

Data Driven Recursion

4.1 Overview

In this chapter, we continue our study of recursion over the top-level items in

lists. Then we make the extension to recursion over the items in the nested

sublists as well, giving us tree recursion. In certain of our computations, a

return table is built while operations that have yet to be performed wait for

recursive procedure calls to return values. We discuss another way of doing

the computations, called iteration, in which there are no operations waiting

for procedure calls to return values, and hence no return table need be con-

structed. The factorial procedure and Fibonacci sequences are introduced. To

compare the efficiency of various methods for computing them, we investigate

the growth of execution time as the argument grows, demonstrating linear

and exponential growth rates.

4.2 Flat Recursion

We begin with three more examples of recursive procedures, with the recursion

being done over the top-level items in lists. In our examples of recursion

involving lists, we made the recursive step by applying the procedure to the

cdr of the list. The car of the list was then treated as a unit, which is why the

recursion was over the top-level items in the list. We refer to a recursion over

the top-level items of a list as aflat recursion, and we say that the procedure

so defined is flatly recursive or simply a flat procedure.

The first procedure we define is the two-argument version of the Scheme

procedure append, which has as parameters two lists, Isl and ls2 and builds

a list that consists of the top-level items in Isl followed by the top-level items

in ls2. We say that we are appending ls2 to (the end of) Isl. For example,

(append '(a b c) ' (c d)) ^ (a b c c d)

(append ' () ' (a b c)) ^ (a b c)

We define append using recursion on the first list. Isl. Cdring on Isl ulti-

mately produces the base case in which Isl is empty. In the base case, when

Isl is empty. Is2 is returned. Thus we can begin the definition with the base

case:

(define append

(laabda (Isl ls2)

(if (null? Isl)

ls2

...)))

To express (append Isl ls2) in terms of (append (cdr Isl) ls2). observe

that (append (cdr Isl) ls2) differs from (append Isl ls2) only in the

absence of the first top>-level item in Isl. For example, if Isl is (a b c) and

ls2 is (d e), then (append (cdr Isl) ls2) gives us (b c d e). and only

(car Isl) remains to be included. Thus when Isl is not empty, (append

Isl ls2) is the same as (cons (car Isl) (append (cdr Isl) ls2)). We
can therefore complete the definition of append.

Program 4.1 append

(define append

(lambda (Isl ls2)

(if (null?

Is2

Isl)

(cons ('car la 1) (append (cdr Issi) l82)))))

Another procedure often used is the Scheme procedure reverse, which

takes a list as its argument and builds a list consisting of the top-level items

in its argument list taken in reverse order. For example,

(reverse ' (1 2 3 4 5)) =* (5 4 3 2 1)

(reverse '((1 2) (3 4) (5 6))) =^ ((5 6) (3 4) (1 2))

96 Data Drtien Recursion

We again use recursion and look at what reverse does to the cdr of the list

Is. In the first example above,

(reverse ' (2 3 4 5)) =^ (5 4 3 2)

To get reverse of (1 2 3 4 5) from (5 4 3 2), we must put the 1 into the

last position in the list. We can do this with the procedure append if we make

the 1 into a list (1) and then append (1) to the end of (5 4 3 2). This is

the key to writing the definition of the procedure reverse.

We take the empty list as the base case and note that if we reverse the

items in the empty list, we still have the empty list. Thus we can begin the

definition with the terminating condition, which says that if the list is empty,

the empty list is returned.

(define reverse

(lambda (Is)

(if (null? Is)

'()

...)))

To get (reverse Is) from (reverse (cdr Is)), we must append the list

that is the value of (reverse (cdr Is)) to the front of the list that is the

value of (list (car Is)). We then complete the definition with

Program 4.2 reverse

(define reverse

(leunbda (Is)

(if (null? Is)

'()

(append (reverse (cdr Is)) (list (car Is))))))

A list of numbers (or n-tuple) is said to be sorted in increasing order if each

number in the list is less than or equal to the number following it in the list.

For example, (2.3 4.7 5 8.1) is sorted in increasing order. If we have two

lists, each sorted in increasing order, we can merge them into a single list in

increasing order. For example, if the list given above is merged with the list

(1.7 4.7), we get the list (1.7 2.3 4.7 4.7 5 8.1).

Let us now write a procedure merge, which takes two n-tuples, sorted-

ntpll and sorted-ntpl2, which have already been sorted in increasing order.

4.2 Flat Recursion 97

and builds the list obtained by merging them into one sorted n-tuple. If either

list is empty, merge returns the other list. Otherwise we compare the car of

the lists and cons the smaller one onto the list obtained by merging the rest

of the two lists. This analysis leads to the following definition:

Program 4.3 merge

(define merge

(lambda (sorted-ntpll sorted-ntpl2)

(cond

((null? sorted-ntpll) sorted-ntpl2)

((null? sorted-ntpl2) sorted-ntpll)

((< (car sorted-ntpll) (car sorted-ntpl2))

(cons (car sorted-ntpll)

(merge (cdr sorted-ntpll) sorted-ntpl2))

)

(else (cons (car sorted-ntpl2)

(merge sorted-ntpll (cdr sorted-ntpl2))))))

)

We shall use merge in Chapter 10 when we discuss the sorting of lists.

The definition of reverse used the procedure append, which was defined

earlier. It does not matter which was defined first, as long as both are defined

when the procedure reverse is invoked.

The test of whether a nonnegative integer is even or odd gives us another

good example of one procedure using another in its definition. There are many
more direct ways of defining the predicates even? and odd?, but the one we

present now was chosen because it illustrates how each of two procedures

invokes the other in its definition. We use the fact that an integer is even if

its predecessor is odd and odd if its predecessor is even. Starting with any

nonnegative integer, reducing it successively by 1 will eventually bring it to

0. which is even. This analysis leads us to the following definitions:

Program 4.4 even?

(define even?

(lambda (int)

(if (zero'

ft

? int)

(odd? (subl int))))

)

98 Data Dnven Recursion

and

Program 4.5 odd?

(define odd?

(lanbda (int)

(if (zero?

«f

int)

(even? (subl int)))))

In the definition of the procedure even?, the procedure odd? is called, and in

the definition of odd?, the procedure even? is called. This is an example of

mutual recursion in which each procedure calls the other. The two procedures

are said to be mutually recursive.

