
14 Declaring Special Forms

14.1 Overview

In Scheme, operators are applied to their operands by enclosing the operator

followed by its operands in parentheses. The call structure for applying an

operator to its operands is:

(.operator operand . . .)

When such an application is made, the operator and the operands are evalu-

ated in an unspecified order, ^ and then the procedure (which is the value of the

operator) is applied to the arguments (which are the values of the operands).

We have also encountered several special forms in which the subexpressions

following the keyword are treated differently from the operands of a proce-

dure. Examples of these are and, begin, cond, case, define, if, lambda,

let, let*, letrec, or and set!, each with a syntax of its own. Some of

these, like let, have been introduced to make it easier to read programs, for

any program using let could be rewritten using an application of a lambda

expression in place of each let expression. Such keywords are referred to as

derived keywords. One of the convenient features of Scheme is that it is an

extensible language that allows the user to add new special forms to make the

language more convenient to use and to provide a mechanism to do tasks that

procedures cannot perform. We shall study two mechanisms for making such

additions in this chapter.

^ Programs that rely on an order of evaluation are said to be ill formed. Since the order

of evaluation is implementation dependent, such programs are not portable, and they can

not, in general, be transferred from one implementation to another.

The action of taking an expression and rewriting it in terms of something

we understand happens when we work with natural language. As we read

a passage, we often look in a syntax table, a dictionary, and substitute the

meaning of the word for the word itself. In Scheme, however, we restrict those

items for which substitutions can be made (we also say "which can be trans-

formed") to be lists that begin with a keyword (these are the special forms).

Before an expression can be evaluated, all special forms in the expression

must be transformed into expressions that are "understood." To carry the

metaphor a bit further, we cannot understand the complete thought conveyed

by the author of a passage until we have transformed all terms into words

we understand. In a sense, we cannot evaluate the author's passage without

the appropriate substitutions taking place. Similarly, we cannot evaluate a

Scheme expression until all the transformations have occurred. Each trans-

formation brings the expression closer to one in which all terms are familiar.

Thus, we do not evaluate an expression with a list that begins with a derived

keyword. When all such lists have been transformed, it is time to evaluate

the expression. Prior to evaluation there is a recursive program that removes

all such lists.

2

14.2 Declaring a Simple Special Form

In this book we have used several special forms without defining them as

procedures. In fact, it is the nature of these forms that they cannot (or

should not) be defined as procedures either because some of their operands

are not to be evaluated or because the order of evaluation of their operands is

not the same as in a procedure application. We use the terminology that we

define procedures, but we declare special forms. The mechanism for declaring

special forms will be explained in the course of making a specific extension to

the syntax.

If we write

(define sm (+ 3 4))

^ We shall not write that procedure here, since the way it is written is determined by what

the system assumes it knows. For purposes of discussion, we assume the system knows

define, if, lambda, quote, and set!. Other systems might know about a different set of

special forms. For example, if might be described in terms of cond, thereby causing us

to assume that the system knows cond. This freedom of choice gives implementors the

flexibility they need for efficient implementation.

450 Declaring Special Forms

the expression (+ 3 4) is evaluated and its value is bound to the variable

sm. Suppose that we want to assign this expression to the variable sm but

postpone the evaluation of the expression (+3 4) until we actually need the

value of sm. One way of doing this is to encapsulate the expression (+3 4)

within the body of a lambda expression having no arguments. We could then

write

(define sm (laabda () (+34)))

The body of a lambda expression is not evaluated until that lambda expres-

sion is applied to its arguments, and since the thunk (lambda () (+3 4))

has no arguments, it is invoked by merely enclosing the lambda expression in

parentheses. Since the thunk in this case is bound to the variable sm, we can

invoke it by enclosing sm in parentheses, that is, by writing (sm). We are thus

able to postpone the evaluation of an expression until we need it by making it

into a thunk and binding a variable to that thunk. It would be nice to have a

procedure freeze that, when applied to an operand, has the effect of forming

a thunk that has that operand as its body. Suppose we write:

(define freeze

(lambda (expr)

(lambda () expr)))

Then we would write:

(define sm (freeze (+ 3 4)))

But when the define expression is evaluated, before being bound to sm, the

expression (freeze (+ 3 4)) is evaluated. Since freeze is a procedure,

its operand (+ 3 4) is evaluated. Thus we defeated the purpose for which

we wrote the procedure freeze, which was to postpone the evaluation of its

operand until sm is called. What happened is that (+ 3 4) is evaluated during

the definition of sm instead of when sm is called. Thus freeze cannot be a

procedure; it has to be the keyword of a special form if it is to accomplish

what we want.

