
Part 5

Control

When we think about the dining-out procedure discussed in the introduction

to Part 1, we can begin to understand the power of abstracting control. Imag-

ine that there is a genie photographing us while we dine. Here is a photo of

us just about to order. Do you see the waiter standing by our table? Now,

here is one of us polishing off dessert. The genie saves these photographs.

When a meal has been particularly good and we long to go back to that little

cafe in Paris whose name we have long since forgotten, there is one way we

can relive the experience. We may ask the genie to rub a magic liquid on a

photograph. When that happens, we escape to the same cafe where we were

long ago. We will have the same waiter and perhaps order the same food.

Whether the waiter aged or not, or whether we are heavier, will depend on

whether changes have occurred. If not, then we are the same. If so, then some

aspects may be the same, like the cafe, but other aspects may have changed.

Perhaps the genie rubbed the wrong photograph, and instead of rubbing the

photograph to get us to the cafe, he rubbed the photograph of us paying the

waiter. What a shame, thrust back to that delicious cafe and not reliving the

meal. What happens after the meal is over? You have two choices. You can

stay in Paris and enjoy the night life, as you did long ago, or you can ask the

genie to rub another photograph. Each time one is rubbed, you are escaping

to another point in your past but with possible changes.

A computer is like a genie. While computing, it takes a snapshot of where

you are in the computation. However, rather than keep every photograph

around, it keeps only the ones that you tell it are worth saving. The pho-

tographs correspond to what are called escape procedures, and invoking an

escape procedure corresponds to rubbing the photograph. The point of Part

5 is to show you how to reason with the power of escape procedures.

514 Control

16 Introduction to Continuations

16.1 Overview

Did you ever lie in bed early in the morning and think about what you were

going to do that day? Your thinking probably led to something like this: "I've

got to shower, then brush my teeth, eat breakfast, find my way to campus, and

get to my first class. After I get to my first class, I'll think about what I have

left to do for the rest of the day." You packaged the rest of the day into a single

concept, relative to some point in the morning. You did not consciously figure

out what you would do with the rest of the day; you formed an abstraction

of the rest of the day. This notion can carry over to computations as well.

In Scheme the rest of the computation relative to some point in an evaluation

can also be packaged in the same way that we packaged the rest of the day in

our real-world experiences. The rest of a computation is a continuation. This

chapter is an introduction to the use of continuations in Scheme. It shows

what they are, how they work, and when to use them.

When we learn to deal with continuations, we shall be able to do all sorts

of interesting things. For example, we shall be able to exit with a result from

within a deep recursion. In addition, we shall be able to design break packages

and coroutines, new concepts introduced in this and the next chapter.

In order to understand continuations, two new concepts

—

contexts and es-

cape procedures—must be acquired. The first concept formalizes the creation

of a procedure with respect to a subexpression of an expression. The second

characterizes a procedure that upon invocation does not return to the point

of its invocation. A continuation is a context that has been made into an

escape procedure. Such continuations are created by invocations of call-

with-current-continuation.

We have already encountered an escape procedure, error. When error gets

invoked, its context, a procedure that represents the rest of the computation,

is abandoned. Consider the very simple expression:

(cons (if (zero? divisor)

(error "/:" dividend "divided by zero")

(/ dividend divisor))

'(a b c))

The result of invoking this expression is either an invocation of error or a list

of length four, whose first element is a number. If error were a conventional

procedure, then when it returned, we would do the cons and get a list of

length four, whose first element would not likely be a number. But we know

that that is not what happens, so error is not a conventional procedure. We
describe how to construct such escape procedures in Section 16.3, but for now

we observe that if error gets invoked, no consing occurs. In the next section

we develop contexts, procedures that describe what does not happen when

such escape procedures get invoked.

16.2 Contexts

A context is a procedure of one variable, Q. We use the symbol D, pronounced

"hole," to distinguish contexts from other procedures. If e is a subexpression

of E, then we use the terminology that "the procedure c is a context of e in

£." In the absence of side effects, the procedure c applied to the value of e is

the value of E.

Consider the following expression that evaluates to 47:

(+ 3 (* 4 (+ 5 6)))

The expression is evaluated using the following scheme. First, add 5 and 6

and get 11. Next multiply 11 by 4, yielding 44, and then increase that result

by 3. Now, what is the context of (+ 5 6) in that expression? We must find

a procedure that, if passed the value 11, will produce 47. There are lots of

such procedures, but we will find one by using a simple two-step technique.

In the first step we replace e, that is, (+ 5 6), by D. In the second step, we

form a procedure from the value of the result of the first step wrapped within

(lambda (D) . .
.). The context of (+ 5 6) in

(+ 3 (* 4 (+ 5 6)))

516 Introduction to Continuations

is the procedure, which is the value of:

(lambda (D)

(+ 3 (* 4 D)))

Then applying this context to 11 results in 47.

Let's look at another example. What is the context of (* 3 4) in

((+ (* 3 4) 5) 2)

To form this context, we simply replace (3 4) by D and then wrap what

remains by (lambda (D) . . .) leading to the procedure, which is the value

of:

(lambda (D)

(* (+ D 5) 2))

Applying this context to 12 results in (* (+ 12 5) 2), which evaluates to

34. But we can apply it to other values. Applying it to 3 yields 16. What

does applying it to 24 yield?

Let us next extend the mechanism for creating contexts. The second step

remains the same, but the first step does more. Before, all we did in the

first step was replace a subexpression by D. Now we extend the first step

by evaluating the expression with the hole. When evaluation can no longer

proceed because of the hole, we have finished the first step. Thus contexts are

procedures created at the point in the computation where we can no longer

compute because of the existence of D . The previous examples were correct

because no evaluation was possible. To demonstrate this way to form contexts,

consider the slightly more complicated expression:

(if (zero? 5)

(+ 3 (* 4 (+ 5 6)))

((+ (* 3 4) 5) 2))

In finding the context of (* 3 4), the result of the first step is what is left

after evaluating

(if (zero? 5)

(+ 3 (4 (+ 5 6)))

(* (+ D 5) 2))

16.2 Contexts 517

(zero? 5) is false, so we choose the alternative of the if expression, which

leads to ((+ D 5) 2). No more computation can take place. Thus, the

procedure formed as a result of the second step is the value of

(lambda (D)
(* (+ D 5) 2))

Consider the context of (* 3 4) in:

(let ((n D)
(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6))))

(writeln (* (+ (* 3 4) 5) 2)))

n)

The result of the first step is:

(begin

(writeln ((+ D 5) 2))

n)

The begin is needed because it is a sequence of expressions. We cannot do

the addition because of the hole. We cannot do the multiplication because

we cannot do the addition, we cannot do the displaying because we cannot

do the multiplication, and we cannot return the value of n because we cannot

determine the value of the expression that precedes it. In figuring out the

value of expressions, we work from the inside and try to work outward. The

procedure formed as the result of the second step is responsible for remem-

bering the value of the free variable n. Thus we observe that contexts are

procedures and must respect free variables. We do not need to worry about

the let expression, and we do not need to worry about the if expression. Eval-

uation proceeds until the presence of D makes it impossible to continue and

then we do the second step that forms the context, which is the value of:

(lambda (D)
(begin

(writeln (* (+ D 5) 2))

n))

Applying it to 6 leads to (begin (writeln (* (+ 6 5) 2)) n), and with n

bound to 1 the value displayed is 22 with the result 1. Applying it to 8, 26 is

displayed.

518 Introduction to Continuations

The let expression is just a procedure invocation. We can reformulate the

last example with a global procedure:

(define tester

(lambda (n)

(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6)))

)

(writeln (* (+ (3 4) 5) 2)))

n))

Then we can determine the context of (* 3 4) in the expression (tester 1).

Although (* 3 4) does not appear physically within (tester 1), we know

that the computation will eventually get to that point, so the same context

will be formed. If we were looking for the context within the expression (*

10 (tester D), then the context would be formed from the value of:

(lambda (D)

(10 (begin

(writeln (* (+ D 5) 2))

n)))

Let us apply these rules to a begin expression:

(begin

(writeln 0)

(let ((n D)
(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6))))

(writeln ((+ (* 3 4) 5) 2)))

n))

We are still forming the context of (* 3 4). At the first step, (* 3 4) is

replaced by D just prior to evaluation:

(begin

(writeln 0)

(let ((n D)
(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6))))

(writeln (* (+ D 5) 2)))

n))

16.2 Contexts 519

First, a is displayed. Then the context is determined as the procedure,

which is the value of:

(lambda (D)
(begin

(writeln (* (+ D 5) 2))

n))

Invoking it with 9 causes the displaying of 28 and then returns 1.

A context might involve the use of set ! . The example below is similar to

the last one, except that within the scope of the let expression is an assignment

to the local variable n. The context of (* 3 4) in

(begin

(writeln 0)

(let ((n D)
(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6)))

)

(writeln (* (+ (* 3 4) 5) 2)))

(set ! n (+ n 2))

n))

is the value of

(lambda (D)
(begin

(writeln (* (+ D 5) 2))

(set ! n (+ n 2))

n))

The free variable n, initially 1, is taken from the let expression. Each time

the context is invoked, the variable n is incremented to the next positive odd

integer, and what gets subsequently returned is also increased. If <c> is this

context, then the first invocation of <c> assigns 3 to n, and the second invo-

cation assigns 5 to n. From the way in which n changes upon each invocation

of <c>, it follows that contexts are procedures that may even maintain state.

In the next example, we look at the terminating condition of a recursive

procedure invocation. Consider the definition of the procedure map-addl,

which adds one to each element of a list, but instead of returning the empty

list, it returns (23) as the result of the terminating condition:

520 Introduction to Continuations

(define map-addl

(lambda (Is)

(if (null? Is)

(cons (+3 (* 4 5)) '())

(let ((val (addl (car Is))))

(cons val (map-addl (cdr Is)))))))

For example, (map-addl ' (1 3 5)) is (2 4 6 23). What is the context

of (* 4 5) in (cons (map-addl '(1 3 5)))? This is the same as "run

this until the existence of D stops the computation, and what is left is the

context." We compute the expression looking for D:

(cons (map-addl '(1 3 5))) =»
(cons (cons 2 (map-addl (cdr '(1 3 5))))) ^^
(cons (cons 2 (map-addl '(3 5)))) =>
(cons (cons 2 (cons 4 (map-addl '(5))))) ^^
(cons (cons 2 (cons 4 (cons 6 (map-addl '()))))) ^^
(cons (cons 2 (cons 4 (cons 6 (cons (+ 3 Q) '())))))

Because of the hole, no additional computation can be performed, so the

context is the procedure formed from

(lambda (D)

(cons (cons 2 (cons 4 (cons 6 (cons (+ 3 D) '()))))))

If we invoke this context on 5, we create the list (02468), and if we

invoke it on 13, we get (0246 16). What makes this a bit unusual is the

fact that the hole does not show up in the expression right away, and in this

case, it shows up just as the termination condition is considered.