The procedure remove-lst defined in Chapter 2 removed the first top-level

occurrence of an item from a list of items. Let us now define a procedure

remove that removes all top-level occurrences of item from a list Is. As

before, the recursion will be flat, but now we continue the recursion until all

top-level occurrences of item have been removed from Is. The base condition

is (null? Is), and when it is true, the empty list is returned. Thus we begin

our definition with:

(define remove

(leunbda (iten Is)

(cond

((null? Is) '())

...)))

Next, if Is is not empty, (remove item (cdr Is)) is exactly the same as

(remove item Is) when the first item in Is is item, for that item is removed.

On the other hand, when the first item in Is is not item, then we must cons

it onto (remove item (cdr Is)) in order to get (remove item Is). Thus

we complete the definition, which is presented in Program 4.6.

The definition of remove differs from that of remove-lst in the middle

clause of the cond expression. In remove-lst the recursion stopped when the

first occurrence of item was found, whereas in remove the recursion continues.

This difference is typical of what we see if we compare the definitions of

procedures that stop after the first occurrence of an item to those that continue

to the end of the list. The procedure remove uses equal? to test for sameness.

You could write a version named remq that uses eq? to test for sameness and

4.2 Flat Recursion 99

Program 4.6 remove

(define reaove

(lambda (it en Is

(cond

((null? Is) '())

((equal? (car Is) item) (remove item (cdr Is)))

(else (cons (ceir Is) (remove item (cdr Is)))))))

a version named remv that uses eqv? to test for sameness. The exercises

contain other procedures involving flat recursion that go to the end of the

lists instead of stopping after the first occurrence of a given item.

Exercises

Exercise 4'^-' insert-left

Define a procedure insert-left with parameters new, old, and Is that builds

a list obtained by inserting the item new to the left of each top-level occurrence

of the item old in the list Is. Test your procedure on:

(insert-left 'z 'a '(abaca)) ^^ (z a b z a c z a)

(insert-left 1 '(0 1 1)) ^(001001)
(insert-left 'dog 'cat '(my dog is fun)) ^=* (my dog is fun)

(insert-left 'two 'one '()) ^ ()

Exercise 4-^' insert-right

Define a procedure insert-right with parameters new, old. and Is that

builds a list obtained by inserting the item new to the right of each top-level

occurrence of the item old in the list Is. Test your procedure on:

(insert-right 'z 'a '(abaca)) =^ (a z b a z c a z)

(insert-right 1 '(0 1 D) ==* (0 1 1 0)

(insert-right 'dog 'cat '(my dog is fun)) =^ (my dog is fun)

(insert-right 'two 'one '()) =* ()

Exercise 4-3: subst

Define a procedure subst with parameters new, old. and Is that builds a list

obtained by replacing each top-level occurrence of the item old in the list Is

by the item new. Test your procedure on:

100 Data Driven Recursion

(subst 'z 'a '(abaca)) => (z b z c z)

(subst 1 '(0 1 D) =^ (0 0)

(subst 'dog 'cat '(my dog is fun)) =^ (my dog is fun)

(subst 'two 'one '()) =^ ()

Exercise 4-4' deepen-l

Define a procedure deepen-1 with parameter Is that wraps a pair of paren-

theses around each top-level item in Is. Test your procedure on:

(deepen-1 '(abed)) => ((a) (b) (c) (d))

(deepen-1 '((a b) (c (d e)) f)) => (((a b)) ((c (d e))) (f))

(deepen-1 '()) => ()

4.3 Deep Recursion

In this section, we consider recursion over all the sublists of a list. We say

that the sublist (b c) is nested in the list (a (b c)). It is convenient to have

some way of describing how deep the nesting is. If an item is not enclosed by

parentheses, that item has nesting level 0. For example, the item bird has

nesting level 0. The elements of a list such as (a b c) have nesting level 1.

Thus b has nesting level 1 while the whole list (a b c) has nesting level 0.

Then each additional layer of parentheses adds 1 to the nesting level, so that

the nesting level of the item c in (a (b (c d))) is 3. The objects in the list

that have nesting level 1 are the top-level objects of the list. The top-level

objects in the list (a (b c) (d (e f))) are a, (b c), and (d (e f)).

We define a procedure count-all with parameter Is that counts those

items in the list Is that are not pairs. For example

1. (count-all '((a b) c ((d (e))))) => 6

2. (count-all '(() ())) =^ 3

3. (count-all '((()))) => 1

4. (count-all '()) =*•

To simplify our discussion, we use the adjective atomic to describe an item

that is not a pair. In this case, all of the atomic items in the list were counted,

not just the top-level items. Since the empty list is not a pair, the empty lists

that are included as items within the lists of Examples 1,2, and 3 are counted

as atomic items in the lists.

4-S Deep Recursion 101

The base case for the recursion is the empty Ust, for in that case, count-all

returns zero. Thus the definition begins with:

(define count-all

(lambda (Is)

(cond

((null? Is) 0)

...)))

If Is is not empty, we proceed eis we did in our previous examples and consider

how we can get (count-all Is) from (count-all (cdr Is)). The two

diff'er by the number of atomic items in (ceu: Is). If (car Is) is atomic,

then (count-all Is) has a value that is just one greater than the value of

(count-all (cdr Is)). Thus we can continue the definition with:

(define count-all

(lambda (Is)

(cond

((null? Is) 0)

((not (pair? (car Is))) (addl (count-all (cdr Is))))

...)))

When (car Is) is a pair (as is the case in Examples 1 and 3), we must count

the atomic items in (.cax Is) and add that amount to the value of (count-

all (cdr Is)) to get the value of (count-all Is). Thus we complete the

definition with:

Program 4.7 count-all

(define count-all

(lambda (Is)

(cond

((null? Is) 0)

((not (pair? (car Is))) (addl (count-all (cdr Is))))

(else (+ (count-all (car Is)) (count-all (cdr Is)))))))

In fact, we can combine the last two cond clauses if we write the definition as

follows:

102 Data Driven Recursion

(define count-all

(leunbda (Is)

(cond

((null? Is) 0)

(else (+ (if (pair? (car Is))

(count-all (car Is))

1)

(count-all (cdr Is)))))))

The recursion described differs from flat recursion in that when the car of the

list is a pair, we apply the procedure being defined both to the car and to the

cdr of the list. In flat recursion, the procedure being defined was applied only

to the cdr of the list. When the recursion is over all of the atomic items of a

list, so that in the recursive step the procedure is applied to the car of the

list and to the cdr of the list, we call it a deep recursion. A procedure defined

using a deep recursion will be referred to as a deeply recursive procedure or

simply a deep procedure to distinguish it from a flat procedure. Deep recursion

is also called tree recursion.

