket-line 'dequeue!)

(send vaceuicies 'down!))))

((leave!) (if (< (send vacancies 'show) capacity)

(send vacancies 'up!)

(error "leave!: The theater is empty.")))

(else (delegate ticket-line msg)))))))

Exercise 12.30

In theater-maker, suppose we would like to know how many seats are vacant

for the next showing. We cannot find this out without introducing a message,

say show, in the definition of theater-maker. See the code below. Why must

we include the extra message?

(define theater-maker

(lambda (capacity)

(let ((ticket-line (queue-maker))

(vacancies (gauge-maker capacity addl subl)))

(lambda msg

(case (1st msg)

((type) "theater")

j^l8 Object-Oriented Programming

((enter!) (if (zero? (send vacancies 'show))

(display "doors closed")

(begin

(send ticket-line 'dequeue!)

(send vacancies 'dosn!))))

((leave!) (if (< (send vacancies 'show) capacity)

(send vacancies 'up!)

(error "leave!: The theater is empty.")))

((show) (send vacancies 'show))

(else (delegate ticket-line msg)))))))

We have two active objects: ticket-line and vacancies. The default

line has (delegate ticket-line msg). This means that we do not have

(delegate vacancies msg). We are only allowing one default. With double

delegation, we can have two defaults. If the message is not applicable to the

first default, it tries the second. So far, we have only seen objects with single

delegation. In this exercise, we build objects with multiple delegation.

We introduce a binary function, combine, that, like compose, takes two

procedures (in this case, objects) as parameters and returns a procedure as a

value.

Program 12.27 combine

(define combine

(lambda (f g)

(lambda msg

(let ((f-try (delegate f msg)))

(if (eq? invalid-method--name- indicator f-try)

(delegate g msg)

f-try)))))

The returned procedure will delegate a message, in order, to the two objects

until it finds one that does not return invalid-method-name-indicator. If

f is not such an object, it invokes g. The procedure combine takes only two

arguments. Rewrite combine to take two or more arguments. Below we have

changed theater-maker to use combine so that the vacancies messages will

be delegated too. The result will be multiple delegation, which will delegate

show messages without the additional line in theater-maker.

12.6 Buckets and Hash Tables 419

(define theater-maker

(lambda (capacity)

(let ((ticket-line (queue-maker))

(vacancies (gauge-maker capacity addl subl)))

(lambda msg

(case (Ist msg)

((type) "theater")

((enter!) (if (zero? (send vacancies 'show))

(display "doors closed")

(begin

(send ticket-line 'dequeue!)

(send vacancies 'down!))))

((leave!) (if (< (send vacemcies 'show) capacity)

(send vacancies 'up!)

(error "leave! The theater is empty.")))

(else (delegate (combine ticket-line vacancies) msg)))))))

Exercise 12.31

The multiple delegation used with combine in the previous exercise is some-

times dangerous because method names are symbols. What would happen

if show were used instead of front as the message for looking at the first

element in a queue? Consider both expressions:

(delegate (combine ticket-line vacancies) msg)

and

(delegate (combine vacancies ticket-line) msg)

Exercise 12.32

In the interests of security, we would like to disable some operations from

delegation. For example, we would like to keep anyone from resetting the

gauge. This would correspond to yelling "fire," clearing the loge before the

showing, and then allowing just the current contents of the ticket line to enter

the loge. That would not be fair. The patrons who were already in the

loge would have paid without receiving any entertainment. Or perhaps an

update! message might be sent so that everyone might think the loge was

full. Such skullduggery is possible with the current configuration of theater-

maker. However, if we form a list of those "unfriendly" messages and disable

them, we can keep these theaters from allowing such nefarious acts. Below is

a partial solution where we have disabled reset! and update!. Rewrite the

definition of theater-maker below to include all of the messages that should

be disabled:

ji20 Object-Oriented Programming

(define theater-maker

(lambda (capacity)

(let ((ticket-line (queue-maker))

(vacancies (gauge-maOcer capacity addl subl)))

(lambda msg

(case (1st msg)

((type) "theater")

((enter!) (if (zero? (send vacemcies 'show))

(display "doors closed")

(begin

(send ticket-line 'dequeue!)

(send vacancies 'down!))))

((leave!) (if (< (send vaceuicies 'show) capacity)

(send vaczmcies 'up!)

(error "leave!: The theater is empty.")))

((reset! update!) (delegate base-object msg))

(else (delegate (combine ticket-line vacancies) msg)))))))

The next six problems are related. Work them in order, and you will discover

some interesting generalizations of objects as we have defined them in this

chapter.

Exercise 12.33

Consider a new definition of send.