To declare this special form with keyword freeze, we make use of a special

form with keyword macro. ^ We would like freeze to have the syntax (freeze

expr) and to transform into the thunk (lambda () expr) without evaluating

^ At the time this book is being written, the Scheme community has not yet agreed upon a

standard way of declaring specied forms. In this book, we use two methods that have been

14-2 Declaring a Simple Special Form 4^1

the expression expr. We call the expression (freeze expr) the macrocode,

and we want to transform the macrocode into the macroexpansion

(lambda () expr)

In general, a macro is a procedure that transforms macrocode into the corre-

sponding macroexpansion.

When an expression is entered into the system, the first subexpression is

checked to see if it is a keyword of some special form. If it is, then the

macrocode (in our case, (freeze expr)) is replaced by the corresponding

macroexpansion. Then at run time, the computer sees only the macroexpan-

sion (lambda () expr) in the program as if we had written the macroexpan-

sion into the program instead of the macrocode. Thus the subexpression expr

of the special form (freeze expr) was not evaluated when the procedure (or

thunk) was created by evaluating (lambda () expr).

How is the macroexpansion accomplished? We have to write a procedure

that literally transforms the macrocode into the macroexpansion of that code.

Let us call that procedure freeze-transf orraer; it takes the macrocode code

as its argument and returns the code for the macroexpansion. In our case, the

macroexpansion is a list containing the three items that make up a lambda

expression: the symbol lambda, the empty list of arguments, and the body.

Thus we can define freeze-transformer to be:

(define freeze-transfomer

(lambda (code)

(make-lambda-ezpression '() (list (2nd code)))))

where make-lambda-expression is applied to the formal parameter(s) (in

this case, it is the empty list) and a list of expressions (in this case, it is a

list containing only one element). The second expression in the macrocode

is expr. In our specific example, that is the list (+ 3 4). We define make-

lambda-expression to be:

(define make-lambda-ezpression

(lambda (parameters body-expressions)

(cons 'lambda (cons peirameters body-expressions))))

included in some implementations. These methods use special forms with keywords macro

and ertend-syntax. If these are not implemented in the version you are using, read the

manual for your implementation to see how it declares special forms, and use that method
instead. In general, until a standard is agreed upon, code including user-made special forms

is not portable.

452 Declaring Special Forms

Now that we have defined the freeze-transf ormer, we can declare the

special form with keyword freeze using the special form with keyword macro

as follows:

(macro freeze freeze-transformer)

We can conceive of this process of declaring a special form as if macro places

the keyword freeze in a global table we call the syntax table, along with its

transformer, which is the procedure freeze-transformer. Thus each entry in

the syntax table consists of a keyword and its associated transformer. When
a program is entered and the symbol freeze is found in the first position

of an expression, it looks it up in the syntax table, and if it finds it there,

it passes the macrocode ((freeze expr) in this case) to the transformer.

The transformer then returns the macroexpansion (in our example, (lambda

() expr)). This macroexpansion is inserted into the program in place of the

macrocode. It is customary to refer to the keyword freeze as a macro, though

the macro actually is the whole macrocode. Following custom, we shall say

"the macro freeze."

We can also unwrap the various helping procedures used in defining the

procedure freeze-transformer to get a self-contained representation for the

macro declaration. For example, we can replace

(make-lambda-expression '() (list (2nd code)))

by the body of its lambda expression with its parameters replaced by the

arguments to which they are bound to get:

(define freeze-transformer

(lambda (code)

(cons 'lambda (cons '() (list (2nd code))))))

Finally, replacing freeze-transformer by its lambda expression gives us

Program 14.1 freeze

(macro fre eze

(lambda (code)

(cons ' lambda (cons '0 (list (2nd code))))))

14-S Declaring a Simple Special Form 4^^

14.3 Macros

as a self-contained form of the declaration of the macro freeze. Either the

version using the helping procedures or this final self-contained version de-

clares the macro freeze. You may use the version you find more convenient.

In general, the special form with keyword macro has the syntax

(macro name transformer)

where name is the keyword of the new special form being declared and

transformer is a procedure of one argument that takes the macrocode and

returns the macroexpansion. In our example above, freeze is the keyword,

and

(lambda (code)

(cons 'lambda (cons ' () (list (2nd code)))))

is the transformer. Thus we summarize by recalling that when a program

containing an expression starting with a keyword for a special form is entered,

the system replaces the macrocode by the code returned when the macrocode

is passed to the keyword's transformer. It is this expansion that is seen when

the program is run.

The macro freeze can also be implemented to take several subexpressions;

this would let us write, for example,

(freeze (writeln "Hello") "How are you?")

and would macro expand into

(lambda () (writeln "Hello") "How are you?")

In general, we would like freeze to have the syntax

(freeze expri expr2 . .

)

where the ellipsis (three dots) means that there is a finite number of expres-

sions following the word freeze and that there is at least one such expression.*

* In general, the notation thing . . . means zero or more occiirrences of thing, whereas

thingi thing2 - • means one or more occurrences of thing.