Before leaving the definition of count-all, we should observe that we could

have avoided the use of the not in the second cond clause by changing the

order in which we considered the last two cases. That would give us the

definition:

(define count-all

(lambda (Is)

(cond

((null? Is) 0)

((pair? (car Is))

(+ (count-all (car Is)) (count-all (cdr Is))))

(else (+ 1 (count-all (cdr Is)))))))

Many of the flat procedures defined earlier have analogs that are deep pro-

cedures. To illustrate this, we consider the procedure remove-all, which is

analogous to remove. The procedure remove-all removes all occurrences of

an item item from a list Is. For example,

(remove-all 'a '((a b (c a)) (b (a c) a))) => ((b (c)) (b (c)))

The base case is the empty list, and when Is is empty, the empty list is

returned. Thus we begin the definition of remove-all with:

4-3 Deep Recursion 103

(define remove-all

(lambda (item Is)

(cond

((null? Is) '())

...)))

We next express (remove-all item Is) in terms of (remove-all item

(cdr Is)). If (equal? (car Is) item) returns true, then (remove-all

item Is) is the same as (remove-all item (cdr Is)), and we have:

(define remove-all

(Icifflbda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (remove-all item (cdr Is)))

...)))

If (cax Is) is a pair that is not the same as item, then we remove all occur-

rences of item from (car Is) and cons the result onto (remove-all item

(cdr Is)). Thus,

(define remove-all

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (remove-all item (cdr Is)))

((pair? (ccir Is))

(cons (remove-eill item (ceir Is)) (remove-all item (cdr Is))))

...)))

Finally, if (car Is) is atomic and is not the same as item, we must cons it

back onto (remove-all item (cdr Is)) in order to get (remove-all item

Is). We wrap up the definition in Program 4.8. We can combine the last two

cond clauses if we rewrite the definition as follows:

(define remove-all

(leimbda (item Is)

(cond

((null? Is) '())

((equal? (c«ur Is) item) (remove-all item (cdr Is)))

(else (cons (if (pair? (ceir Is))

(remove-all item (car Is))

(car Is))

(remove-all item (cdr Is)))))))

104 Data Driven Recursion

Program 4.8 remove-all

(define remove-all

(laj&bda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (remove-all item (cdr Is)))

((pair? (car Is))

(cons (remove-all item (car Is)) (remove-all item (cdr Is))))

(else (cons (car Is) (remove-all item (cdr Is)))))))

In this example, we again see that when (car Is) is a pair not equal to item,

the procedure remove-all is applied recursively to both the car and the

cdr of Is. Thus remove-all displays this characteristic behavior of deeply

recursive procedures.

We used equal? to test for sameness in the definition of remove-all. If

the arguments to which item is bound are always symbols, we can use eq? to

test for sameness. In this case, we know that the item that is the same as the

symbol we are removing is never a pair, so it is expedient to test for pair?

first. We can write the definition of remq-all as shown in Program 4.9. We
can similarly define remv-all, which uses eqv? in place of eq?.

Program 4.9 remq-all

(define remq-all

(leifflbda (symbl Isi)

(cond

((null? Is) •())

((pair? (car Is))

(cons (remq--all symbl (car Is)) (remq-all symbl (cdr Is.))))

((eq? (car Ifi) symbl) (remq -all symbl (cdr Is)))

(else (cons [car Is) (remq-.all symbl (cdr Is)))))))

When the flat procedure reverse is applied to a list, we get a new list with

the top-level objects in reverse order. Thus,

(reverse '(a (b c) (d (e f)))) => ((d (e f)) (b c) a)

We can also define a procedure reverse-all that not only reverses the order

4'3 Deep Recursion 105

of the top-level objects in the list but also reverses the order of the objects at

each nesting level with the sublists. We would then have:

(reverse-all ' (a (b c) (d (e f))))=* (((f e) d) (c b) a)

For the base case, the list is empty, and (reverse-all '()) returns the

empty list. Thus the definition begins with:

(define reverse-zdl

(lambda (Is)

(cond

((null? Is) '())

...)))

To carry out the recursion, we build (reverse-all Is) from (reverse-all

(cdr Is)). In the latter, all of the elements of (reverse-all (cdr Is))

are already in the correct order. We have to see how to include the items of

(car Is). If (cax Is) is a pair, we have to reverse its elements and place

them at the end of (reverse-all (cdr Is)) with the procedure append.

Thus we have:

(define reverse-all

(lambda (Is)

(cond

((null? Is) '())

((pair? (ceur Is))

(append (reverse-cill (cdr Is))

(list (reverse-all (cau: Is)))))

...)))

In the remaining case, (car Is) is not a pair, so we merely place it at the

end of (reverse-all (cdr Is)).

(define reverse-all

(lambda (Is)

(cond

((null? Is) '())

((pair? (car Is))

(append (reverse-all (cdr Is))

(list (reverse-all (car Is)))))

(else

(append (reverse-adl (cdr Is))

(list (car Is)))))))

106 Data Driven Recursion

Once again, in this recursion we see the typical form of a deep recursion. We
applied reverse-all to both the car and the cdr of the list in the second

cond clause.

It is instructive to look back at this definition of reverse-all and observe

the similarity between the two alternatives that begin with append in the

last two cond clauses. They differ only in the application of reverse-all

to (car Is) in the last line. Because of this similarity, we can combine the

two append expressions into one expression by putting the conditional branch

after (reverse-all (cdr Is)) . We get the following version of the definition

of reverse-all:

Program 4.10 reverse-all

(define reverse-all

(lambda (Is)

(if (null? Is)

'0

(append (reverse-all (cdr Is))

(list (if (pair? (car Is))

(reverse-all (car

(car Is)))))))

Is))

In this section, we have seen how to write deeply recursive procedures.

These have the characteristic property that a recursive step applies the pro-

cedure being defined to both the car and the cdr of the list.

Exercises

Exercise 4-5: subst-all, substq-all

Define a procedure subst-all with call structure (subst-all new old Is)

that replaces each occurrence of the item old in a list Is with the item new.