In the next example, we cannot initially find a place to insert D. However,

we know that D will occur, so we can compute until it occurs and eventually

stops the computation. Consider the simple procedure sum+n, which adds n

to the sum of the numbers from 1 to n:

(define siim+n

(lambda (n)

(if (zero? n)

(+ (addl n) (sum+n (subl n))))))

What is the context of (addl n), just when n is 3, in (* 10 (sum+n 5))?

As in the previous example, we are looking for a context associated with

16.S Contexts 521

a recursive procedure invocation. However, this differs from the previous

example by the additional detail used in its description. Stepping through

the computation leads eventually to an occurrence of D:^

(* 10 (sum+n 5)) =»
(* 10 (if (zero? 5) (+ (addl 5) (siiin+n (subl 5))))) =^
(* 10 (+ 6 (sum+n 4))) ^*
(* 10 (+ 6 (if (zero? 4) (+ (addl 4) (sum+n (subl 4)))))) =>
(* 10 (+ 6 (+ 5 (sum+n 3)))) =>
(* 10 (+ 6 (+ 5 (if (zero 3) (+ D (sum+n (subl 3))))))) =*
(* 10 (+ 6 (+ 5 (+ D (sum+n 2)))))

Thus, the context is the procedure formed from:

(lambda (D)

(* 10 (+ 6 (+ 5 (+ D (sum+n 2))))))

The final example uses the predicate of an if expression. Consider the

context of (* 3 4) in (if (zero? (* 3 4)) 8 9). First, determining the

expression prior to evaluation results in (if (zero? D) 8 9). There is no

evaluation possible, so the context is the value of

(lambda (D)

(if (zero? D) 8 9)).

When this context is applied, its value will be 8 or 9, depending on what value

gets bound to D.

In order to understand continuations, you will need to have lots of experi-

ence forming contexts. The exercises below should give you enough practice.

Exercises

Exercise 16.1

What is the context of (cons 3 '())in(cons 1 (cons 2 (cons 3 '())))?

What results when we apply this context to '(a b c), '(x y), and ' (3)?

^ The trace that follows assumes a left to right order of evaluation of the operands to +.

The procedure map-addl imposed a left to right order of evaluation of the operands to cons

by using a let expression.

522 Introduction to Continuations

Exercise 16.2

For the following exercises assume these bindings: a is 1, b is 2, c is 3, d is 4,

n is 5, X is 6, y is 7, and z is 8. Each answer will be in two parts. In the first

part, describe the context of each expression; in the second part, determine

the resultant values found by sequentially applying the context to each of 5,

6, and 7.

a. (+ a b) in (c (+ a b)).

b. x in (+ X y).

c. y in (- X y).

d. X in (let ((a 4)) (+ a x)).

e. (* c (+ a b)) in (+ d (* c (+ a b))).

f. (zero? n) in (if (zero? n) a b).

g. X in (if X y z).

h. a in (let ((x 3)) (set! x (+ a x)) x).

Exercise 16.3

For each expression below, determine the context of (cons 3 ' (4)) and the

result of applying that context to (1 2 3).

a. (letrec ((f (lambda (n)

(if (zero? n)

(car (cons 3 ' (4)))

(* n (f (subl n)))))))

(f 3))

b. (letrec ((f (lambda (n)

(if (zero? n)

(car (cons 3 '(4)))

(* n (f (subl n)))))))

(+ 1000 (f 3)))

16.3 Escape Procedures

We now introduce a new procedure type, called escape procedures. An escape

procedure upon invocation yields a value but never passes that value to others.

When an escape procedure is invoked, its result is the result of the entire

computation. Anything awaiting the result is ignored. Let us assume the

existence of a procedure, escape-*, which is an escape multiply:

16.3 Escape Procedures 523

(+ (escape-* 5 2) 3)

This expression evaluates to 10. The waiting + is abandoned. It is as if (* 5

2) were the entire expression.

At this point we do not have a mechanism for creating escape procedures

such as escape-*. Let us further assume there is a procedure escaper that

takes any procedure as an argument and returns a similarly defined escape

procedure. Then with escaper we can define escape-*

(define escape-* (escaper *))

and

(+ ((escaper *) 5 2) 3)

evaluates to 10.

Consider the invocation:

(+ ((escaper

(lambda (x)

(- (* I 3) 7)))

5)

4)

Here the addition cannot happen, so this is the same as

((lambda (x)

(- (* X 3) 7))

5)

so the answer is 8. Consider the following expression with an escape subtrac-

tion procedure:

(+ ((escaper

(lambda (x)

((escaper -) (* x 3) 7)))

5)

4)

This is also 8, because once (escaper -) is invoked, the result is determined,

and + is abandoned. But consider what happens with the following escape

multiplication procedure:

524 Introduction to Continuations

(+ ((escaper

(lambda (x)

((escaper -) ((escaper *) x 3)

7)))

5)

4)

The invocation of (escaper *) results in 15. The (escaper -) is never

invoked, so the subtraction never occurs. The following four expressions have

the same value. Why?

1. ((lambda (x)

(* X 3))

5)

2. (+ ((escaper

(lambda (x)

(- ((escaper *) x 3)

7)))

5)

4)

3. (+ ((lambda (x)

((escaper -) ((escaper *) x 3)

7))

5)

17)

4. (+ ((lambda (x)

(- ((esraper) x 3)

7))

5)

2000)

Does this fully characterize the behavior of escape procedures? Not quite.

Consider the following:

(/ (+ ((escaper

(lambda (x)

(- (X 3) 7)))

5)

4)

2)

The awaiting addition is abandoned. Is the division, which awaits the addi-

tion, also abandoned? Yes. Since the division awaits the addition and since

the addition hcis been abandoned by the escape invocation, the division has

16.3 Escape Procedures 525

also been abandoned. This behavior can be characterized by an equation:

if e is an escape procedure and / is any procedure, then (compose / e) =
e. That is, (/ (e expr)) is the same as (e expr) for all expressions expr.

The context of (e expr) in (/ (e expr)) is (lambda (D) (/ D)), which

is the same as f. Since the result of (/ (e expr)) is the result of (e expr),

we say that an escape invocation abandons its context. In our last example,

the context of the escape invocation included the awaiting addition and the

awaiting division. We discuss special escape procedures in the next section

where we characterize call-with-current-continuation.

Exercises

Exercise 16.

4

Evaluate each of the following:

a. ((escaper addl) ((escaper subl) 0))

b. (let ((es-cons (escaper cons)))

(es-cons 1 (es-cons 2 (es-cons 3 '()))))

Exercise 16.5

Using the definition of es-cons from the previous exercise, determine the con-

text of (es-cons 3 '()) in (es-cons 1 (es-cons 2 (es-cons 3 '()))).

Exercise 16.6: reset

Consider the definition of reset:

(define reset

(leuDbda ()

((escaper

(lambda ()

(writeln "reset invoked"))))))

Determine the value of (cons 1 (reset)).

Exercise 16.7

Let e be an escape procedure, and let / and g be any procedures. To what

is (compose g (compose / e)) equivalent? Can this be generalized to an

arbitrary number of procedure compositions?

Exercise 16.8

Let / be any procedure. When can / be replaced by (escaper /) and still

produce the same value as /?

526 Introduction to Continuations

16.4 Continuations from Contexts and Escape Procedures

We are about to discuss call-with-current-continuation (or call/cc). If

call/cc is not available on your Scheme, define it as follows:

Program 16.1 call/cc

(define call/cc call-Hith-current-continuation)

call/cc is a procedure of one argument; we call the argument a receiver.

The receiver is a procedure of one argument. Its argument is called a con-

tinuation. The continuation is also a procedure of one argument. Regardless

of how we form the continuation, (call/cc receiver) is the same as (re-

ceiver continuation). What is left is to understand how continuation is

formed. To form continuation, we first form the context, c, of (call/cc re-

ceiver) in some expression E. We then invoke (escaper c), which forms

continuation. We have now completely characterized call/cc. All we have

left to do is see how our understanding of how to form continuations leads us

to determine correctly the evaluation of expressions using call/cc.

Consider the following expression:

(+ 3 (4 (call/cc r)))

The context of (call/cc r) is the procedure, which is the value of

(lambda (D) (+ 3 (4 D)))

so our original expression means the same cis:

(+ 3 (* 4 (r (escaper (lambda (D) (+ 3 (4 D)))))))

That is, after the system forms the context of (call/cc r) , the system passes

it as an escape procedure to r. Since this is now just a simple invocation, all

the rules for procedure invocation apply. A little practice is helpful. Let us

consider r to be the value of (lambda (continuation) 6). What is the value

of the expression derived from the call/cc expression above?

(+ 3 (* 4 ((lambda (continuation) 6)

(escaper (lambda (D) (+ 3 (4 D)))))))

16.4 Continuations from Contexts and Escape Procedures 527

The value of

((lambda (continuation) 6)

(escaper (lambda (D) (+ 3 (4 D)))))

is 6; it does not use continuation, so the result is 27 (i.e., 3 + 4*6). What
about this one?

(+ 3 (* 4 ((lEunbda (continuation) (continuation 6))

(escaper (lambda (D) (+ 3 (* 4 D)))))))

The explicit invocation of continuation on 6 leads to

((escaper (lambda (D) (+3 (* 4 D)))) 6)

and then the result is 27. Is this one any different?

(+ 3 (* 4 ((lambda (continuation) (+ 2 (continuation 6)))

(escaper (lambda (D) (+ 3 (* 4 D)))))))

The explicit invocation of continuation on 6 leads to

((escaper (lambda (D) (+3 (* 4 D)))) 6)

and then the result is 27. Remember, an escape invocation abandons its

context, so (lambda (D) (+3 (*4 (+2 n))))is abandoned, contin-

uation has the value (escaper (lambda (D) ... D ...)). Because the

context of a call/cc invocation is turned into an escape procedure, we use

the notation <ep> for procedures that get passed to r.

Scheme supports procedures as values, and since <ep> is a procedure, it is

possible to invoke the same continuation more than once. In the next section

there are three experiments with call/cc, and in the last experiment the

same continuation is invoked twice. The countdown example of Chapter 17

shows what happens when the same continuation is invoked many times.