454 Declaring Special Forms

This is a pattern for our macrocode but it cannot be used as the macrocode

itself since it contains the ellipsis and the special form macro will not know

what to do with it. Using a similar notation, we can say that a pattern for

the macroexpansion is:

(lambda () expri expr^ ...)

A convenient notation to indicate that the first pattern is to be expanded into

the second pattern is:

(freeze expri expr2) = (lambda () expri expr2)
The symbol = can be read "macro expands to." We call a statement that has

the macro pattern on the left and the expansion pattern on the right a syntax

table entry.

In any actual case, the macrocode is a list that starts with the keyword

freeze and always has at least one expression following it. If we represent

this macrocode by the variable code again, then (cdr code) is just a list of

the expressions that make up the body of the lambda expression into which the

macrocode is expanded. The freeze-transformer procedure defined above

can be modified so that it produces the right macroexpansion for this version

of freeze:

(define freeze-transformer

(lambda (code)

(make-lambda-expression ' () (cdr code))))

It would be convenient if Scheme were to have a way of taking the two sides

of the syntax table entry and declare the special form for us. In essence, the

system would be writing the transform procedure for us and using it to declare

the macro. Such a special form, called extend-syntax,^ was developed (see

Kohlbecker, 1986). It has the following syntax:

^ Here is a way to get macro if you have extend-syntax in your implementation of Scheme:

(extend-syntax (macro)

((macro name transformer)

(let {(t transformer))

(extend-syntax (name)

(x ((with ((h 'with)) w) ((v (t 'x))) v))))))

See Dybvig, 1987, for a discussion of extend-syntax's with clauses.

14.3 Macros 455

(extend-syntax (.name ...) imacro-pattern expansion-pattern) ...)

where macro-pattern and expansion-pattern are the left and right sides, re-

spectively, of the syntax table entry for the macro called name. Using ext end-

syntax, the declaration of the macro freeze becomes:

Program 14.2 freeze

(extend-syntax (freeze)

((freeze exprl expr2 ...) (lambda exprl expr2 ...)))

Since no standard way of making special forms has been agreed upon, we shall

demonstrate both ways of doing it—that is, using macro and extend-syntax

in the rest of this chapter.

Along with the macro freeze, there is the procedure thaw, which invokes a

frozen entity (a thunk) and returns its value. The procedure thaw is defined

as follows:

Progr£iin 14.3 thaw

(define thav

(lambda (thunk)

(thunk)))

To show how it is used, we define:

(define th (freeze (display "A random number is: ") (ramdom 10)))

(thaw th) =^* A random number is: 7

(thaw th) =^ A remdom niomber is: 3

Each time the thunk is thawed, the expressions are reevaluated. Thus each

time we thawed the thunk th in the example, another random number is

computed and returned.

There are occasions when we want to postpone the evaluation of an expres-

sion but have it be evaluated only the first time it is called and thereafter

not have to reevaluate the expression each time it is called again but rather

return on each subsequent call the value already evaluated. This would be

advantageous if the same long calculation is involved each time the procedure

456 Declaring Special Forms

Program 14.4 make-promise, force

(define make-promise "procedure •)

(define force "procedure")

(let ((delayed-tag "delay') (value-tag "-->"))

(set ! make-promise (lambda (thunk) (cons delayed--tag thunk)))

(set ! force

(lambda (arg)

(if (and (pair? arg) (eq? (car arg) delayed-1:ag))

(begin

(set-car arg value--tag)

(set-cdr arg (thas (cdr arg)))))

(cdr arg))))

is called and the result obtained is the same, in the absence of side effects. We
propose to evaluate the postponed expression only the first time it is called

and on subsequent calls to return the already computed value. We declare

the special form delay to postpone the evaluation by creating a promise, and

a corresponding procedure force to evaluate (or "force") the promise. When
the promise is forced for the first time, the value of the postponed expres-

sion is computed and returned. Each succeeding time the promise is forced,

the same value that was computed the first time is returned. Consider the

following:

(define pr (delay (display "A random number is: ") (random 10)))

(force pr) => A random number is: 6

(force pr) =^ 6

(force pr) =^ 6

and it continues returning 6 each time it is forced from now on.

The syntax table entry for delay is

(delay expTi expT2 ...) = (make-promise (freeze expri expr2 ...))

where make-promise is a procedure that takes a thunk as its argument and

returns a promise, which is a thunk tagged with "delay". (See Program 14.4.)

If force's argument is a promise, force converts the promise into a fulfillment.

A promise is converted into a fulfillment by tagging with "— >" the value

obtained by thawing the promise's thunk. In any event, the value stored in

14.3 Macros 457

the fulfillment is returned. Program 14.4 is written so as to protect the tags

from accidental reassignment.