Test your procedure on:

(subst-all 'z 'a '(a (b (a c)) (a (d a))))

=> (z (b (z c)) (z (d z)))

(subst-all '(1) '(((1) (0)))) => ((0 (0)))

(subst-all 'one 'two '()) =>

Also define a procedure substq-all in which the parameters new and old are

only bound to symbols, so that eq? can be used for the sameness test.

4-3 Deep Recursion 107

Exercise 4-6: insert-left-all

Define a procedure insert-left-all with call structure (insert-left-all

new old Is) that inserts the item new to the left of each occurrence of the

item old in the list Is. Test your procedure on:

(insert-left-all 'z 'a '(a ((b a) ((a (c))))))

=> (z a ((b z a) ((z a (c)))))

(insert-left-all 'z 'a '(((a)))) ==> (((z a)))

(insert-left-all 'z 'a '()) =^

Exercise 4-7: sum-all

Define a procedure sum-all that finds the sum of the numbers in a list that

may contain nested sublists of numbers. Test your procedure on:

(sum-all '((1 3) (5 7) (9 11))) => 36

(sum-all '(1 (3 (5 (7 (9)))))) => 25

(sum-all '()) =>

4.4 Tree Representation of Lists

There is a convenient way of thinking of a list graphically as a tree that has

its root at the top and grows by branching downward. The original list is

a node that is located at the root. Each top-level object in the list forms a

new node connected to the root node by a branch. Each sublist itself then

becomes the root of a subtree, and the tree grows downward. For example,

the tree representing the list (a (b c d) ((e f) g)) is given in Figure 4.11.

Each item or sublist of the original list is a node of this tree. Each sublist is

itself the root of a subtree of the original tree. Thus ((e f) g) corresponds

to the subtree given in Figure 4.12.

An item at the lower end of a branch that is not the top end of another

branch is called a leaf of the tree. We can readily see how deeply an item

is nested in the list by looking at its nesting level in the tree. For example,

in Figure 4.11, the leaf a is at nesting level 1 and the leaf e at nesting level

3. We say that the depth of a list is the maximum of the nesting levels of all

of its items. The list (a (b c d) ((e f) g)) has depth 3. With the tree

growing downward, we can say that the depth of a list is the nesting level of

its lowest leaves.

To traverse a tree, that is, to move down the tree from one node to another,

we use the procedures cau: and cdr. Taking the car of a list corresponds to

108 Data Driven Recursion

(a (b c d) ((e f) g))

((e f) g)

Figure 4.11 Tree representation of the list (a (b c d) ((e f) g))

((e f) g)

Figure 4.12 The subtree ((e f) g)

moving down one node on the leftmost branch of the tree. Taking the cdr

of a list corresponds to considering the tree that is left when the leftmost

branch is omitted. Thus when taking the car, we move down one level on

the tree. When taking the cdr, we stay at the same level of the tree. With

an appropriate sequence of car and cdr applications, we can reach any node

of a tree. For example, in the tree in Figure 4.11, the node (e f) is reached

using caaddr.

We define a procedure depth that takes item as its argument and returns

its depth. The item may be either atomic or a list. If item is atomic, we

4-4 Tree Representation of Lists 109

Program 4.13 depth

(define depth

(lambda (item)

(if (not (pair? item))

(max (addl (depth (car item))) (depth (cdr item))))))

assign it depth 0. Since the empty list is atomic, it also has depth 0. We take

as the base case for the recursive definition the test (not (pair? item)), for

that corresponds to being at a leaf of the tree. We begin the definition of

depth with:

(define depth

(lambda (item)

(if (not (pair? item))

...)))

The depth of the whole tree is the larger of the depth of its leftmost branch

and the depth of the rest of its branches. Taking the cair of the list moves

down one node on the leftmost branch, so that the depth of the whole leftmost

branch is one greater than the depth of (car item). The depth of the rest

of the branches is just the depth of (cdr item). This gives us the definition

displayed in Program 4.13.

The procedure depth gives us the maximum number of levels in a tree

representing its argument. We next define a procedure that gives us a list of

the leaves on the tree as a list of atomic items, where each leaf is raised out

of its sublist to be at top level. We call this procedure flatten. When we

apply it to the list (a (b c d) ((e f) g)), we get (a b c d e f g). The

parameter of the procedure flatten will be Is. The base case is the empty

list, which flattens into itself. Thus we begin the definition of flatten with:

(define flatten

(leunbda (Is)

(cond

((null? Is) '())

...)))

When Is is not empty, we build (flatten Is) from (flatten (cdr Is))

by first determining whether (car Is) is a pair. If it is, we flatten (car Is)

110 Data Driven Recursion

and append the already flattened (flatten (cdr Is)) to it to get (flatten

Is). This gives us

(define flatten

(lEunbda (Is)

(cond

((null? Is) '())

((pair? (car Is))

(append (flatten (car Is)) (flatten (cdr Is))))

...)))

In the remaining case, (car Is) is atomic, so we cons it onto (flatten

(cdr Is)), and we complete the definition with

Program 4.14 flatten

(define flatten

(lambda (Is)

(cond

((null? Is) '())

((pair? (car Is))

(append (flatten (car Is)) (flatt<an (cdr Is))))

(else (cons (car]-s) (flatt<sn (cdr Is)))))))

We have discussed flat and deep recursion. A flat recursion is over the

top-level items of a list. This is equivalent to a recursion over the nodes of

the corresponding tree, which are one level below the root. A deep recursion

is over all of the items in the list. This is equivalent to a recursion over the

leaves of the corresponding tree. That is why deep recursion is also referred

to as tree recursion.

We conclude this section with an example of a procedure that removes an

item from a list but only the first (leftmost) occurrence of that item in the

list. Let us name the procedure remove-leftmost and look at a couple of

examples.

1. (remove-leftmost 'b '(a (b c) (c (b a))))

=> (a (c) (c (b a)))

2. (remove-leftmost ' (c d) '((a (b c)) ((c d) e)))

=J> ((a (b c)) (e))

4-4 Tree Representation of Lists 111

In Example 1, the first b that occurs in (b c) is removed, but the second b

that occurs in (c (b a)) is not removed. We denote the item to be removed

by item and the list by Is. The base case is again the empty list. When Is

is empty, the empty list is returned. Thus we begin the definition with the

terminating condition:

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

...)))

In order to take care of arguments like that in Example 2, we use equal? as

the sameness predicate. If (car Is) is the same as item, the answer is (cdr

Is), so we continue the definition with:

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

...)))