528 Introduction to Continuations

Exercises

Exercise 16.9

For each expression below, there are four parts. In Part a, determine the

expression's value. In Part b, define r locally using let, and form the original

application of (call/cc r), which leads to this expression. In Part c, define

r globally, and in Part d, using the global r, form the original application of

(call/cc r), which leads to this expression. The solution to problem [1] is

given below:

[1] (- 3 (* 5 ((lambda (continuation) (continuation 5))

(escaper (lambda (D) (- 3 (* 5 D)))))))

a. -22

b. (let ((r (lambda (continuation)

(continuation 5))))

(- 3 (* 5 (call/cc r))))

c. (define r

(lambda (continuation)

(continuation 5)))

d. (- 3 (* 6 (call/cc r)))

[2] (-3 (* 5 ((lambda (continuation) 5)

(escaper (lambda (D) (- 3 (* 5 D)))))))

[3] (-3 (* 5 ((lambda (continuation) (+ 1000 (continuation 5)))

(escaper (lambda (D) (- 3 (* 5 D)))))))

Exercise 16.10

If r is

(lambda (continuation) (continuation botij/))

in (. . . (call/cc r) . . .), why can r be rewritten as

(leunbda (continuation) body)

16.4 Continuations from Contexts and Escape Procedures 5S9

Exercise 16.11

Ifr is

(escaper (lambda (continuation) (continuation body)))

in (. . . (call/cc r) . . .), when can r be rewritten as

(lambda (continuation) body)

16.5 Experimenting with call/cc

We next consider three simple experiments. Each experiment includes one use

of a receiver (remember that a receiver is just a single-parameter procedure)

without using call/cc and one that uses call/cc. The point of these experi-

ments is to show the simple behavioral characteristics of call/cc expressions.

Although the differences may seem minor in the first two experiments, their

differences are important. In the last experiment, however, the differences

demonstrate the unusual behavior of continuations. The receivers we use to

demonstrate these properties are presented in Program 16.2.

Program 16.2 receiver-1, receiver-2, receiver-3

(define receiver-1

(lambda (proc)

(proc (list 1))))

(define receiver-2

(lambda (proc)

(proc (list (proc (list 2))))))

(define receiver-3

(lambda (proc)

(proc (list (proc (list 3 proc))))))

Each receiver consumes a procedure (possibly a continuation) that is in-

voked at least once. In receiver-3, not only is the procedure invoked at

least once, but it is also used as an argument. We consider the behavior of

each of these receivers using two global variables, result and resultcc, given

530 Introduction to Continuations

Program 16.3 result, resultcc

(define result "any value")

(define resultcc "any value")

Program 16.4 writeln/return, answer-meJcer, call

(define writeln/retum

(lambda (x)

(writeln x)

x))

(define einswer-maker

(Icuubda (x)

(cons 'answer-is (writeln/return x))))

(define call

(Izunbda (receiver)

(receiver writeln/return)))

in Program 16.3, and three simple procedures, writeln/return, answer-

meJicer, and call, given in Program 16.4. The procedure writeln/return

displays and returns its argument. The procedure answer-maker is like

writeln/return, but instead of returning its argument, it returns the consing

of aoiswer-is to its argument. Thus, (receiver-1 answer-meiker) displays

(1) and returns (eoiswer-is 1). The procedure call invokes its argument

on writeln/return.

For reasons that are not yet clear but will be by the end of this section, we

use set! to hold the results of each experiment. Recall that receiver-1 is

the value of

(leunbda (proc)

(proc (list 1)))

16.5 Experimenting with call/cc 531

Experiment 1:

A.

[1] (set! result (ansser-meiker (call receiver-1)))

(1)

(1)

[2] result

(ansHer-is 1)

B.

[3] (set! resultcc (answer-maker (call/cc receiver-l)))

(1)

[4] resultcc

(answer-is 1)

These results are identical except that in Part A writeln/return is invoked

in call so there is an additional (1). The continuation formed in Part B is

the value of:

(escaper

(lambda (D)
(set! resultcc (answer-meiker D))))

Then this continuation is invoked on (list 1), and since it is an escape pro-

cedure, that is all that happens. The procedure einswer-meiker is invoked on

(list 1), causing (1) to appear, and its result, (eoiswer-is 1), is assigned

to resultcc. At [4] we verify that resultcc is indeed (einsHer-is 1).

For Experiment 2, recall that receiver-2 is the value of:

(lambda (proc)

(proc (list (proc (list 2)))))

Experiment 2:

A.

[1] (set! result (answer-mziker (call receiver-2)))

(2)

((2))

((2))

[2] result

(answer-is (2))

532 Introduction to Continuations

B.

[3] (set! resultcc (answer-maker (call/cc receiver-2)))

(2)

[4] resultcc

(answer-is 2)

In Part A the main difference is the extra set of parentheses around the value,

which is the result passed to answer-maker. Both invocations of proc do

a writeln/return. The first time is with (2) as its argument. When this

returns, its argument is passed to list, resulting in ((2)). Now we are ready

for the second invocation of writeln/return. It displays its argument ((2))

and returns it to answer-maker, which displays its argument by invoking

writeln/return and returns the result (answer-is (2)). This is the value

assigned to result. In Part B, why is there just one displaying of (2), and

where did the extra set of parentheses go? Recall that the continuation built

from the context of (call/cc receiver-2) is an escape procedure. Thus,

once invoked, it abandons its context, the value of

(lambda (D)
(set! resultcc (answer-maker (proc (list D)))))

The list invocation and the proc invocation waiting for the result of list are

abandoned. The list invocation not occurring accounts for the missing set

of parentheses, and the proc invocation not occurring accounts for why only

one (2) is displayed. In Part B when proc, the continuation, is invoked, its

argument is passed to the waiting answer-msJcer. The value (2) is displayed,

and the result (answer-is 2) is sent to the waiting set!. The set! causes

the value (answer-is 2) to be associated with resultcc. The result of the

experiment is verified at [4]

.

We have come to our last experiment. This one is slightly trickier than the

earlier ones. Because of this, we discuss all of Part A before we look at Part

B. We recall that receiver-3 is the value of

(lambda (proc)

(proc (list (proc (list 3 proc)))))

Experiment 3:^

' To denote the procedure that is the value of the veu'iable procedure-name, we use the

notation <procedure-naTiie>

.

16.5 Experimenting with call/cc 533

[1] (set! result (answer-maker (call receiver-3)))

(3 <wriieln/return>)

((3 <writeln/retuTn>))

((3 <writeln/return>))

[2] result

(answer-is (3 <writeln/return>))

[3] ((2nd (2nd result)) (list 1000))

(1000)

(1000)

[4] result

(answer-is (3 <wriieln/return>))

The result of (call receiver-3) to be passed to answer-maker is

(.<writeln/return>

(list i<writ€ln/return>

(list 3 <writeln/return>))))

First, the list (3 <writeln/return>) is passed to <writeln/return>. It duti-

fully displays its argument. Then a set of parentheses is wrapped around it,

and that result, ((3 <writeln/return>)) , is displayed and passed to einswer-

maker. The procedure answer-maker displays that list and passes (aoiswer-

is (3 <writeln/return>)) to the waiting set!. The set! does the appro-

priate assignment. At [2] the experiment is verified. At [3] the procedure

<wrvteln/return> is extracted using (2nd (2nd result)). That procedure

is then invoked on (1000). As expected <writeln/return> displays its ar-

gument (1000) and returns (1000). At [4] nothing has changed result.

Although this is a contrived experiment, only simple procedures are used to

do simple things. We are now ready to consider Part B.

B.

[5] (set! resultcc (answer-maker (call/cc receiver-3)))

(3 <ep»

[6] resultcc

(answer-is 3 <ep>)

[7] ((3rd resultcc) (list 1000))

(1000)

[8] resultcc

(answer-is 1000)

The result of (call/cc receiver-3) to be passed to answer-meJcer is

534 Introduction to Continuations

(<ep>

(list (<ep>

(list 3 <ep>))))

where <ep> is the continuation, which is the value of

(escaper

(lambda (D)

(set! resultcc (answer-maker D))))

but since <ep> is invoked, the outer list, <ep>, and answer-maker invo-

cations are abandoned, as well as the set! expression. Therefore, the result

of (call/cc receiver-3) is the result of invoking (<ep> (list 3 <ep>)).

The escape procedure <ep> is invoked giving the value (3 <ep>) as the value

that is passed to eoiswer-maker, which displays the list (3 <ep>). Next

answer-is is consed to the front of (3 <ep>), which yields (answer-is 3

<ep>). Then the set! is done, which changes the value of resultcc. At

[6] , we verify that what was expected has indeed occurred. We are about to

execute the code at [7]. The expression (3rd resultcc) yields the escape

procedure <ep> that was saved earlier. It is passed the list (1000). What is

(.<ep> (list 1000))? Recall that <ep> is an escape procedure that passes

its argument to answer-maker and then assigns to resultcc the result of

the am.swer-maker invocation. The procedure aLnswer-maker displays its ar-

gument and then returns (answer-is 1000). The list (answer-is 1000) is

for the waiting set! and so the set! happens again. This time resultcc

gets the value (answer-is 1000), and the role of the escape procedure has

ended. Was resultcc really changed? How do we find out? At [8] , we check

the value of resultcc. This time it has been changed to (answer-is 1000)!

Although the set ! was done back at [5] , the escape procedure <ep> included

doing everything again once it was invoked.

Exercises

Exercise 16.12

Rewrite aoiswer-maier using call.

Exercise 16.13

Run the experiment with exer-receiver.

(define exer-receiver

(lambda (proc)

(list (proc (list 'exer proc)))))

16.5 Experimenting with call/cc 535

Exercise 16.1

4

For each expression below, describe the binding that continuation gets, and

give the value(s) of the expression. Each expression must be tested more than

once. We include the solution for Part a.

a. (let ((r (lambda (continuation)

(continuation 6))))

((+ (call/cc r) 3) 8))

The value of (escaper (lambda (D) (* (+ D 3) 8))), 72.

b. (let ((r (leUBbda (continuation)

(+ 1000 (continuation 6)))))

((+ (call/cc r) 3) 8))

c. (let ((r (launbda (continuation)

(+ 1000 6))))

((+ (call/cc r) 3) 8))

d. (let ((r (leunbda (continuation)

(if (zero? (random 2))

(+ 1000 6)

(continuation 6)))))

((+ (call/cc r) 3) 8))

e. (let ((r (lambda (continuation)

(if (zero? (random 2))

(+ 1000 6)

(continuation 6)))))

(+ (* (+ (call/cc r) 3) 8)

(* (+ (call/cc r) 3) 8)))

f. (let ((r (leunbda (continuation)

(continuation

(if (zero? (continuation (random 2)))

(+ 1000 6)

6)))))

(+ (* (+ (call/cc r) 3) 8)

(* (+ (call/cc r) 3) 8)))

Exercise 16.15

Determine the outcome of Experiment 3 with [1] and [5] replaced by the

expressions below.