We can now proceed to declare the macro delay. It has the macrocode

(delay expri expr2)

which macroexpands into

(make-promise (freeze expri expT2 ..))

As before, we cannot define delay to be a procedure because its arguments

expri expT2 would be evaluated too early. Using extend-sjrntax, we can

declare delay by simply writing:

Program 14.5 delay

(extend-syntax (delay)

((delay expri expr2 ...) (make-promise (freeze expri expr2 ...))))

Or, by using macro, we get

Program 14.6 delay

(define delay-transformer

(lambda (code)

(list 'make-promise (cons 'freeze (cdr code)))))

(macro delay delay-transformer)

As we have seen, in a procedure call, Scheme first evaluates the operands

(producing arguments) and the operator (producing a procedure) and then

applies the procedure to the arguments. We say that the arguments are

passed to the procedure "by value." In some languages, arguments are passed

to procedures as if they were thunks, and they are not thawed until they are

actually used in the procedure. Such arguments are said to be passed to the

procedure "by name."® We can write programs in Scheme so that procedures

In the presence of side effects, this is an oversimplification.

458 Declaring Special Forms

accept arguments that are thunks. These arguments are thawed when they

are used in the body of the procedure, so that passing of arguments by name

can be accomplished in Scheme. Similarly, it is possible to pass arguments

to procedures as promises, which are not forced until they are needed in the

body of the procedures. In such cases, the arguments are said to be passed "by

need." In Chapter 15, we shall study streams, which use arguments passed

by need.

We have been using the special form with keyword let, which has the

syntax^

(let ((var val) ...) expri expr2)
The syntax table entry for let is

(let ((var val) ...) expri €xpr2)
((lambda (var ...) expri expr2) val ...)

The declaration of let is now a simple matter when we use extend-syntax

as in Program 14.7.

Program 14.7 let

(extend-syntax (let)

((let ((vaur val) ...) expri expr2 ...)

(danbda (var ...) expri expr2 ...) val ...)))

To declare let with macro, we have to build an application that consists

of a list containing a lambda expression followed by its operands. For the

lambda expression, we need its parameter list and its body expressions. If

code represents the macrocode, then the list of parameters is built up by first

taking the (2nd code) to get a list of pairs of var's and val's. We extract the

list of var's by taking the 1st of each pair in the list using map as follows:

^ When using user-declaired macros that have the same keywords cis special forms in Scheme,

you might want to avoid collisions with the built-in forms. We suggest that you siuround

the keywords of those you declaire with equed signs; e.g., =let= in place of let.

14.3 Macros 459

(define ii«ike-li8t-of-para»eters

(laabda (code)

(ap Ist (2nd code))))

Similarly, we can build the list of operands from the macrocode by taking the

2nd of each pair. This leads to:

(define Beike-list-of-operands

(lambda (code)

(nap 2nd (2nd code))))

A list of the items in the body of the lambda expression we are building is

obtained by taking the cddr of the macrocode. Thus:

(define Bake-list-of-body-items

(lajBbda (code)

(cddr code)))

With these helping procedures, we can write the transform procedure and

declare it as the macro for let.

Program 14.8 let

(define let-transf oraer

(lambda (code)

(cons (make-laabda-expression

(nake-list-of-paraaeters code)

(make-list-of-body-items code))

(aike-list-of -operands code))))

(aero let let-treinsformer)

This is really only half of the declaration of the macro let since there is also

the so-called named let, which has a different syntax. We shall return to

the named let in the exercises, where we rely on the following discussion of

letrec. The above version of the macro declaration of let using the special

form with keyword macro clearly illustrates the advantage of using extend-

syntajc to declare a macro. Exercise 14.6 at the end of this section suggests

some interesting modifications to let so that it displays appropriate messages

when an expression with keyword let is entered with an incorrect syntax. For

example, if we write (let ((a 3))) , incorrect syntax should be signaled since

460 Declaring Special Forms

a let expression must contain at least one subexpression following the binding

pairs. If we use macro to declare our special forms, we must explicitly include

tests in the definition of the transformer to determine if the syntax is correct.

On the other hand, one of the great advantages of using ext end-syntax is

that it has built-in syntax checking, so we do not have to include our own tests

for correct syntax. You may find it instructive to enter some let expressions

with incorrect syntax in your implementation of Scheme and see the messages

that are displayed.

We observed that in a let expression of the form

(let ((t/ar val) ...) expTi ex'pr^ ...)

the expression val . . . whose value will be bound to var . . . cannot contain

var . . . recursively, for looking at the pattern for the macroexpansion,

((lambda (var ...) expri expT2) val ...)

we see that val ... is not in the scope of var . .
.

, so any instance of var . .

.

in val . . . refers to an outer scope. The special form letrec does allow for a

recursive scope.