If (car Is) is atomic and is not the same cis item, the answer is obtained

by consing (car Is) to the list obtained by removing the leftmost item from

(cdr Is). Thus we get:

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

((not (pair? Is))

(cons (car Is) (remove-leftmost item (cdr Is))))

...)))

We still have the case in which (car Is) is a nonempty list not equal to

item. If we analyze the recursion by looking at

(remove-leftmost item (cdr Is))

we see that we get a list with the first occurrence of item removed; but we

do not know whether this Weis the first occurrence of item in Is. We want to

112 Data Driven Recursion

Program 4.15 remove-leftmost

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

((not (pair? (car Is)))

(cons (car Is) (remove--leftmost item (cdr Is))))

((member-all? item (car Is))

(cons (remove-leftmost item (car Is)) (cdr Is)))

(else (cons (car Is) (remove--leftmost item (cdr Is.)))))))

Program 4.16 member-all?

(define member-all?

(lambda (item Is)

(if (null? Is)

#f

(or (equal? (ceo- Is) item'

(and (not (pair? (car Is)))

(member-all'' item (cdr Is)))

(and (pair? (car Is))

(or (member--all? item (car Ie.))

(member--all? item (cdr Is.))))))))

remove only the first occurrence of item in Is, and its first occurrence may
not be in (cdr Is). In order to use this kind of argument, we must first

check to see whether the first occurrence of item in Is is in (car Is). We
do that with the helping procedure member-all?, a deeply recursive version

of member?, that we define after this definition. If item is in (car Is), we

cons (remove-leftmost item (car Is)) onto (cdr Is) to get the answer.

Otherwise, we cons (car Is) onto (remove-leftmost item (cdr Is)) to

get the answer. Thus we complete the definition as shown in Program 4.15.

The definition of member-all? is presented in Program 4.16.

A look at the definition of remove-leftmost reveals that the consequent in

the third cond clause and the alternative in the else clause are the same. We
can eliminate the repetition by interchanging the order of the tests we make.

The new version is given in Program 4.17.

4-4 Tree Representation of Lists 113

Program 4.17 remove-leftmost

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

((and (pair? (car Is)) (member-all? item (car Is)))

(cons (remove-leftmost item (car Is)) (cdr Is)))

(else (cons (car Is) (remove--leftmost item (cdr Is)))))))

The recursion in the procedure remove-leftmost differs from the list re-

cursions done earlier in that we have to test whether item is in the car of the

list before proceeding to build the answer. This means cdring through the

car of the list twice in some cases. We shall return to the consideration of

remove-leftmost in Chapter 5, where a definition is presented that avoids

this double cdring. We have now seen various examples of both flat and deep

(tree) recursions.

Exercises

Exercise 4-8: count -parens-all

Write the definition of a procedure count-parens-all that takes a list as its

argument and counts the number of opening and closing parentheses in the

list. Test your procedure on:

(count-parens-all '()) ^^ 2

(count -parens-all '((a b) c)) ^^ 4

(count-parens-all '(((a () b) c) () ((d) e))) =» 14

Exercise 4-9: count-background-all

Define a procedure count-background-all that takes as its arguments item

and a list Is and returns the number of items in Is that are not the same

as item. Use the appropriate sameness predicate for the data shown in the

examples. Test your procedure on:

(count-background-all 'a '((a) b (c a) d)) ^^ 3

(count-background-all 'a ' ((((b (((a)) c)))))) => 2

(count-background-all 'b '()) ==*

114 Data Driven Recursion

Program 4.18 fact

(define fact

(lambda (n)

(if (zero? n)

1

(* n (fact (subl n))))))

Exercise 4-10: leftmost

Define a procedure leftmost that takes a nonempty list as its argument and

returns the leftmost atomic item in the list. Test your procedure on:

(leftmost '((a b) (c (d e)))) ==> a

(leftmost '((((c ((e f) g) h))))) => c

(leftmost '(() a)) => ()

Exercise 4-1 1- rightmost

Define a procedure rightmost that takes a nonempty list as its argument and

returns the rightmost atomic item in the list. Test your procedure on:

(rightmost '((a b) (d (c d (f (g h) i) m n) u) v)) ^ v

(rightmost '((((((b (c)))))))) =* c

(rightmost '(a ())) => ()

4.5 Numerical Recursion and Iteration

Recursion can also be used in numerical calculations. We consider several

examples in this section. We begin with the procedure fact, which takes

a nonnegative integer n cis its parameter and returns its factorial—that is,

the number multiplied successively by all the positive integers less than that

number. For example, (fact 5) has the value 5x4x3x2x1 = 120. We
derive this procedure using much the same kind of reasoning as we used with

lists, but instead of using cdr to reduce the size of the argument, we use subl.

Eventually the successive applications of subl to the argument will reduce it

to 0. We use the convention that the factorial of is 1, so that (fact 0) is

1. The recursive step in this case is done by considering (fact (subl n)),

which gives us the successive products of all of the positive integers less than

n. To get (fact n) from (fact (subl n)), all we have to do is multiply it

by n. From this, we get the definition for fact in Program 4.18.

4-5 Numerical Recursion and Iteration 115

When the procedure fact is applied to a number, say 3, a return table

is built much the same as the one that was built for the procedure swapper

in Chapter 2. The value of (fact 3) is denoted by answer-1. It is 3 times

(fact 2) , so the evaluation of answer-1 must wait until answer-2 is evaluated,

where answer-2 is (fact 2). Thus the first two rows of the return table are:

answer-1 is (* 3 answer-2)

answer-2 is (fact 2)

When we evaluate (fact 2), the return table becomes

answer-1 is (* 3 answer-2)

answer-2 is (* 2 answer-3)
answer-3 is (fact 1)

When we evaluate (fact 1), the return table becomes

answer-1 is (* 3 answer-2)

answer-2 is (* 2 answer-3)
answer-3 is (* 1 answer-^)

answer-4 is (fact 0)

where (fact 0) is 1. Now that we have found that answer-4 is 1, we work our

way up the table, replacing each answer on the right side by the value obtained

for it in the row below. This process is known as backward substitution. This

gives us:

answer-4 " 1

answer-3 is 1

answer- 2 is 2

answer- 1 is 6

so (fact 3) is 6. In finding (fact 3), the return table has four rows. In the

last row, the value of the variable on the left was obtained directly from the

terminating condition of the program. Then each of the other three variables

on the right was computed with a multiplication, so there were three multi-

plications required to complete the computation of (fact 3). The building

up of the return table and the subsequent backward substitution may be

summarized in the following:

116 Data Driven Recursion

(fiact 3)

(* 3 (fad; 2))

(* 3 (* 2 (fact: 1)))
(* 3 (* 2 (* 1 (fact 0))))
(* 3 (* 2 (* 1 1)))
(* 3 (* 2 D)
(* 3 2)

6

In general, to find the factorial of the number n, there would be n + 1

invocations of procedure fact. Thus the return table has n+ 1 rows. In the

last row, the value on the right is found to be 1—the value returned when the

terminating condition is true. In each of the other n rows of the return table,

a multiplication is performed to find the value on the right, making a total of

n multiplications to complete the computation.