[1] (begin

(set! result (cuiswer-meJcer (call receiver-3)))

'done)

536 Introduction to Continuations

[5] (begin

(set! resultcc (answer-maker (call/cc receiver-3)))

'done)

Exercise 16.16

We define a procedure map-subl that takes a list of numbers and returns a

list with each element of the list decremented by one. In addition to doing

the work of map-subl, it also sets the global variable deep to a continuation.

(define deep "any continuation")

(define map-subl

(leunbda (Is)

(if (null? Is)

(let ((receiver (lambda (k)

(set! deep k)

'())))

(call/cc receiver))

(cons (subl (ccir Is)) (map-subl (cdr Is))))))

Consider the following experiment:

[1] (cons 1000 (map-subl '()))

(1000)

[2] (cons 2000 (deep '(a b c)))

[3] (cons 1000 (map-subl '(0)))

(1000 -1)

[4] (cons 2000 (deep '(a b c)))

7

[5] (cons 1000 (map-subl '(1 0)))

(1000 -1)

[6] (cons 2000 (deep '(a b c)))

7

[7] (cons 1000 (map-subl '(543210)))
(1000 4 3 2 10-1)
[8] (cons 2000 (deep '(a b c)))

7

After each invocation of map-subl, deep is reset. The first continuation

formed at [1] is:

16.5 Experimenting with call/cc 537

(escaper

(lambda (D)

(cons 1000 D)))

At [3] , the next continuation formed is:

(escaper

(lambda (Q)

(cons 1000 (cons -1 D))))

The third continuation formed at [6] is:

(escaper

(lambda (Q)

(cons 1000 (cons (cons -1 D)))))

At [7] , a fourth continuation is formed and bound to deep. Write an expres-

sion that characterizes that continuation, and then fill in the four blanks of

the experiment.

16.6 Defining escaper

We now have all the tools we need to define escaper:

Program 16.5 escaper

(define *escape/thunk* "any continuation")

(define escaper

(leUibda (proc)

(lambda (x)

(escape/thunk* (lambda () (proc x))))))

Although escape/thunk* is defined as a global variable, it does not yet have

the right value. To remedy this, one more experiment must be performed. For

this experiment, a receiver is used to assign a value to escape/thunk*.

538 Introduction to Continuations

Program 16.6 receiver-4

(define receiver-4

(Icunbda (continuation)

(set! *escape/thunk* continuation)

(*escape/thimk* (launbda () (writeln "escaper is defined")))))

We then have:

[1] ((call/cc receiver-4))

escaper is defined

[2] (*escape/thunk* (lambda (addl 6)))

7

[3] (+ 5 (escape/thunk* (lambda () (addl 6))))

7

At [1], the continuation (escaper (launbda (D) (n)))is formed by the

system. It becomes the value of continuation and, in turn, the value of es-
cape/thunk*, indirectly changing the definition of escaper in Program 16.5.

This escape procedure takes as its argument a procedure of zero arguments

and immediately invokes it. Next escape/thunk* is passed the procedure

(lambda () (writeln "escaper is defined"))

This escapes while binding D to

(launbda (writeln "escaper is defined"))

Finally,

(dcimbda () (writeln "escaper is defined")))

displays escaper is defined. At [2] , invoking escape/thunk* on

(lambda (addl 6))

yields 7; at [3] , invoking it on

(lambda () (addl 6))

once again yields 7. Because *escape/thunk* is an escape procedure, the

context

(lambda (D) (+ 5 D))

16.6 Defining escaper 539

is abandoned. Earlier we hypothesized escaper's existence in order to ex-

plain the continuations formed from invocations of call/cc. Now we have

defined escaper using call/cc, which is in Scheme. The procedure call/cc

is not built with escaper, as we suggested earlier, but it behaves as though

it were. On some systems, it may be necessary to determine the value of

escape/thuiLk* at the prompt by invoking ((call/cc receiver-4)).

Using *escape/thuiik* we can redefine escaper so that it accepts proce-

dures of any number of arguments:

Program 16.7 escaper

(define escaper

(lambda (proc)

(lambda args

(escape/thunk*

(lambda ()

(apply proc args))))))

This definition of escaper can be used to test all the results and exercises of

this chapter.

Exercises

Exercise 16.17

Assume the existence of escaper and then define *escape/thunk* with es-

caper. You may not use call/cc.

Exercise 16.18

Determine the value of (/ 5 (*escape/thunk* (lambda () 0))).

Exercise 16.19: reset

Use call/cc to define a zero-argument procedure reset that upon invocation

abandons its context and causes the string "reset invoked" to be displayed.

In Chapter 7, when we defined error, we assumed the existence of reset.

For example,

[1] (cons 1 (reset))

reset invoked

540 Introduction to Continuations

Exercise 16.20

Explain why (*escape/thuiik* *escape/thunk*) causes an error.

Exercise 16.21

Determine the value of the following expressions:

[1] (let ((r (escaper

(lambda (proc)

(cons 'c (proc (cons 'd '())))))))

(cons 'a (cons 'b (call/cc r))))

[2] (let ((r (escaper

(lambda (proc)

(cons 'c (cons 'd '()))))))

(cons 'a (cons 'b (call/cc r))))

Exercise 16.22

Consider the procedure new-escaper below.

(define new-escaper "smy procediire")

(let ((receiver (lambda (continuation)

(set ! new-escaper

(lambda (proc)

(lambda args

(continuation

(lambda ()

(apply proc args))))))

(lambda () (writeln "new-escaper is defined")))))

((call/cc receiver))) displays new-escaper is defined

Are new-escaper and escaper the same? Why is new-escaper better than

escaper?

16.7 Escaping from Infinite Loops

Suppose we would like to separate some code into control and action. To be

a bit more specific, consider a piece of program that we want to run forever:

(let ((r (random n)))

(if (= r tsLTget)

(begin (writeln count) (set! count 0))

(set! count (+ count 1))))

16.7 Escaping from Infinite Loops 5^1

Program 16.8 how-many-till

(define hos-many-till

(lambda (n teirget)

(let ((count 0))

(cycle-proc

(lambda ()

(let ((r (remdom n)))

(if (= r target)

(begin (writeln count) (set! count 0))

(set! count (+ count 1)))))))))

Then using cycle-proc (see Program 14.11), which runs a zero-argument

procedure forever, we can write Program 16.8. The procedure how-many-till

continuously reports how many values are unequal to the target. If the number

displayed is always the same, then we ought to question the randomness of the

random number generator. Each time it displays a count, the counter is reset.

The only way to stop this program is by some kind of keyboard interrupt

mechanism. However, we can build into how-many-till an exit facility using

call/cc. Instead of looping indefinitely, we exit whenever the sum of the

counts is greater than some threshold. We need an additional local variable

that maintains the sum. We invoke the procedure how-many-till with the

threshold as an additional argument. This version of how-many-till is given

in Program 16.9. If exit-above-threshold is ever invoked, then we come

out of the invocation of (how-many-till n target thresh); otherwise we

stay within cycle-proc. What is interesting about this example is that it is

possible to exit an infinite loop without changing the definition of cycle-proc.

An example of the use of how-many-till is given in Program 16.10, where

we can invoke (random-data 10 20).

The first continuation formed (by the call/cc in how-many-till) is the

value of

542 Introduction to Continuations

Program 16.9 how-meuiy-till

(define hos-many-till

(lambda (n target thresh)

(let ((receiver

(lambda (exit-above-threshold)

(let ((count 0) (svim 0))

(cycle-proc

(lambda ()

(if (= (rajidom n) teurget)

(begin

(writeln "target " tsirget

" required " count " trials")

(set! sum (+ siim count))

(set ! count 0)

(if (> sum thresh)

(exit-above-threshold sum)))

(set! count (+ count 1)))))))))

(call/cc receiver))))

Program 16.10 random-data

(define random-data

(lambda (n thresh)

(letrec ((loop (leunbda (target;

(cond

((negative? target) '())

(else (cons (how-m£uiy-till n teurget thresh)

(loop (subl 1target))))))))

(loop (subl n)))))

(escaper

(lambda (Q)
(cons D (loop (subl target)))))

where loop is as it is defined in random-data and target is 9.

16.7 Escaping from Infinite Loops 543

Exercise

Exercise 16.23

Explain why the test for termination within rsuidoni-datais (negative? tar-

get).

16.8 Escaping from Flat Recursions

The call/cc operator gives the ability to escape from recursive computations

while basically throwing out all the work that has stacked up. A simple exam-

ple clarifies in what sense the mechanism avoids doing pending computations.

We look at the problem of taking the product of a list of numbers and adding

the number n to the product if the result is nonzero:

(product+ 5 '(3 6 2 7)) => (+ 5 252) => 257

(product* 7 '(2 3 8)) =^

Here is the solution in a functional style:

Prograini 16.11 product

+

(define product+

(lanbda (n nums)

(letrec

((product (laabda (nu»s)

(cond

((null? nuMs) 1)

(else ([* icdir nuns) (product (cdr nu»8))))))))

(let ((prod (product nuns)))

(if (zero? prod) (+ n prod))))))

This solution can be improved by adding a test to determine if one of the

values in the list is zero. This stops the recursion upon encountering the first

zero. This version is in Program 16.12. Consider the following subtle fact:

Finding a zero in the list does not stop the computation of product. In fact,

what happens is that if the first zero is in the kth position, then there are

k — 1 multiplications using zero. This is because the context of the product

544 Introduction to Continuations

Program 16.12 product

+

(define product*

(lambda (n nvuns)

(letrec

((product (lambda (nums)

(cond

((null? nums) 1)

((zero? (car nvuns)) 0)

(else (* (car nums) (product (cdr nums))))))))

(let ((prod (product nums)))

(if (zero? prod) (+ n prod))))))

invocations includes k — 1 multiplications. When the zero is found, each of

the k — I waiting multiplications must still be done.

Is it possible to exit the invocation of product so that the result causes no

waiting multiplications to occur? A solution is in Program 16.13. Consider

the invocation (+ 100 (product* 10 ' (2 3 4 6 7))). Since the list of

numbers contains a 0, the continuation, which is the value of

(escaper

(lambda (D)
(+ 100 D)))

is invoked, and the result is 100. This follows because the continuation is

being invoked on 0. If, however, no zero is found, then (product nums)

terminates normally, and (+ n prod) is returned as the value of (receiver

<ep>). Since prod cannot be zero, the result returned is (+ n prod). The

let expression can be shortened to (+ n (product nums)). This version is in

Program 16.14.