The macro letrec has the syntax table entry:

(letrec (.{var val) ...) expri expr2)
(let ((var "any") ...) (begin (set! var val) ...) expri expr2)

In this expansion, if any one of the val^s contains instances of any of the

var's, that val is in the lexical scope of those var's in the let expression of the

macroexpansion. This allows the use of recursion in var. Let us now write the

macro for letrec. Again, it is a simple matter to do so using ext end- syntax.

Program 14.9 letrec

(ext end-syntax (letrec)

((letrec ((var val) ...) expri expr2 ...)

(let ((var "any") ...)

(set ! var val) . .

.

expri expr2 ...)))

Consider the definition of the procedure odd?, which is defined using a letrec

expression:

14.3 Macros 461

(define odd?

(letrec

((even? (lambda (n) (if (zero? n) #t (odd? (subl n)))))

(odd? (lambda (n) (if (zero? n) #f (even? (subl n))))))

odd?))

It macroexpands into the following let expression:

(define odd?

(let ((even? "any")

(odd? "any"))

(begin

(set! even? (lambda (n) (if (zero? n) #t (odd? (subl n)))))

(set! odd? (lambda (n) (if (zero? n) #f (even? (subl n))))))

odd?))

Let us next look at how to declare letrec using macro. We first consider

how we construct the pairs of the form (var "ajiy"), which are in the let

expressions of the macroexpansion. After we get the var's from the 2nd of

the macrocode, we use map to give us the desired pairs of the form (var

"any"). Similarly, we build the set! expressions, and finally, we build a list

of expressions that complete the body of the let expression. This leads to the

declaration of letrec using macro that is given in Program 14.10,

Program 14.10 letrec

(macro letrec

(lambda (code)

(cons 'let

(cons (map (lambda (z) (list (1st z) "any")) (2nd code))

(append

(map (lambda (z) (cons 'set! z)) (2nd code))

(cddr code))))))

Something you usually want to avoid is the creation of infinite loops. How-

ever, as an interesting demonstration of the use of letrec, we shall write

a special form cycle that takes an arbitrary number of subexpressions and

runs each subexpression in succession and then starts over again, repeating

this loop indefinitely. The syntax table entry for cycle is

(cycle expri expT2 ...) = (cycle-proc (freeze exprl expT2 ...))

462 Declaring Special Forms

Program 14.11 cycle-proc

(define cycle-proc

(lambda (th)

(letrec ((loop (lambda

(thaw th)

(loop))))

(loop))))

where cycle-proc is defined in Program 14.11. In Chapter 17, we shall

encounter several uses of cycle-proc.

The last special form that we discuss has keyword or. First why must or

be a macro instead of a procedure? When we write (or ei 62), the first

subexpression ei is evaluated, and if it is true, then its value is returned. If ei

is false, only then is 62 evaluated. If or were a procedure, both subexpressions

would be evaluated before they are passed to or. The fact that the second

subexpression is not evaluated unless the first is false allows us to include the

following expression in a program:

(or (zero? x) (> (/ 10 x) 2))

and be sure that division by zero does not occur because the second subex-

pression is not evaluated if x is zero. Thus we want or to be a macro that

can take any number of subexpressions, including no subexpressions. If or is

called with no subexpressions, it returns false. Having taken care of the case

of no subexpressions, we consider the following syntax table entry for or with

several subexpressions:

(or ei 62 ...) = (if ei ei (or 62 ...))

This works because if first evaluates ei and if it is true, it returns the value of

ei in the consequent. If ei is false, it skips to the alternative and returns the

"recursive" value obtained for the alternative. This looks like recursion, but

we must remember that these or expressions are not being evaluated. Rather

they are macrocode, which is being transformed into if expressions that are

the macroexpansions. We have treated the case of (or e), which should have

the same value as e, because using the syntax table entry, (or e) expands to

(if e e (or)) and (or) expands to #f.

We could use the above macroexpansion for or, but it does not work effi-

ciently since if ei is true, it must be evaluated a second time in the consequent.

14.3 Macros 463

If Ci includes some side effects, these would be done twice insteeid of once, and

that is generally incorrect. We can avoid this double evaluation by including

a let expression in the macroexpansion:

(or ex 62 ...) = (let ((val ei)) (if val val (or 63 ...)))