We observed that a return table is constructed when we compute the fac-

torial using the recursive procedure fact. When the terminating condition

becomes true, the backward substitution must be performed on the return

table to get the answer. When the computation requires the construction of

a return table and backward substitution to get the answer, we say that the

computation is using a recursive process. We now look at another way of

defining a procedure to compute the factorial of a number that does not build

a return table. Instead, at each recursive invocation of the procedure, the

computations are performed without having to wait for other needed values,

and when the terminating condition is true, the answer is already computed

and is returned. In general, when the computer carries out a computation

without building a return table, so that backward substitution is not neces-

sary, the computational process is called an iterative process.

We have seen that in programs like the one written for fact, there is an

operation waiting for the value returned by the recursive procedure call. The

computational process so defined is not implemented as an iterative process.

On the other hand, we saw several iterative procedures, such as member?, in

which no operations waited for values returned by the recursive procedure

calls. In some programming language implementations, when an iterative

procedure is executed, it is still possible that a return table is built up and later

reduced by backward substitution. However, in Scheme, when a procedure is

intended to be iterative, the computation is always implemented in such a

way that no return table is needed.

To implement the computation of the factorial procedure as an iterative

process, we define a procedure named fact-it that has two parameters: n,

4.5 Numerical Recursion and Iteration 117

which is the integer whose factorial we are computing, and ace, another in-

teger, called an accumulator, which stores the answer at each step. Here is

how it works in computing the factorial of 3. Initially, n is bound to 3 and

ace is bound to 1. On each recursive invocation of fact -it, n is reduced by

1, and aec is replaced by its old value multiplied by the previous value of n.

When the base case (zero? n) is true, aee is equal to the answer 6. This is

illustrated in the following table. The initial values of n and aee are in the

first row. The entries in the first column decrease by 1 while each entry in the

second column is computed by multiplying the two entries in the preceding

row.

n aee

3 1

2 3

1 6

6

To define fact-it, we begin with the base case for which n is zero. When
(zero? n) is true, the accumulator has the answer, so aee is returned. Thus

we begin the definition with:

(define fact-it

(lanbda (n ace)

(if (zero? n)

ace

...)))

If n is not zero, we call faet-it with n reduced by one and the accumulator

multiplied by n, so the definition is completed with:

Program 4.19 fact-it

(define fact -it

(lambda (n ace)

(if (zero? n)

ace

(fact-it (subl n) (* aec n)))))

Let's walk through an invocation (fact-it 3 1), writing the successive

recursive invocations of faet-it, and finally writing the value 6 that is re-

turned:

118 Data Driven Recursion

(fact-it 3 1)

(fact-it 2 3)

(fact-it 1 6)

(fact-it 6)

6

In this computation, no return table is built up waiting for uncomputed values

to be returned. The accumulator is bound to the answer when the terminating

condition is true, and the answer is returned without any backward substitu-

tion. The fact that there is no waiting operation on each recursive invocation

of fact-it is seen when we look at the last line of the definition. After the

procedure call, there is no further operation to be done. Compare this last

line with the last line,

(* n (fact (subl n)))

in the definition of fact. We see that after the procedure fact is called, the

result must still be multiplied by n. When fact-it is called, no additional

operations are performed on the result. Thus fact-it runs as an iterative

process, but fact does not. When we trace this iterative procedure, we see

that the computation does not build up a return table of operations waiting

for values to be returned.

If we count the number of times we call the procedure fact-it and the

number of multiplications, we see that the total number of multiplications

is the same for the procedures fact-it and fact. However, the backward

substitution in the return table, which is built up when evaluating fact,

requires more memory space than is needed when evaluating the iterative

fact-it, which needs no return table. In the next section, we look at another

example, the computation of the Fibonacci numbers, where the difference is

more dramatic.

To compute the factorial of 3, we invoke (fact-it 3 1). If we do not like

to write the extra argument for the accumulator, we can define an iterative

version of fact that takes only one argument by writing

(define fact

(lambda (n)

(fact-it n 1)))

4-5 Numerical Recursion and Iteration 119

Exercises

Exercise 4-i2

Enter the procedure fact into the computer and compute (fact n) for n =

10, 20, 30, 40, 50 and 100. You will have an opportunity to observe how
the implementation of Scheme you are using displays large numbers.

Exercise 4-i3

What happens when you invoke (fact 3,5)?

Exercise 4-^4' harmonic-suin-it

Define an iterative procedure barmonic-sum-it that sums the first n terms

of the harmonic series

, 1111
Test your procedure by summing the harmonic series for 10 terms, 100 terms,

1000 terms, and 10,000 terms. It can be shown that

11 1 , ,11 1

23 n - ° - 23 n-1

where logn is the natural logarithm of n. Using the Scheme procedure log,

verify this inequality for the values of the sums computed above.

4.6 Analyzing the Fibonacci Algorithm

The following problem appeared in a textbook written in 1202 by the Italian

mathematician Leonardo of Pisa, who was the son of Bonacci, so his nickname,

taken from "filius Bonacci," became Fibonacci. How many pairs of rabbits are

born of one pair in a year? It was eissumed that every month a pair of rabbits

produces another pair and that rabbits begin to bear young two months after

their own birth.

The sequence of numbers that give the number of pairs of rabbits each

month is 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. This tells us that

at the end of one month, the first pair had a pair of offsprings, so we have

two pairs. At the end of two months, only one pair is old enough to have

offsprings, so we have three pairs. At the end of three months, the first pair

of offsprings is old enough to bear young, so this time we get two new pairs,

120 Data Driven Recursion

and we have five pairs altogether. If we continue in this way, we generate

the sequence given above. Observe that each number in the sequence is the

sum of the two numbers preceding it. It has become customary to begin the

sequence with 0, 1, and use the algorithm that says that the next number

is always the sum of the preceding two numbers. The nth number in this

sequence is called the nth Fibonacci number.