We see that finding a zero in the list produces a value to pass to the contin-

uation formed from the invocation of (call/cc receiver) and finishes the

computation of product*. Moreover, we observe the rather surprising fact

that if there is a zero in the list, then no multiplications occur regardless of

where in the list that zero occurs.

16.8 Escaping from Flat Recursions 545

Progrson 16.13 product*

(define product*

(lanbda (n nuns)

(let ((receiver

(lambda (exit-on-zero)

(letrec

((product (lambda (nums)

(cond

((null? nums) 1)

((zero? (ceir nums)) (exit-on-zero 0))

(else (* (car nums)

(product (cdr nums))))))))

(let ((prod (product nums)))

(if (zero? prod) (+ n prod)))))))

(call/cc receiver))))

Program 16.14 product*

(define product*

(lambda (n nums)

(let ((receiver

(lambda (exit-on-zero)

(letrec

((product (lambda (nums)

(cond

((null? niims) 1)

((zero? (car]lums)) (exit-on-zero 0))

(else (4 (car nums)

(product (cdr nums))))))))

(* n (product nums))))))

(call/cc receiver))))

16.9 Escaping from Deep Recursions

Let us take a look at a slightly more complicated example. The problem is to

redefine product* for a larger class of lists. Specifically, we allow deep lists

of numbers. Thus we can invoke

(product* 5 '((1 2) (1 1 (3 1 D) (((((1 1 0) 1) 4) 1) 1)))

546 Introduction to Continuations

Program 16.15 product+

(define product*

(lanbda (n nims)

(let ((receiver

(la«bda (exit-on-zero)

(letrec

((product

(leunbda (nuns)

(cond

((null? nuBs) 1)

((number? (car nums))

(cond

((zero? (car nuns)) (exit-on-zero 0))

(else (* (cen: nuns)

(product (cdr nu»s))))))

(else (* (product (car nums))

(product (cdr nums))))))))

(+ n (product nums))))))

(call/cc receiver))))

Program 16.16 -emd-count-maJcer

(define *-and-count-m2Jcer

(lambda

(let ((local-counter 0))

(lambda (nl n2)

(set! local-counter (+ local-counter 1))

(writeln "Number of multiplications « " local-counter)

(* nl n2)))))

which results in 0. However, if the had been a 3, then the result would have

been 77. The new definition of product + is given in Program 16.15.

Some, but not all, multiplications are avoidable. By counting the number of

multiplications, we can discover how many can be avoided. This can be done

by invoking a special multiplication procedure *-and-count-maJter, given in

Program 16.16, and then passing the result of its invocation as an argument

to product+. The procedure product+ in a functional style would have once

again introduced all those multiplications by zero. (See Program 16.17.) Thus

we can invoke:

16.9 Escaping from Deep Recursions 547

Program 16.17 prod.uct+

(define product+

(leunbda (n nums *-proc)

(letrec

((product

(lambda (nums)

(cond

((null? nums) 1)

((number? (car nums))

(cond

((zero? (car nums)) 0)

(else (*-proc (ceu: nums) (product (cdr nums))))))

(else

(let ((val (product (car nums))))

(cond

((zero? val) 0)

(else (*-proc val (product (cdr nums)))))))))))

(let ((prod (product nums)))

(if (zero? prod) (+ n prod))))))

(let ((counter (*-and-coiint-maker))

(num-list '((1 2) (1 1 (3 1 1)) (((((1 1 0) 1) 4) 1) 1))))

(product+ 5 niim-list coiinter))

When product+ of Program 16.17 is used on the given tree, there are 12

multiplications, and when product+ of Program 16.15 is used there are fewer

than 12 multiplications. There is, of course, a way to avoid all multiplications,

but it involves walking through the entire list looking for O's before starting the

multiplication process. This makes the algorithm two-pass (it would require

two pcisses through the list).

Exercises

Exercise 16.24

Run product + of Program 16.14 with the *-proc argument over a list of

numbers to verify the claim that no multiplications occur if the list contains a

0. Run product + of Program 16.12 with the *-proc argument over the same

list to compare with the first part of this exercise.

548 Introduction to Continuations

Exercise 16.25

Run product+ of Program 16.15 with the *-proc argument over the nested

list of numbers given above. Run product + of Program 16.17 with the *-proc

argument over the same list to compare with the first part of this exercise.

Exercise 16.26

Rewrite product + of Program 16.15 where n is always 0.

Exercise 16.27

Rewrite product+ of Programs 16.14 and 16.15 using a local variable to main-

tain the accumulating product. Can this be done without using call/cc?

16.9 Escaping from Deep Recursions 549

17 Using Continuations

17.1 Overview

In this chapter we discover some unusual properties of continuations. We
demonstrate how to build a break facility. This allows computations to halt

and then restart an indefinite number of times. Each time the computation

halts, the user will be able to interact with the system. In addition, we show

how to build a coroutine system. In such systems, multiple procedures can

interact with each other without actually returning control from within each

process. Before we begin this development, we review the fundannental rules

concerning call/cc.

17.2 Review of call/cc

1. call/cc's argument is called a receiver.

2. A receiver's argument is called a continuation. It is an escape procedure

<ep> of one argument formed from the context of the call/cc invocation.

S.jA continuation's argument is passed to the context from which <ep> was

formed by invoking <ep> on that value.

4. If the escape procedure <ep> is formed from the call/cc invocation and is

then ignored, the following hold, where the use of ellipses surrounding an

expression indicates that the expression may be embedded:

(let ((receiver (lambda (continuation) body)))

. . . (call/cc receiver) . . .

)

(let ((receiver (lambda (continuation) body)))

... (receiver 'anything) ...)

. . . body . .

.

and

(let ((receiver (escaper (lambda (continuation) body))))

. . . (call/cc receiver) . . .)

(let ((receiver (escaper (lambda (continuation) body))))

... (receiver 'anything) ...)

= (receiver 'anything)

= body

where the next to the last equality holds since receiver is an escape proce-

dure, and the last equality holds since continuation is ignored.

5. In all circumstances the following hold:

(let ((receiver (lambda (continuation) (continuation botfj/))))

... (call/cc receiver) ...)

(let ((receiver (lambda (continuation) body)))

. . . (call/cc receiver) . . .

)

and

(let ((receiver (escaper (lambda (continuation) (continuation 6o(ij^)))))

. . . (call/cc receiver) . . .)

(let ((receiver (leimbda (continuation) body)))

. . . (call/cc receiver) . . .)

552 Using Continuations

Program 17.1 countdown

(define countdown

(launbda (n)

(writeln "This only appears once")

(let ((pair (message "Exit" (attempt (message "Enter" n)))))

(let ((v (1st pair))

(returner (2nd pair)))

(writeln " The non-negative-number: " v)

(if (positive? v)

(returner (list (subl v) returner))

(writeln "Blastoff"))))))

17.3 Making Loops with One Continuation

In the previous chapter we introduced continuations. We noted that continua-

tions were escape procedures and could be the value returned by any procedure

or could be stored in data structures; however, our examples (except for the

third experiment and escaper) ignored that feature. Each example shared the

property that once a receiver was exited, the continuation was useless. Each

receiver's continuation was always invoked; it was never passed as an argument

or considered as the value of any procedure invocation. This property led us

to refer to the continuations with such names as exit-above-threshold and

exit-on-zero, because each was invoked only once for each invocation of its

associated receiver. Now we abandon this property so that a continuation

survives beyond giving a value to its associated receiver's invocation.

Earlier we used a continuation to exit deep recursions with the various defi-

nitions of product +. However, we have not yet developed an interesting use of

a continuation, other than escape/thunk*, that can be returned as a value

and stored in a data structure. To illustrate such a continuation, we define a

procedure countdown that counts a positive integer down until it reaches zero.

This is a very simple loop. We use two different definitions of the auxiliary

procedure attempt. The first does not create any continuations and does not

perform a loop. The second does create a single continuation and with this

continuation is able to perform a loop. The definition of countdown uses a

trivial displaying procedure message for tracking the flow of the computation.

The definitions are given in Programs 17.1, 17.2, and 17.3.

The value of proc is just the identity procedure we denote as <proc>. Here

is what appears when (countdown 3) is invoked:

17.3 Making Loops with One Continuation 553

Progr£un 17.2 message

(define message

(lambda (direction value)

(writeln " " direction "ing attempt with value: " value)

value))

Program 17.3 attempt

(define attempt

(lambda (n)

(let ((receiver (lambda (proc) (list n proc))))

(receiver (lambda (x) x)))))

This only appears once

Entering attempt vith value: 3

Exiting attempt vith value: (3 <proc>)

The non-negative-number: 3

(2 <proc»

"This only appeairs once" appeeirs once. The next event is an attempt

to find the value of the expression (message "Enter" 3). This produces

the message, "Entering attempt vith value: 3" and message returns its

second argument, 3. So now we attempt to find the value of the invocation

(attempt 3). This invocation yields the list (3 <proc>) because once the

list (list n proc) is constructed, attempt is exited. Next we attempt to

find the value of the expression (message "Exit" (3 <proc>)). Once again

the message is displayed, but this time it is an exiting message, "Exiting

attempt with value: (3 <proc>).^^ The invocation's value is (3 <proc>).

Now we bind pair to this list, take the pair apart, bind v to 3, and bind

returner to <proc>. We display a message that acknowledges where we are

and that we do indeed have the correct value. The message is, "The non-

negative number: 3." We then check to see if the number is positive. In

this case it is. We invoke (returner (list (subl v) returner)). We form

the list (2 <proc>) and hand this list to <proc>, which returns (2 <proc>).

With the definition of attempt in Program 17.3, we did not create a loop nor

did the result end with Blastoil.

We now redefine attempt (see Program 17.4) to create a continuation <ep>

that we return in place of <proc>. In the discussion that follows, we explain

554 Using Continuations

Program 17.4 attempt

(define attempt

(lambda (n)

(let ((receiver (lambda (proc) (list n proc))))

(call/cc receiver))))

how that continuation is powerful enough to build a looping construct.