Once again, if we declare the macro according to this expansion pattern, it

will work the way we want almost all of the time. But an unwanted behavior,

known as capturing, can occur, as the following example illustrates. Suppose

the macro or has been declared according to the above pattern. We then use

it in the following program:

(let ((val #t))

(or »f val))

We expect this to return #t. However, when the program is entered, the or

expression is expanded into

(let ((val #f))

(if val val val))

and the value returned is #f because the leist val has been captured within

the scope of the nearest binding, and unfortunately the variable val was also

used in the let expression in the declaration of the macro or. There are several

ways of avoiding this capturing. We shall make use of the fact that when a

frozen entity is thawed, it is evaluated in the environment that was in effect

when the entity was frozen. We first define a procedure, called or-proc, which

takes a list of thunks as its operand. Then to declare the macro or, we freeze

the operands and pass them to the procedure or-proc. Here is the definition

of or-proc:

Progrgun 14.12 or-proc

(define or-proc

(lambda (th-lis.t)

(cond

((null? th- list) «f)

(else (let ((v (thaw (cai th-lis t))))

(if V V (or- Droc (cdr th -list))))))))

454 Declaring Special Forms

In this version, the thunks are not evaluated until they are thawed, so only

one of the thunks is evaluated at a time until a true value is obtained. The

rest remain unevaluated.

With this definition of or-proc, the syntax table entry for the macro or

becomes:

(or e ...) = (or-proc (list (freeze e) ...))

How are the cases of zero expressions and one expression handled by this

entry? Now or-transformer can be defined and or can be declared:

Program 14.13 or

(define or-transformer

(lambda (code)

(list 'or-proc

(cons 'list

(map (lambda (e) (list 'freeze e))

(cdr code))))))

(macro or or-transformer)

We can also use extend-syntax to declare the macro or based on the above

syntax table entry. We have:

Program 14.14 or

(extend-syntax (or)

((or e ...) (or-proc (list (freeze e) ...))))

Several more special forms are developed in the exercises. The ability to

write your own special forms in Scheme is a powerful tool that can be used to

make programs more readable. Most important, it allows you to build your

own textual abstractions. In the next chapter, we shall make use of the special

form delay to develop the idea of streams or "infinite lists."

14.3 Macros 465

Exercises

Exercise 14-1

What is the output of

(freeze-treinsf ormer '(freeze (cons 'a ' (b c))))

What is the output of

(let-transformer '(let ((a 5) (b 2)) (* a b)))

What general statement can you conclude from these examples concerning the

output when a transform procedure is applied to the quoted macrocode? Some

implementations of Scheme have a procedure called expand, which converts

the quoted macrocode into its macroexpansion.

Exercise 14-2

Declare the letrec macro using ext end- sjrnt ax without using let in its macro-

expansion.

Exercise 14-3

Consider the declaration of the macro or, below. Does this declaration suffer

the variable capturing that we were able to avoid using or-proc and a list of

thunks?

(extend-syntai (or)

((or) «f)

((or e) e)

((or el e2 ...) (let ((val el) (th (freeze (or e2 ...))))

(if val val (thaw th))))

)

Exercise 14 4' smd

Declare a macro with keyword and, which, like or, may take any number

of subexpressions. If called with no subexpressions, it is true. If all of its

subexpressions are true, it evaluates to the last one; otherwise it is false. Test

your macro on:

(and)

(and «t)

(and «f)

(and #t #t »t)

(and #t »t #f)

Note that the capturing problem need not arise in declaring and.

466 Declaring Special Forms

Exercise 14-5

The let expression

(let ((x 3))

(let ((x 10) (y x))

y))

evaluates to 3 because the x in the binding pair (y x) must look up its value

in an environment other than the local environment of the expression

(let ((x 10) (y x))

y)

The value 3 is found since that let expression is nested within the let expression

with binding pair (x 3). If we had wanted the x in (y x) to refer to the x in

(x 10), we would have had to put the (y x) in another nested let expression,

as follows:

(let ((x 3))

(let ((x 10))

(let ((y x))

y))) =* 10

In general, in the let expression

(let ((uari vali) (.var2 vo/2) (vars vala)) expri expr2 ...)

instances of vari in val^ and instances of var^ or var2 in vals cannot refer

to vari or var2 in this let expression but must find their values in a nonlocal

environment. However, if we were to write nested let expressions, such as

(let ((vari vali))

(let i(vaT2 va/2))

(let ((var^ va/3))

expri expr2 ...)))

then instances of vari in va/2 can refer to the vari in the first binding pair, and

instances of vari or var2 in vals can refer to the fari or i'ar2 of the preceding

two binding pairs. We used the Scheme special form let* in Section 10.2.5.

It has a syntax similar to that of let but behaves as though the successive

binding pairs are in nested let expressions. In fact, if there is only one such

binding pair, then let* is the same as let, so that

14.3 Macros 467

(let* (.ivar val)) expri expr2) = (let ((var val)) ezpri expT2)
and if there is more than one such binding pair,

(let* ((vari vali) ivaT2 val2) ...) expT\ expr2 ...)

(let ((rari vali)) (let* ((i;ar2 val2) .-) expri expr2 ...))

Write let*-traiisformer or use extend-syntax to declare let*. Test it on

the following:

(let* ((a 1) (b (+ a 2)) (c (* a b))) (+ a (- c b)))

Exercise I4.6

The procedure let-transformer is correct only if the user obeys let's syntax.