We now define a procedure fib that takes a nonnegative integer n as its

parameter and returns the Fibonacci number corresponding to n. We have

(fib 0) is 0, (fib 1) is 1, (fib 2) is 1, (fib 3) is 2, and in general, for

n > 1, (fib n) is the sum of (fib (- n 1)) and (fib (- n 2)). We now

use this last recursive condition to define the procedure fib in Program 4.20.

Program 4.20 fib

(define fib

(lambda (n)

(if « n 2)

n

(+ (fib (- n D) (fib (- n 2))))))

(fib 4)

(fib 3) (fib 2)

(fib 2) (fib 1) (fib 1) (fib 0)

(fib 1) (fib 0)

Figure 4.21 Recursion tree for (fib 4)

To trace how (fib 4) is evaluated, we make a tree (Figure 4.21) in which

4-6 Analyzing the Fibonacci Algorithm 121

the root is labeled (lib 4). This is evaluated by adding (lib 3) and (lib

2), so our tree will have two branches, one going to a node (lib 3) and

the other to a node (lib 2). Each of these gives rise to two branches, (lib

3) giving rise to branches to the nodes (lib 2) and (lib 1), and (lib 2)

giving rise to branches to the nodes (lib 1) and (lib 0). This continues

until all of the leaves are either (lib 1) or (lib 0), which are known to be

1 and 0, respectively. This tree is an example of a binary tree because each

node that is not a leaf has at most two branches going down from it.

From Figure 4.21, we see that each node corresponds to a procedure call that

is made in evaluating (lib 4). In this case, there are nine procedure calls.

Each branch point (a node from which two branches originate) corresponds

to an addition, so there are four additions. In a similar way, we can build a

recursion tree for (lib 5), and we will have fifteen nodes and seven branch

points, hence fifteen procedure calls and seven additions. We suggest that you

draw the recursion trees for (lib 5) and for (lib 6) to see how large they

are and count the number of procedure calls and additions. It is not difficult

to see from the trees that if (calls-lib n) tells how many procedure calls

there are in computing (lib n) and (adds-lib n) tells how many additions

there are in computing (lib n), then these procedures satisfy the relations

(calls-lib 0) la 1

(calls-fib 1) is 1

(calls-fib n) is (addl (+ (calls-fib (- n 1)) (calls-fib (- n.2))))

and

(adds-f ib 0) is

(adds-fib 1) ts

(adds-f ib n) ts (addl (+ (adds-fib (- n 1)) (adds-fib (- n 2))))

We get Table 4.22 for these quantities.

n 012345678 9 10

(fib n) 1 1 2 3 5 8 13 21 34 55

(calls-fib n) 1 1 3 5 9 15 25 41 67 109 177

(adds-fib n) 1 2 4 7 12 20 33 54 88

Table 4.22 Count of procedure calls and additions

The number of procedure calls and the number of additions increase so

rapidly because in each procedure call, lib calls itself twice. This leads to

122 Data Driven Recursion

accl acc2

1

1 1

1 2

2 3

3 5

5 8

8 13

Table 4.23 Accumulator values for the iterative Fibonacci procedure

inefficiency since the same fib is called with the same arguments a number

of times, so that the different recursive calls repeat each other's work. In the

tree shown in Figure 4.21, (fib 2) is invoked twice and (fib 1) is invoked

three times. We next look at an iterative method for computing the Fibonacci

numbers.

A clue to how to set up an iterative process for computing the Fibonacci

numbers is found by observing that it takes the previous two numbers to

compute the next number in the sequence. Thus we have to store two jiumbers

at each step. We begin by storing the first two Fibonacci numbers, and 1

in accumulators, which we call accl and acc2. Thus at the start,

accl acc2

1

At each step, accl holds the current Fibonacci number and acc2 holds the

next one. Thus we can describe the algorithm that takes us from one step to

the next as follows:

1. The new value of accl is the same as the previous value of acc2.

2. The new value for acc2 is the sum of previous values of accl and acc2.

We apply these rules to extend the table to show the next six steps, as dis-

played in Table 4.23.

We are now ready to define a procedure fib-it that takes three arguments,

a nonnegative integer n, and the two accumulators, accl and acc2, and re-

turns the Fibonacci number corresponding to n. There are two ways that we

can use the algorithm given to write the code. In the first method, we can

use the value stored in accl (initially 0) to give us the answer. In that case,

one iteration of the algorithm gives us (fib 1), two iterations give us (fib

2), and in general n iterations give us (fib n) for any positive n. In the

4.6 Analyzing the Fibonacci Algorithm 123

Program 4.24 fib-it

(define fib-it

(lambda (n accl acc2)

(if (= n 1)

acc2

(fib-it (subl n) acc2 (+ accl acc2)))))

second method, we can use the value stored in acc2 (initially l) to give us

the answer. In this case, one iteration of the algorithm gives us (fib 2), two

iterations give us (fib 3), and in general, (n— 1) iterations give us (fib n).

The second method is more efficient for getting the value of (fib n). We opt

to implement the second method.

Our iterative procedure fib-it takes three parameters: the positive integer

n and the two accumulators accl and acc2. To implement the algorithm

stated above, we successively replace acc2 by the sum of accl and acc2,

and replace accl by the previous value of acc2. Then to compute the nth

Fibonacci number, we must repeat the process (n — 1) times. We use the

variable n as a counter and reduce it by one on each pass. When n reaches 1,

the accumulator acc2 contains the answer. This leads to the definition given

in Program 4.24.

Let's walk through (fib-it 6 1) to see how this works. On successive

passes through the program, the following procedure calls are made:

(fib-it 6 1)

(fib-it 5 1 1)

(fib-it 4 1 2)

(fib-it 3 2 3)

(fib-it 2 3 5)

(fib-it 1 5 8)

8

and the answer is the final value of acc2, which is 8. To compute the sixth

Fibonacci number, we only make six procedure calls and 5 additions. In

general, to compute the nth Fibonacci number, we make n procedure calls

and do n — 1 additions. This is a noticeable improvement over the number

of procedure calls and additions when fib is invoked. The iterative version,

fib- it, is certainly more efficient and saves a considerable amount of time

in computing the Fibonacci numbers. The ordinary recursive version, fib, is

less efficient but it does have the advantage of being easier to define directly

in terms of the rule that defines the Fibonacci numbers.