The result of (countdown 3) using attempt of Program 17.4 follows:

This only appears once

Entering attempt with value: 3

Exiting attempt with value: (3 <ep>)

The non-negative-nvimber : 3

Exiting attempt with value: (2 <ep>)

The non-negative-number: 2

Exiting attempt with value: (1 <ep>)

The non-negative-number: 1

Exiting attempt with value: (0 <ep>)

The non-negative-number:

Blastoff

"This only appears once" appears once. The next event is an attempt

to find the value of the expression (message "Enter" 3). This produces

the message, "Entering attempt with value: 3" and message returns its

second argument, 3. So now we attempt to find the value of the invocation

(attempt 3). This invocation yields the list .(3 <ep>) because once the list

(list n proc) is constructed, attempt is exited. Next we attempt to find

the value of the expression (message "Exit" (3 <ep>)). Once again the

message is displayed, but this time it is an exiting message, "Exiting attempt

with value: (3 <ep>)." The invocation's value is (3 <ep>). Now we bind

pair to this list, take the pair apart, bind v to 3, and bind returner to

<ep>. We display a message that acknowledges where we are and that we do

indeed have the correct value. The message is, "The non-negative number:

3." We then check to see if the number is positive. In this case it is. We
invoke (returner (list (subl v) returner)). We form the list (2 <ep>)

and hand this list to <ep>.

To this point, everything has been the same as in the analysis of attempt

of Program 17.3. In fact, all we did to write the above paragraph was change

instances of <proc> to <ep>. Now we are doing something new. Instead of

invoking <proc>, we are invoking <ep>. The continuation <ep> is the value of

17.3 Making Loops with One Continuation 555

(escaper

.aabds

(let ((pair (aessage "Exit" Z)))

(let ((t (1st pair))

(returner (2iid pair)))

(sriteln " The non-negative-number :
" v)

(if (positive? v)

(returner (list (subl t) returner))

(writeln "Blastoff"))))))

This continuation is formed as the result of the first and only invocation of

attempt. That is, the value passed as an argument to <ep> becomes the

second argument to message in the let expression that binds pair. The

next event is the displaying of the message. "Exiting attempt with value:

(2 <ej>>)." To go a bit further, the value of this message invocation is (2

<ep>). We bind pair to this list, take the pair apart binding v to 2 and

binding ret^imer to the same <ep>. Once again we display a message that

acknowledges where we are and that we do indeed have the correct value.

The message is, "The non-negative number: 2." We then check to see if

the number is still positive. In this case it is. We invoke

(returner (list (subl v) returner))

Clearly we are in a loop, with v replaced by (subl v). The loop terminates

when V is no longer positive. An important point is that call/cc is invoked

only once. Therefore, we know for certain that <ep> is always the same

continuation. The procedure attempt of Program 17.4 is invoked only once

and its body is never reentered. This follows because the sentence "Entering

attempt with value: n" appears only when n is 3.

Exercise

Exercise 17.1: cycle-proc

Rewrite cycle-proc using continuations instead of recursion as presented in

Program 14.11.

556 Using Conttnuattoru

17.4 Experimenting with Multiple Continuations

In this section we consider an experiment where we use more than one con-

tinuation. Everything until now has worked with just one continuation. Now
we shall use several continuations. To keep track of the full meaning of each

continuation, we shall plug in values for variables that will not change. This

frees us from having to remember their values for use later.

In this experiment we need a receiver and a testing procedure. The receiver

returns <ep>, which it receives as an argument. There are several continua-

tions formed in this one example, so it is easy to get confused.

Program 17.5 receiver

(define receiver

(lambda (continuation)

(continuation continuation)))

Program 17.6 tester

(define test(ar

(lambda (continuation)

(writeln "beginning")

(call/cc continuation)

(writeln "middle")

(call/cc continuation)

(writeln "end")))

Experiment:

[1] (tester (call/cc receiver))

beginning

beginning

middle

beginning

end

[2]

The first event is to form <ep>, which, if it ever gets an argument, passes

17.4 Experimenting with Multiple Continuations 557

that argument to tester. <ep> is the value of:

(escaper

(lambda (D)
(tester D)))

We can think of <ep> as (escaper tester). We invoke (tester <ep>).

Now continuation is bound to <ep>. We write beginning. We next invoke

(call/cc <ep>). This causes us to create <epa>. Before we figure out any-

thing about what <ep> does with <epa>, we must understand what <epa>

does if it ever gets invoked. <epa> is the value of:

(escaper

(laabda (D)

D
(writeln "iddle")

(call/cc <cp>)

(writeln "end")))

The continuation <epa> ignores its argument, D, displays middle, then in-

vokes (call/cc <ep>), and when that returns, it displays end. Now recall

that <ep> takes its argument and invokes (escaper tester) on its argument,

so continuation is bound to <epa>. We write beginning. We next invoke

(call/cc <epa>). This causes us to create <epb>. Before we figure out any-

thing about what <epa> does with <epb>, we must understand what <epb>

does if it ever gets invoked. <epb> is the value of:

(escaper

(laabda (D)

D
(writeln "Middle")

(call/cc <epa>)

(writeln "end")))

The continuation <epb> ignores its argument, displays middle, then invokes

(call/cc <epa>), and when that returns, it displays end. Now recall that

<epa> takes its argument (ignores it) and displays middle, which we do now,

and then invokes (call/cc <ep>). Once agaun we form the new continuation

<epc>, which is the value of:

(escaper

(lambda (D)

D
(writeln "end")))

558 Using Continuations

This continuation ignores its argument and displays end, so now we invoke

((escaper tester) <epc>). First, we display beginning. Next we invoke

(call/cc <epc>). This causes the creation of the new continuation <epd>,

which is the value of:

(escaper

(lambda (D)

D
(writeln "middle")

(call/cc <epc>)

(writeln "end")))

This continuation displays middle, invokes (call/cc <epc>), and when that

returns, it displays end. What is {<epc> <epd>)? The continuation <epc> is

an escape procedure that ignores its argument and displays end. So we ignore

<epd>, after having gone to all the trouble of constructing it, and display end.

Exercises

Exercise 17.2

During the experiment, how many more continuations were formed than were

invoked?

Exercise 17.3

Determine what this expression represents:

(let ((receiver (lambda (continuation)

(call/cc continuation))))

(call/cc receiver))

What is (call/cc call/cc)?

17.5 Escaping from and Returning to Deep Recursions

In product+ of Section 16.9, we demonstrated how to escape from deep re-

cursions. Sometimes we want to escape from deep recursions but jump right

back in when we so desire. In this section, we present a use of continuations

that allows such behavior. We leave the deep recursion, but we give ourselves

the ability to get right back where we were at the time we left. We assume

17.5 Escaping from and Returning to Deep Recursions 559

Program 17.7 flatten-number-list

(define flatten-number-list

(lambda (s)

(cond

((null? s) '())

((number? s) (list (break s)))

(else

(let ((flatcar

(f latten-number--list (car s))))

(append flatcar

(f latten-niiaber-list

1

(c dr s))))))))

Program 17.8 breai

(define break

(lambda (x)

i))

Program 17.9 break

(define break

(lambda (x)

(let ((breeik-receiver

(lambda (continuation)

(continuation i))))

(call/cc break-receiver))))

that the data for the example are the same as those of prodTict+: a deep list

of numbers. (See Section 16.9.)

Consider the definition of flatten-number-list in Program 17.7, where

the first version of break is the identity procedure given in Program 17.8.

Hence:

(flatten-number-list '((1 2 3) ((4 5)) (6))) (12 3 4 5 6)

Another way to write break, which uses continuations but has the same

meaning, is given in Program 17.9. This follows because we return as a value

the argument to break. Since that value is x, we get the equivalent of (lambda

560 Using Continuattoru

Program 17.10 break

(define get-back "any procedure")

(define breeJc

(lanbda (x)

(let ((bresJt-receiver

(leuDbda (continuation)

(set! get-back (lambda () (continuation x)))

(amy-action x))))

(call/cc brezJt-receiver))))

Program 17.11 any-action

(define any-action

(lambda (x)

(writeln x)

(get-back)))

Program 17.12 any-action

(define any-action

(lambda (x)

((escaper (lambda () x)))

(get-back)))

(x) x). But now we have access to continuation, and, moreover, we can

characterize its behavior. Whenever break is invoked, we can think about the

call as temporarily halting the computation; by invoking continuation on

the same argument, we can continue the computation where it left off. We do

not notice anything about the pause taking place because the continuation

invocation happens immediately. But that is not required. For example, in

Program 17.10, we display the value of the argument to breeJc, using any-

action, which is defined in Program 17.11. But since any-action is any

action whatsoever, we may rewrite it as shown in Program 17.12 instead of

explicitly writing the value of x.

Does the invocation of (get-back) in any-action of Program 17.12 ever

happen? Because we are invoking an escape procedure prior to invoking

17.5 Escaping from and Returning to Deep Recursions 561

Program 17.13 break

(define get-back "any escape procedure")

(define break

(lambda (z)

(let ((break-receiver

(lambda (continuation)

(set! get-back continuation)

(any-action x))))

(call/cc break-receiver))))

(get-back), the answer is no. Is there a way to get back into the original

computation? The answer is yes. Since get-back is bound globally, we can

invoke it at the prompt. Below is an experiment using these tools.

[1] (flatten-number-list '((1 2) 3))

1

[2] (get-back)

2

[3] (get-back)

3

[4] (get-back)

(1 2 3)

The procedure break has a limitation. There is no control over what value is

sent back. Unfortunately, that is determined by the definition of get-back.

We can soften the definition by allowing get-back to accept an argument.

Then get-back becomes

(lambda (v) (continuation v))

which is the same as continuation and gives us Program 17.13. We can

still use any-action defined in Program 17.12 since the escaper invocation

guarantees that (get-back) will never be invoked. Whenever get-back is

invoked, it must be passed an argument.

Then the experiment could produce different results:

[1] (flatten-number-list '((1 2) 3))

1

[2] (get-back 4)

2

562 Using Continuations

Program 17.14 any-action

(define breeJc-argunent " any value")

(define smy-action

(lambda (x)

(set ! bresJt-argxment x)

((escaper (lambda () x)))))

[3] (get-back 5)

3

[4] (get-back 6)

(4 5 6)

Why is the result (4 5 6) in this experiment, whereas it was (1 2 3) in the

previous experiment? By returning the values 4, 5, and 6 to the get-back

continuation, we are returning a different value each time. The computation

was repeatedly suspended waiting for a value, which we supplied interactively

at the prompt.

We might want to make public the value of the argument to breeik. We
can do this in any-action, as shown in Program 17.14.

Finally, we note in Program 17.15 that smy-action is not strictly neces-

sary and can be included in the definition of break-receiver. The procedure

break is an interesting program. It is very useful for interactive debugging.

For example, by changing the argument to break, we can construct a mech-

anism for accessing and modifying part of the local state at the point of the

invocation of break. This can be accomplished by passing to breeik proce-

dures such £IS

(lambda x) or (lambda (v) (set! x v))

In this case, if x is locally bound at the time of invocation of break, the list

composed of these two procedures gives a lot of power to affect the internal

state of a computation. Program 17.16 shows how flatten-number-list

changes to support break. Whenever breaJc occurs, breaOt-ao-giunent gets

bound to a two-element list and we define the extract and store procedures

as shown in Programs 17.17 and 17.18.