The special form let expects a list of n -f- 2 elements. The first must be the

symbol let; the second must be a list of pairs where each pair is a list of two

elements, in which the first element must be a symbol. The remaining n >
elements can be arbitrary expressions. Here are some incorrect examples:

(let (d 3) (y 4)))

(let ((3 3) (y 4)) (* x y))

(let (d 3) (y 4 5)) (* i y))

(let X 3 (* I y))

(let (("i" 3) (y 4)) (* "i" y))

Rewrite let-transformer so that reasonable error indications, such as those

shown below, are given to the user of let. Test these examples by invoking

let-tremsformer on the individual lists in question:

(let-transformer '(let (d 3) (y 4)))) ^
Error: illegal let expression: (let ((x 3) (y 4)))

(let -transformer '(let ((3 3) (y 4)) (* x y))) =>
Error: illegal let expression: (let ((3 3) (y 4)) (* x y))

(let-transformer '(let ((x 3) (y 4 5)) (* i y))) ^
Error: illegal let expression: (let ((x 3) (y 4 5)) (* i y))

(let-transformer '(let i 3 (* i y))) ^^
Error: illegal let expression: (let x 3 (* x y))

(let-transformer '(let (("x" 3) (y 4)) (* "x" y))) =>
Error: illegal let expression: (let (("x" 3) (y 4)) (* "x" y))

468 Declaring Special Forma

Exercise 14.7

The error information from the previous exercise does not pinpoint exactly

where the error occurred. Redesign the information displayed so that you can

better determine where the error occurred.

Exercise 14-8: named let

The macro let declared above did not include the case of the named let.

The named-let has the syntax table entry:

(let name (.(.var val) ...)

expri expT2 . . •)

((letrec
(,inam,e (lambda (.var ...)

expri expr2 . .))

)

name)
val . . .)

Define let-transformer or declare let using extend-syntax to include both

cases, the ordinary let and the named-let. Do Exercise 5.7 using named-

let.

Exercise 14-9: cycle

Define cycle-transformer or declare cycle using extend-s3^itax.

Exercise 14-10: while

The special form while is a control structure common to many program-

ming languages. In while, an expression is evaluated repeatedly as long as a

given condition is true. We can efi"ect the behavior of a while expression as

illustrated by the following program, which sums the numbers from 1 to 100:

(let ((n 100) (sum 0))

(letrec ((loop (lambda ()

(if (positive? n)

(begin

(set! sum (+ sum n))

(set ! n (subl n)

)

(loop))))))

(loop)

sum))

We would like to introduce the special form while, which allows us to write

the above program eis:

14.3 Macros 469

(let ((n 100) (sum 0))

(while (positive? n)

(set! sum (+ sum n))

(set! n (subl n)))

sum)

Thus while has the syntax table entry:

(while test expri expr2)

(letrec

((loop (lambda ()

(if test (begin expri expr2 ... (loop))))))
(loop))

Define while-transformer or declare while using extend-synteuc. You must

take into account the variable capturing that is caused when the variable loop

occurs free in test or expr ... in the macroexpansion. The syntax table entry

for while must then be modified to be of the form

(while test expri expr2)

(while-proc (freeze test) (freeze expri expT2 ...))

where while-proc is defined in Program 11.8. Test while on the above

program.

Exercise 14-11: repeat

The special form repeat takes two expressions. It executes the first expres-

sion. Then it executes the second expression. If that returns true, the expres-

sion terminates with an unspecified value. If not, it repeats in much the same

way as while from the previous exercise. Define repeat-transformer or

declare repeat using ext end-syntax by including while in its macroexpan-

sion. Then redo the exercise without using while. Finally, write an expression

using repeat that models the test program of the previous exercise.

Exercise 14.12: for

Write a special form that models the behavior of for expressions. Such ex-

pressions have the following syntax:

(for var initial step test expri expr2 •)

470 Declaring Special Forma

The for expression is used for modeling iteration. The variable var is initial-

ized to initial. Then the test is evaluated to determine whether it should

terminate. If test is true, it does terminate. If test is false, then expr . .

.

is evaluated. Finally, var is reset to the evaluation of step, and the process

repeats.

Define for-traLnsformer or declare for using extend-syntax given the

syntax table entry below.

(for var initial step test expri expT2)

(let iivar initial))

(let ((step-thunk (freeze step))

(test-thunk (freeze test))

(body-thiink (freeze expri exprQ ...)))

(while (not (thaw test-thunk))
(thaw body-thunk)
(set! var (thaw step-thiink)))))

This solution is subtle because each of step, test, and expri expr2 . . . will be

using var. For example, a typical use of for expressions is to add the elements

of a vector:

(define vector-siim

(lambda (v)

(let ((n (vector-length v))

(sum 0))

(for i (addl i) (= i n) (set! sum (+ sum (vector-ref v i))))

sum)))

Exercise 14.13: do

The special form do has the syntax table entry:

(do {{var initial step) ...)