Program 12.28 send

(define send

(lambda args

(let ((try (apply (car args) args)))

(if (eq? inval id-method-name- indicator try)

(let ((object (car args)) (message (cdr args)))

(error "Bad method name : " (car message)

"sent to object of"

(object object ' type)

"type."))

try))))

According to this definition, uses of send are the same as before, but each mes-

sage includes the receiver of the message as the first element of the message.

Here is an example that uses this send to build counter-maker:

12.6 Buckets and Hash Tables 421

(define counter-meiker

(lambda (init-value uneiry-proc)

(let ((total (box-maker init-value)))

(lambda message

(let ((self (cair message)) (msg (cdr message)))

(case (1st msg)

((type) "counter")

((update!) (let ((result (unaury-proc (send total 'show))))

(send total 'update! result)))

((swap!) (delegate base-object message))

(else (delegate total message))))))))

The variable message contains the receiver as its car and the original msg as

its cdr. When we delegate, we use the whole message. Rewrite box-maker

so that this definition of coxmter-maker works. Be sure to redefine base-

object.

Exercise 12.34

Below is the definition of cartesicoi-point-maker:

(define cartesian-point-maker

(lambda (x-coord y-coord)

(lambda message

(let ((self (ceur message)) (msg (cdr message)))

(case (1st msg)

((type) "Ccurtesiam point")

((distance) (sqrt (+ (squaire x-coord) (squzure y-coord))))

((closer?) (< (send self 'disteince) (send (2nd msg) 'distance)))

(else (delegate base-object message)))))))

Fill in the gaps in the experiment below:

[1] (define cpl (caurtesian-point-maker 3.0 4.0))

[2] (send cpl 'distance)

7

[3] (define cp2 (cartesian-point-maker 1.0 6.0))

[4] (send cp2 'distance)

7

[5] (send cpl 'closer? cp2)

7

[6] (send cp2 'closer? cpl)
7

422 Object-Oriented Programming

Exercise 12.35

Using the definitions of the previous exercise, we add a new kind of point.

In the Cartesian point, we found the distance to the origin as a straight line.

In this definition, we determine the distance as the sum of two straight lines:

the distance to the x-axis and the distance to the y-axis. This type of point

is called a Manhattan point because it is reminiscent of distances traveled in

cities. Below is the definition of manliattan-point -maker:

(define manhattan-point-maker

(lambda (x-coord y-coord)

(let ((p (cartesian-point -maker x-coord y-coord)))

(Icunbda message

(let ((self (car message)) (msg (cdr message)))

(case (1st msg)

((type) "Manhattsm point")

((distance) (+ x-coord y-coord))

(else (delegate p message))))))))

With this definition, we have refined cartesian-point -maker by determining

the distance diff"erently. The determination of which of two points is closer to

the origin stays the same, but if the point is a Manhattan point, it determines

its distance to the origin by summing instead of finding the square root of the

sum of squares. Fill in the gaps in the experiment below:

[7] (define mpl (manhattan-point-maker 6.0 1.0))

[8] (send mpl 'disteince)

7

[9] (send cp2 'closer? mpl)
•?

[10] (send mpl 'closer? cp2)

7

Exercise 12.36

Suppose that we always create points at the origin (0,0). Then we could add

a method name moveto ! that would take an x-coordinate and a y-coordinate

as arguments. In addition, we want a list of the two current coordinates.

Add the method names current-coordinates and moveto ! to the definition

of cartesian-origin-maker below. We have left the type eis "Cartesian

point" because it still is a point eis one would find in the plane.

12.6 Buckets and Hash Tables 423

(define cartesi8m-origin-maker

(lambda ()

(let ((x-coord 0) (y-coord 0))

(lambda message

(let ((self (car message)) (msg (cdr message)))

(case (car msg)

((type) "Cartesian point")

((distance) (sqrt (+ (square x-coord) (squeure y-coord))))

((closer?) (< (send self 'distance) (send (2nd msg) 'distemce))'

(else (delegate base-object message))))))))

Exercise 12.37

Using the definition of your solution to cartesizin-origiii-meLker from the

previous exercise, fill in the gaps in the experiment below.

[1] (define cpl (cartesian-origin-maker))

[2] (send cpl 'distance)
7

[3] (send cpl 'current-coordinates)
•?

[4] (send cpl 'moveto! 6.0 1.0)

7

[5] (send cpl 'distance)

7

[6] (send cpl 'current-coordinates)

7

Exercise 12.38

Fill in the rest of the definition of manhattsm-origin-maker below, but do

not use p. Test closer? on a Manhattan point and a Cartesian point that

have both been moved to (6.0,1.0).

(define manhattan-origin-maker

(lambda ()

(let ((p (cartesian-origin-maker)))

(lambda message

(let ((self (car message)) (msg (cdr message)))

(case (1st msg)

((type) "M2mhattan point")

((distance) ?)

(else (delegate p message))))))))

424 Object-Oriented Programming