This is just the tip of an iceberg. We are concerned only about one vari-

able. This idea for debugging can be generalized to lists of arbitrarily many

variables, but its utility diminishes as the number of variables increases. If

17.5 Escaping from and Returning to Deep Recursions 563

Program 17.15 break

(define get-back "any escape procedure")

(define break-argument "any value")

(define break

(lambda (z)

(let ((break-receiver

(lambda (continuation)

(set! get-back continuation)

(set ! break-argument x)

((escaper (lambda () x))))))

(call/cc break-receiver))))

Program 17.16 flatten-number-list

(define flatten-number-list

(lambda (s)

(cond

((null? s] '())

((number? s) (list

(break

(list (lambda () s)

(lambda (v) (set! s v))))))

(else

(let ((flatcar

(flatten-number-list (car s))))

(append f latceir

(flatten-number-list (cdr s))))))))

Program 17.17 extract

(define extract

(lambda ()

((1st break- argument))))

there are too many variables, it may be time to redesign the procedures. With

breatk we have seen how there are many continuations coming from one pro-

564 Using Continuations

Program 17.18 store

(define store

(laabda (value)

((2nd break-eurguaent) value)))

cedure invocation of flatten-number-list. Each of these continuations is

eventually invoked after escaping to the prompt. The escape to the prompt is

not very exciting. In the next section we allow far more interesting behavior to

balance each continuation. Because the behavior of such uses of continuations

is balanced, these continuations are called coroutines.

Exercises

Exercise 17.4: llatten-nuober-list

Consider the new definition of flatten-number-list below. What changes

are needed to make the sequence of invocations to get-back in the first ex-

periment produce the same result? How about for the second experiment?

(define f latten-nuaber-list

(laBbda (s)

(letrec

((flatten

(laabda (s)

(cond

((null? s) '())

((nuBber? a) (break (list s)))

(else (let ((flatcar (flatten (car s))))

(append flatcar (flatten (cdr s)))))))))

(flatten s))))

Exercise 17.5

Consider how we can repeat the results of the first experiment using flatten-

number-list of Program 17.16. A condition imposed on this exercise is that

no number may be input from [2] to the end of the experiment. Hint: Do

not use store.

Exercise 17.6: product*

Consider product + below and define break-on-zero, which displays a and

escapes to the prompt. Each time it displays a 0, resume the computation

17.5 Escaping from and Returning to Deep Recursions 565

as if the had been a 1. This can be done by typing (get-back 1) at the

prompt. If more than three zeros are found, then the result is "error: too

many zeros." This is actually a form of exception handling where finding

the corresponds to an exception and finding the fourth corresponds to an

error. Experiment with different models of user interaction.

(define product+

(lambda (n Is)

(letrec ((product

(lambda (Is)

(cond

((null? Is) 1)

((number? (car Is))

(* (if (zero? (csir Is)) (break-on-zero) (car Is))

(product (cdr Is))))

(else (* (product (car Is))

(product (cdr Is))))))))

(+ n (product Is)))))

Experiment with

(product+ 5 '((1 2) (3 4) (0 6) (7 0)))

(product+ 5 '((1 2) (0 3) (2 ((0 5) 0) 0)))

Exercise 17.7: break-var

A syntax table entry for break-var can be written so that:

(break-var var)

(break (list (leunbda var) (lambda (v) (set! var v))))

Test flatten-number-list of Program 17.16 using break-var.

Bonus: This works for all variable names except one. Why is the variable

name, for which it does not work, a bad choice?

Exercise 17.8

Consider the following experiment:

[1] (flatten-number-list '((1 2) 3))

1

[2] (get-back 4)

2

[3] (f latten-number-list '((5 6 7) 8))

5

566 Using Continuations

In this experiment, (flatten-number-list '((1 2) 3)) never gets a value.

Why? Generalize breaJc to maintain a list (as a stack) of get-back contin-

uations so that no information is lost. Then continue the experiment to get

these results.

[4] (get-back 7)

6

[5] (get-back 8)

7

[6] (get-back 9)

8

[7] (get-back 10)

(7 8 9 10)

[8] (get-back 5)

3

[9] (get-back 6)

(4 5 6)

Exercise 17.9

Consider the results of the experiment from the previous exercise. How would

the results differ if the list of continuations were treated like a queue instead

of a stack?

17.6 Coroutines: Continuations in Action

There are lots of ways to package control information. We next look at a

famous problem along with a well-known control mechanism. The problem

is Grune's problem, and the control mechanism is called coroutines. Before

we look at Grune's problem, we consider a simplified version of the use of

coroutines. It is sometimes legitimate to imagine that several procedures are

running at the same time, sending information among themselves. In this

model, only one procedure is running at any given time. When information

is sent from an active procedure to a dormant procedure, the active proce-

dure becomes dormant, and the dormant procedure, the one receiving the

information, becomes the active one.

One of the best examples for thinking about coroutines comes from game

playing. Imagine a typical board game with three players. Each player is

modeled by a coroutine, so there are three coroutines. Let us name these

coroutines A, B, and C. Let us further assume that A plays first, hands the dice

to B, B then plays and hands the dice to C, and then C plays and hands the

dice back to A, and so on. In translating this game into a computer program,

17.6 Coroutines: Continuations in Action 567

the code for A indicates a transfer of control by resuming B, and it indicates a

transfer of the dice by passing them as an operand with the resume operation.

This is accomplished by including in the code for A an instance of (resmne B

dice). Similarly, the code for B includes (resume C dice), and the code for

C includes (resume A dice). The act of resuming means that the coroutine

stops processing, and the entity that is the first argument to resume continues

processing where it left off.

The board game's control flow is very regular. A plays, then B plays, then

C plays, then A plays, and so on. As a result, not enough of the generality of

coroutines can be seen through a board game simulation. If each player deter-

mined randomly which opposing player was to play next, this would require

much of the generality of coroutines. Rather than using random numbers

we simply picked an unnatural ordering that is illustrated in Program 17.19.

Remember that nothing is displayed in a writeln expression until all of its

operands have a value. Now if we invoke (A '*) we get the following output:

[1] (A '*)

This is A

This is B

This is C

Came from C

Back in A

Came from A

Back in C

Came from C

Back in B

Came from B

Let us see what it takes to make these programs work. We need the pro-

cedure coroutine-maker, which takes a procedure as an argument. This

argument is a procedure that obtains a meaning for resume and v when it is

invoked. The variable v is of little concern. We focus on the variable resume.

From these examples, we see that resume necessarily must look like a pro-

cedure of two arguments. When resume is invoked, it does not immediately

return a value. In fact, it gives up control to whomever it is resuming and

eventually gets an answer when someone else resumes it. (Since coroutines

are first class, not only can they be passed as the required first argument to

resume, but they can also be included in the second argument to resume.)

Program 17.20 contains coroutine-meiker.

The first thing that coroutine-maker does is create a local variable that

will only hold continuations. Next, a procedure update-continuation! is

568 Using Continuations

Program 17.19 Coroutines for a simple board game

(define A

(let ((A-proc (lambda (resume v)

(writeln "This is A")

(writeln "Came from " (resume B "A"))

(writeln "Back in A")

(writeln "Came from " (resume C "A")))))

(coroutine-mciker A-proc)))

(define B

(let ((B-proc (lambda (resume v)

(writeln (blanks 14) "This is B")

(writeln (blanks 14)

"Came from " (resume C "B"))

(writeln (blanks 14) "Back in B")

(writeln (bleinks 14)

"Came from " (resume A "B")))))

(coroutine-meiker B-proc)))

(define C

(let ((C-proc (leimbda (resume v)

(writeln (blanks 28) "This is C")

(writeln (blanks 28)

"Came from " (resume A "C"))

(writeln (blanks 28) "Back in C")

(writeln (blanks 28)

"Came from " (resume B "C")))))

(coroutine-maJcer C-proc)))

formed so that local side effects to saved-continuation can be done within

other procedures. This is reminiscent of some of the techniques we presented in

Chapter 12 when we showed how objects were built. The procedure resumer,

having the properties of resmne we discussed above, is next defined using

resume-meiker, whose code is given in Program 17.21. A boolean flag, first-

time, is initially true. Then a procedure is returned. The first time this

procedure is invoked, (proc resumer value) is evaluated. This is where

the binding of resume and v in the programs above takes place. Subsequent

invocations of this procedure invoke a continuation that was stored as a result

of an earlier invocation of a resiime to some other coroutine. Basically, the

structure of resumer is

n.6 Coroutines: Continuations in Action 569

Progreun 17.20 coroutine-meJcer

(define coroutine-maker

(leuabda (proc)

(let ((saved-continuation "any continuation"))

(let ((update-continuation!

(lambda (v)

(set! saved-continuation v))))

(let ((resumer (resume -msJcer update-continuation!))

(first-time ft))

(leimbda (value)

(if first-time

(begin

(set! first-time if)

(proc resumer value))

(saved-continuation value))))))))

Program 17.21 resune-malcer

(define resume-mciker

(lambda (update-proc !

)

(lambda (next-coroutine value)

(let ((receiver (lambda (continuation)

(update-proc! continuation)

(next-coroutine value))))

(call/cc receiver)))))

(lambda (next-coroutine value)

(let ((receiver (lambda (continuation)

(.<update—continuation\> continuation)

(next-coroutine value))))

(cadl/cc receiver)))

Thus far the code has not shown us where the continuations are being cre-

ated. In coroutine-maker, this is done in the procedure formed by invoking

(resume-maker update-continuation !)

.

When resumer is invoked with a coroutine, say B, and a value, say "V",

a continuation is bound to continuation. That continuation is stored in

the saved-continuation associated with the code of the invoker of resumer.

For example, if the code (resume B "V") is invoked from within A, then the

570 Using Continuations

updating takes place in the saved-continuation associated with coroutine

A. When the updating is finished, the value "V" is sent to coroutine B. B

then causes the invocation of the saved-continuation, which was stored as

a result of an earlier invocation of its resumer.

Exercises

Exercise 17.10

To clarify the behavior of coroutine-msQcer and resume-meJcer, we used many
variables. Very few are required. Furthermore, resume-maicer itself is not nec-

essary. Using this knowledge, rewrite coroutine-meiker with as few variables

as possible.

Exercise 17.11

Look at the results of the previous exercise. If there is a first-time flag,

rewrite coroutine-meOter so that it no longer requires such a variable.