{test exit\ exit2 .)
expri expr2 •)

((letrec
((loop (lambda (.var ...)

(cond

{test exiti exit2)
(else (begin expri expr2 . •)

(loop step ...))))))

loop)
initial . . .)

The variable loop must not be among var . . . and it must not be free in test,

14.3 Macros 471

exiti exit^ . .
.

, expri expr2 , and step . . . Redesign f or's syntax table

entry using do. (See the previous exercise.)

Exercise 14.14' beginO

Consider the following syntax table entry for beginO:

(beginO e) = e

(beginO ei 62 63 . . .) = (beginO-proc ei (freeze 62 63 ...))

beginO evaluates its subexpressions in order and returns the result of evalu-

ating the first one. Define the procedure beginO-proc, which always takes

exactly two arguments. Why is the syntax table entry

(beginO expri expr2 ...) ^ ((l£unbda args (car args)) expri expr2)
incorrect? [Hint: Read the specification carefully. What can we say about

the order of evaluation of operands?) Test beginO-proc by defining beginO-

transformer or declaring beginO using extend-syntax.

Exercise 14-15: begin

Define begin-transformer or declare begin using extend-syntax without

using freeze or the implied begin associated with lambda expressions.

Exercise I4.I6: cond

Consider cond expressions that are restricted to including at least one expres-

sion following each test in every clause and where the last clause must be

an else clause. They can be transformed into nested if expressions using the

following two-patterned syntax table entry:

(cond (else ei 62 ...)) = (begin ei 62 ..)

(cond {test ei 62 . . .) clauses . . .)

(if test (begin e\ 62 ...) (cond clauses ...))

Redefine member-trace and factorial below, using just the syntax table

entry for cond expressions.

4 72 Declaring Special Forms

(define member-trace

(lambda (item Is)

(cond

((null? Is) (writeln "no") #f)

((equal? (car Is) item) (writeln "yes") #t)

(else (writeln "maybe") (member-trace item (cdr Is))))))

(define factorial

(lambda (n)

(cond

((zero? n) 1)

(else (n (factorial (subl n)))))))

Exercise 14-17: cond

In order to declare the simplified cond with extend-syntax, the symbol else

must be included in the first operand to extend-syntax. That is because

extend-syntax has to be told what symbols it is supposed to be treating

literally. In most cases, it is just the special form name, but for cond and

case, it includes the symbol else. Fill in the rest of the declaration of cond

below. (See the previous exercise.)

(extend-syntax (cond else)

((cond (else el e2 ...)) ?)

((cond (test el e2 ...) clauses ...) ?))

Exercise 14-18: variable-case

Consider a variant of the case expression called variable-case. This expres-

sion is similar to case, except that instead of allowing its first operand to

be any expression, it is limited to being a variable. Thus, using case we can

write:

(case (remainder 35 10)

((2468) (writeln "even") (remainder 35 10))

((13 5 7 9) (writeln "odd") (remainder 35 10))

(else (writeln "zero") (remainder 35 10)))

but with variable-case we must write:

(let ((x (remainder 35 10)))

(variable-case x

((2 4 6 8) (writeln "even") x)

((13 5 7 9) (writeln "odd") x)

(else (writeln "zero") x)))

14.3 Macros 473

Complete the declaration of variable-case presented below, and then de-

fine vaxiable-case-transformer. Explain why keys has been transformed

into (quote keys). Hint: Remember that keys will be a list.

(extend-syntaz (variable-case else)

((vairiable-case vax (else el e2 ...)) ?)

((variable-case var (keys el e2 ...) clauses ...)

(if (memv var (quote keys))

(begin el e2 . . .)

(variable-case var clauses ...))))

Exercise 14.19

If we did not have variable-case from the previous exercise, then the case

example above would require an additional evaluation of (remainder 35 10).

Instead, we can choose a variable, say target, that will always hold the value

of the first operand of the most deeply nested case expression. Given this

constraint, declare this variant of case using extend-syntax. Hint: If you

use variable-case, you need only one rule for its synteix table entry, but

remember to include else in the list of symbols to be taken literally. Test

your program with the following case expression:

(case (remainder 35 10)

((2 4 6 8) (writeln "even") target)

((13 5 7 9) (writeln "odd") target)

(else (writeln "zero") target))

Exercise 14-20: object-maker

In Chapter 12 we presented a set of object-oriented programs that had a

particular pattern of use. For example, each object maker includes

(lambda msg (case (1st msg) ...))

Design a special form object-maker that abstracts this pattern of use. Are

there other patterns of use with object makers that can be abstracted?

4 74 Declaring Special Forma