124 Data Driven Recuraion

Again, if we do not want to include the initial values of the accumulators

in each procedure call, we can define the iterative version of fib as

(define fib

(lambda (n)

(if (zero? n)

(fib-it n 1))))

We have seen that some methods of evaluating a given expression may take

more resources than other methods. The study of the efficiency of various

algorithms is called the analysis of algorithms. Let us denote the total re-

sources used in computing an expression that depends on an argument n to

be (res n). In our discussion, fib depended on the argument n, and we can

define as the resources used the sum of (calls-fib n) and (adds-^fib n).

Inspection of the table for (calls-fib n) shows that the following relation

exists between (calls-fib n) and (fib n):

(calls-fib n) = (addl (* 2 (subl (fib (addl n)))))

Similarly, (adds-f ib n) and (fib n) are related by

(adds-fib n) = (subl (fib (addl n)))

so that

(res n) = (addl (* 3 (subl (fib (addl n)))))

We now derive an estimate for (fib n). If you prefer, you can skip to

the formula for (fib n) given at the end of the derivation. We use the

fact that if a procedure satisfies the Fibonacci recurrence relation F{n) =
F{n — 1) + F{n - 2) and the initial conditions F(0) = and F{1) = 1, then

F[n) = (fib n) for all n. We begin by making a rather arbitrary assumption:

that F[n) gets large like some number a raised to the nth power. We then look

for restrictions that can be placed on the number a in order for the function

a" to satisfy the Fibonacci recurrence relation. If we are lucky enough to find

such conditions that determine a, we have solved the problem of finding a

formula for F{n). Substitution of a" into the recurrence relation gives us

^n „n— 1
I
„n—2a == a + a

4-6 Analyzing the Fibonacci Algorithm 125

and dividing through by a" ^ gives us the simple relation

a^ =0 + 1

This quadratic equation has the positive root

(l + v/5)

(l-v/5)

a —

and the negative root

'=
2

which are approximately 1.618 and —0.618, respectively.

It is easily verified that since both a" and 6" satisfy the Fibonacci recurrence

relation, then for any pair of numbers A and 5, the sum F(n) = Aa" + 56"

also satisfies the same recurrence relation. We thus try to find values of A
and B so that F(0) = and F(l) = 1. The constants A and B will now be

evaluated from the fact that

/'(0) = = A + 5

F(l) = l = .4a + 56

We find that A — -B = l/\/E and that with these values of A and B, F{n)

and (lib n) are the same for n = and n = 1, and that they both satisfy

the Fibonacci recurrence relation for all n. This means that they are the same

for £dl n, and we have

Thus (lib n) is somewhat less than 1.7", and (res n) is somewhat less than

3(1.7").

In general, we say that the procedure (res n) is of order 0{f{n)) for some

function / of n if there is a constant K such that (res n) < Kf{n) when n

is sufficiently large. In our case, we can say (res n) = 0(1.7") and since it

grows like the nth power of a number greater than 1, we say that (res n)

has exponential order when computing (lib n)

.

On the other hand, the operation count (res n) for computing (lib-it

n 1) is 2n - 1, which is simply 0{n). Here the n does not appear in an

exponent, but rather (res n) is simply a constant times n. We say that in this

case, (res n) has linear order. Thus the time required to compute (lib n)

grows exponentially with n, while the time required to compute (lib- it n

126 Data Driven Recursion

Program 4.25 reverse-it

(define reverse-it

(lambda (Is ace)

(if (null? Is)

ace

(reverse-it (cdr Is) (cons (cEir Is) ace)))))

1) grows linearly with n. We have seen what a dramatic difference this

makes.

In our two examples of iterative programs, we used procedures defined on

numbers. It is also possible to use similar methods to write iterative versions

of some of the list-processing procedures we considered earlier. For example,

consider the procedure reverse, which takes a list of items Is and returns

a list with the items in reverse order. We can write an iterative version

reverse-it that takes two arguments, a list of items Is and an accumulator

ace, which is initialized to be the empty list. The code for reverse-it is

given in Program 4.25. We now can obtain the procedure reverse by writing

(define reverse

(lambda (Is)

(reverse-it Is '())))

We leave it as an exercise to compare this iterative version with the earlier

recursive version of reverse. If we actually walk through each version with a

simple example, we see that the accumulator already is the answer when Is is

empty, whereas in the recursive version, we still have to use backward substi-

tution in a return table to get the answer. Furthermore the iterative version

does not use the helping procedure append. Generally, iterative versions tend

to require more arguments.

Exercises

Exercise 4-15

Rewrite the recursive version of the procedure fib with the line

(writeln "n = " n)

inserted just below the line (Isimbda (n). Then compute (fib 4) and com-

pare the results with the tree in Figure 4.21. Also compute (fib 5) and (fib

6) and observe how the number of recursive calls to fib increases.

4-6 Analyzing the Fibonacci Algorithm 127

Exercise 4- 16

Rewrite the iterative version of the procedure fib-it with the line

(writeln "n = " n ", accl = " accl ", acc2 = " acc2)

inserted just below the line

(lambda (n accl acc2)

Compute (fib-it 4 1) and compare the output with the output for (fib

4) in the preceding exercise. Do the same for (fib-it 5 1) and (fib-it

6 1).

Exercise 4^7: calls-fib, adds-fib

Write the definitions of the procedures calls-fib and adds-fib discussed in

this section. Test your procedures on the values given in Table 4.22. Also

evaluate each of these procedures for larger values of n to get an idea of their

rates of growth.

Exercise 4-18: length-it

Write an iterative version length-it of the procedure length, that computes

the length of a list.

Exercise 4-19: mk-asc-list-of-ints, mk-desc-list-of-ints

Write an iterative procedure mk-asc-list-of-ints that, for any integer n,

produces a list of the integers from 1 to n in ascending order. Then write an

iterative procedure mk-desc-list-of-ints that, for any integer n, produces

a list of integers from n to 1 in descending order.

Exercise 4-20: occurs, occurs-it

Define both recursive and iterative versions of a procedure occurs that counts

the number of times an item occurs at the top level in a list. Call the iterative

version occurs-it. Test your procedures by counting how many times the

item a occurs at top level in each of the following lists:

(a b a c a d)

(b c a (b a) c a)

(b (c d))

128 Data Driven Recursion