Exercise 17.12

Study the definitions of ping and pong below:

(define ping

(let ((ping-proc (lambda (resume v)

(display "ping-")

(resume pong 'ignored-ping))))

(coroutine-maker ping-proc)))

(define pong

(let ((pong-proc (leunbda (resume v)

(display "pong")

(newline)

(resume ping 'ignored-pong))))

(coroutine-mciker pong-proc)))

What happens when we evaluate (begin (ping '*) (pong '*))?

17.7 Grune's Problem

Now we are ready to look at Grune's problem (Grune 1977). The problem is

described as follows:

1 7. 7 Grune 's Problem 571

We have a process A that copies symbols from input to output in such

a way that where the input has aa, the output will have b instead.

And we have a similar process B that converts bb into c. Now we

want to connect these processes in series by feeding the output of A
into B. Input with aab yields c, as does baa.

If we line the processes up as:

Input ^ k ^ B ^ Output

we can think of the flow of requests emanating at Output. Requests for values

flow from right to left and values, themselves, flow from left to right. This is

reminiscent of streams. The coroutine Output requests of B to find a symbol

for Output to display. The coroutine B requests of A to find a symbol for B to

consider in its analysis of a "possible c." The coroutine A requests of Input to

find a symbol for A to consider in its analysis of a "possible 6." Having made

these requests, control now lies within Input. It does a read by first prompting

the user. It responds by resuming A with that symbol. It does this with the

following code, (resume right (prompt-read "in> ")), where A is bound

to right. A is now in control. If the symbol is an a, A cannot pass it along to

B because the next symbol reeid might be an a. The only possible alternative

for A is to give control back to Input. Once again Input prompts for the next

symbol. This symbol is also sent to A. Now A has enough information to send

something to B. Here are the conditions under which information flows to the

right. In these rules, x and y are the symbols in question, q is not the same

cis X, where x is a (respectively, b) and y is 6 (respectively, c):

1. XX =^ send y to the right.

2. X q ==> send x to the right, saving q for the next request.

3. q =^ send q to the right.

The code segment for this characterization follows:

(let ((symbol-1 (resume left 'ok)))

(if (eq? symbol-1 x)

(let ((syTiibol-2 (resume left 'more)))

(if (eq? symbol-2 i)

(resume right y)

(begin

(resume right symbol-1)

(resume right symbol-2))))

(resume right symbol-1)))

572 Using Continuations

Program 17.22 reader

(define reader

(lajBbda (right)

(let ((co-proc (lambda (resume v)

(cycle-proc

(lambda

(resume right (prompt-read "in> ")))))))

(coroutine-meiker co-proc))))

In order to replace aa by 6, x is a, y is 6, left is Input, and right is B; in

order to replace 66 by c, x is 6, y is c, left is A, and right is Output. Here

is a description of the code segment. Get a symbol from left. If that symbol

differs from x, send it along to right. If not, get another symbol from left.

If that symbol is the same as the first, send y to right. If it differs, send both

symbols, one at a time, to right.

The action of Output is simple. It makes a request from its left neighbor

(i.e., B). If it finds a symbol matching end, it invokes an escape procedure,

and the computation halts. If not, it writes the symbol. The code segment

for this Output action is:

(let ((symbol (resume left 'ok)))

(if (eq? symbol 'end)

(escape-on-end symbol)

(writeln "out> " symbol)))

The action of Input sends to its right neighbor whatever it read after first

displaying a prompt:

(resume right (prompt-read "in> "))

Given that these are the basic actions, it is a relatively simple task to make

sure all free variables have the correct values and that each code segment is

run as a nonterminating loop with cycle-proc. The three procedures for

forming the coroutines are given in Programs 17.22, 17.23, and 17.24.

We still have the task of building the wires into the communication channels.

We are now going to use letrec to create the mutually recursive coroutines

Input, A, B, and Output. One might expect the following letrec expression to

work:

J 7. 7 Grune 's Problem 573

Program 17.23 writer

(define writer

(lEunbda (left escape-on-end)

(let ((co-proc (lambda (resume v)

(cycle-proc

(lambda ()

(let ((symbol (resume left 'ok)))

(if (eq? symbol 'end)

(escape-on-end 'end)

(writeln "out> " symbol))))))))

(coroutine-maker co-proc))))

Program 17.24 x->y

(define x->y

(lambda (x y left right)

(let ((co-proc (lambda (resume v

(cycle-proc

(lambda ()

)

(let ((symbol-l (resume left •ok)))

(if (eq? symbol-

1

x)

(let ((symbol--2 (resume left 'more)))

(if (eq? symbol-2 x)

(resume right y)

(begin

(resume right symbol- 1)

(resume right symbol-2))))

(resume right symbol-!))))))))

(coroutine-maker co-proc))))

(letrec

((Input (reader A))

(A (x->y 'a 'b Input B))

(B (x->y 'b 'c A Output))

(Output (writer B escape-grune)))

(Output 'ok))

Each of Input, A, B, and Output is built by invoking the procedures reader,

x->y, x->y, and writer, respectively. The procedures reader, x->y, and

574 Using Continuations

Program 17.25 grune

(define grune

(laabda

(let ((grune-receiver

(laabda (escape-grune)

(letrec

((Input (reader (lambda (v) (A v))))

(A (x->y 'a 'b (lambda (v) (Input v)) (launbda (v) (B v))))

(B (x->y 'b 'c (lambda (v) (A v)) (lambda (v) (Output v))))

(Output (writer (lambdaL (v) (B v)) escape--grune)))

(Output 'ok)))))

(call/cc gnme-receiver)))

)

writer have been carefully designed to avoid invoking any of their corou-

tine arguments: Input, A, B, and Output. Here is the problem. All of the

procedures are being created at the same time as they are being passed as

arguments. For example, to create Input, we need A, and to create A, we need

Input. To solve this problem, we must freeze the coroutines that are argu-

ments in the right-hand sides of definitions. This has the effect of postponing

the evaluation of the variables that refer to the coroutines. Unfortunately, if

we freeze these variables, we get the wrong arity; that is, coroutines take one

argument, but frozen objects (i.e., thunks) take no arguments. The code that

follows, however, works:

(letrec

((Input (reader (lambda (v) (A v))))

(A (x->y 'a 'b (lambda (v) (Input v)) (lambda (v) (B v))))

(B (x->y 'b 'c (lambda (v) (A v)) (lambda (v) (Output v))))

(Output (writer (lauibda (v) (B v)) escape-grune)))

(Output 'ok))

Program 17.25 shows the final definition of grune with all the necessary

uses of (lambda (v) (v)). In the exercises, we develop a more natural

way to think about this unusual behavior.

i 7. 7 Grune 'a Problem 575

Exercises

Exercise 17.13: wrap

Consider the special form wrap, which has the following syntax table entry:

(wrap proc) = (lambda args (apply proc args))

This works in all cases but one: when args is a free variable in the proc

expression. Rewrite wrap using thunks to avoid this potential free variable

capture.

Exercise 17.14

Using the results of the previous exercise, write the syntax table entry for

wrap when proc is known to refer to a procedure of just one argument. This

is the case for the coroutines used in grime. Is free variable capture still a

problem?

Exercise 17.15

Using the results of the previous exercise, redefine gnine using wrap.

Exercise 17.16: safe-letrec

Another way to implement gnine is with a special form safe-letrec. This

special form is like letrec except that each right-hand side variable is wrapped

if it also appears as a left-hand side variable. Using the results of the previous

exercise, create the syntax table entry for safe-letrec so that the following

definition of grune works. [Hint: Use let to bind proc to (wrap proc) to

avoid processing each right-hand side.)

(define gnine

(lambda ()

(let ((grune-receiver (lambda (escape-grune)

(safe-letrec

((Input (reader A))

(A (x->y 'a 'b Input B))

(B (x->y 'b 'c A Output))

(Output (writer B escape-grune)))

(Output 'ok)))))

(call/cc grune-receiver))))

576 Using Continuations

Exercise 17.17: process-msLker

Sometimes processes are perceived as automatically being in an infinite loop.

Use the following variation of coroutine-meOcer, called process-meiker, and

rewrite the solution to the Grune problem using processes.

(define process-meJcer

(lambda (f)

(let ((saved-continuation "any continuation"))

(let ((update-continuation!

(lambda (v)

(set! saved-continuation v))))

(let ((resumer (resume-maJcer update-continuation!))

(first-time #t))

(leuabda (value)

(if first-time

(begin

(set! first-time #f)

(cycle-proc

(lambda ()

(f resumer value))))

(saved-continuation value))))))))

Exercise 17.18

Using the results of the previous exercise, explain how process-maker differs

from coroutine-maker by constructing an appropriate example.

Exercise 17.19

Redesign Towers of Hanoi using coroutine-maker so that each disk is a corou-

tine. Can process-maker be used?

Exercise 17.20

Redesign the solution of the Eight Queens problem using coroutine-maker

so that each queen is a coroutine. Can process-madcer be used?

Exercise 17.21

Implement Grune's problem using streams instead of coroutines.

Exercise 17.22

Extend grune to any number of x->y pairs. Hint: This can be accomplished

by rewriting the procedure grime leaving everything else unchanged.

Exercise 17.23

Rework the previous exercise using streams.

17.8 Final Thoughts 577

17.8 Final Thoughts

We have not shown you all the interesting things you can think about with

continuations, but we have tried to show you some of the ways that continua-

tions can be used. Most of the time, you should be content to solve problems

with conventional procedural techniques. Occasionally you will be tempted

to use state changing operations like those we used when we worked with

object-oriented programming. And even less frequently you will run across a

need for continuations. This is your basic bag of tricks.

The existence of the computer ha^ been incidental to the understanding

of the concepts conveyed in this book. The computer's role has been much

like that of a chemist's laboratory, used primarily for experimentation. What
would happen if you added two parts hydrogen to one part oxygen? If you are

curious about what happens when you compose two procedures, use the com-

puter as your laboratory. What happens when you compose the procedure

(lambda (x) (+ x 1)) with the procedure (lambda (x) (- x 1))? This

book has been about ideas and how we can combine separate categories of

ideas to create procedures that do our computing. Although some emphasis

has been placed on how fast the computer determines the value of a com-

putation, we have tried to approach the ideas in this book more in terms of

capturing the essence of a computation. Subtle issues of efficiency can come

much later. We have challenged you at every turn. Each piece of the compu-

tational puzzle fits together and is described in terms of simple ideas. Under

our guidance, you have entered the universe of computer science. It was our

goal to cause you to look forward to future explorations into this fascinating

field.

PROBLEMS

Problems worthy

of attack

prove their worth

by hitting back.

Piet Hein, Grooks

578 Using Continuations

