
Locally Defined Procedures

5.1 Overview

When we bind a variable to some value using define, we are able to use that

variable to represent the value to which it is bound either directly in response

to a Scheme prompt or within a program that we are writing. Does this

mean that we have to think of new names for every variable we use when we

write many programs? No. Scheme gives us a mechanism for limiting where

bindings are in effect. In this chapter, we look at ways of binding variables

so that the binding holds only within a program or part of a program. The

main tools for doing this are two special forms with keywords let and letrec.

After introducing them, we use them to implement polynomials as a data type

in Scheme. We then apply the polynomial methods we develop to a discussion

of binary numbers, which form the basis of machine computation.

5.2 Let and Letrec

You may have wondered how Scheme knows what value to associate with

various occurrences of a variable. When some value is assigned to a variable,

we may think of that information being stored in a table with two columns: the

left one for variable names and the right one for the associated values. Such

a table is called an environment. A number of variables (such as those bound

to procedures) like +, , catx, and cons are predefined. These definitions are

kept in a table which we call the initial global environment. This initial global

environment is in place whenever you start up Scheme. When a given variable

is encountered in an expression, Scheme looks through its environment to see

if the variable has been bound to a value. Naturally, the variable + is bound

to the arithmetic operation we usually associate with the addition procedure,

and so on.

In addition to having the predefined Scheme variables, we have seen how

to use define to bind a variable to a desired value. The expression (define

var val) binds the variable var to the value val. We can again think of the

variables we define ourselves as being placed in a table which we call the user

global environment and when a variable is encountered in an expression, the

global environment (which includes both the user and initial global environ-

ments) is scanned to see if that variable is bound to a value. If a binding

cannot be found, a message is written saying that the variable is unbound in

the current environment. The user global environment remains in effect until

the user exits from Scheme.

Variables are also used as parameters to procedures that are defined by a

lambda expression. For example, in the lambda expression

(lambda (x y) (+ x y))

the variables x and y occurring in the body (+ x y) of the lambda expression

are locally bound (or lambda bound) in the expression (+ x y) since the x and

y occur in the list of parameters of that lambda expression. If we apply the

procedure, which is the value of this lambda expression, to the arguments 2

and 3, as in

(danbda (x y) (+ x y)) 2 3)

we can think of a new table being made, called a local environment, which

is associated with this procedure call. In this local environment, x is locally

bound to 2 and y is locally bound to 3. Then substituting 2 for x and 3 for

y gives (+ x y) the value 5, and

((lambda (x y) (+ x y)) 2 3)

returns the value 5.

A variable occurring in a lambda expression that is not lambda bound by

that expression is called free in that expression. If we consider the expression

(lambda (f y) (f a (f y z)))

the variables f and y are lambda bound in the expression, and the variables

a and z are free in the expression. When the application

130 Locally Defined Procedures

((lambda (f y) (f a (f y z))) cons 3)

is evaluated, the operator (which is the lambda expression) and its two oper-

ands are first evaluated. When the lambda expression is evaluated, bindings

are found for the free variables in a nonlocal environment. Then, with these

bindings for the free variables, the body of the lambda expression is evaluated

with 1 bound to the procedure, which is the value of cons, and y bound to

3. If either of the free variables is not bound in a nonlocal environment, a

message to that effect appears when the application is made. On the other

hand, if a is bound to 1 and z is bound to (4) in a nonlocal environment,

then this application evaluates to (1 3 4).

We used the term nonlocal environment in the previous paragraph when

we referred to the bindings of the free variables in the body of a lambda

expression. Those bindings may be found in the global environment or in a

local environment for another lambda expression. This is illustrated by the

following example:

((lambda (x)

((lambda (y)

(- X y))

15))

20)

The variable x is free in the body of the inner lambda expression, but its

binding is found in the local environment for the outer lambda expression.

The value of the expression is 5.

In the example

(lambda (x y) (+ x y))

the local bindings hold only in the body (+ x y) of the lambda expression,

and when we leave the body, we can for the moment think of the local en-

vironment as being discarded. The expression (+ x y) is said to be in the

scope of the variable x (and also of y). In general, an expression is said to

be in the scope of a variable x if that expression is in the body of a lambda

expression in which x occurs in the list of parameters.

By looking at a Scheme program, one can tell whether a given expression is

in the body of some lambda expression and determine whether the variables

in that expression are lambda bound. A language in which the scope of the

variables can be determined by looking only at the programs is called lexically

scoped. Scheme is such a language.

5.2 Let and Letrec ISl

Scheme provides several other ways of making these local bindings for vari-

ables, although we shall later see that these are all ultimately related to

lambda bindings. The two that we discuss here are let expressions and le-

trec expressions. To bind the variable var to the value of an expression val

in the expression body, we use a let expression (which is a special form with

keyword let) with the syntax:

(let i(var val)) body)

To make several such local bindings in the expression body, say vari is to

be bound to vali ,
var2 to val2

, , vavn to vain , we write

(let ((vari vali) (var2 va/2) . . . (varn vain)) body)

The scope of each of the variables vari, var2, . , vaVn is only body within

the let expression. For example, the expression

(let ((a 2) (b 3))

(+ a b))

returns 5. Here a is bound to 2 and b is bound to 3 when the body (+ a b)

is evaluated. Another example is

(let ((a +) (b 3))

(a 2 b))

returns 5, since a is bound to the procedure associated with + and b is bound

to 3. Similarly, in the expression

(let ((add2 (lambda (x) (+ x 2)))

(b (* 3 (/ 2 12))))

(/ b (add2 b)))

the variable add2 is bound to the procedure to which (lambda (x) (+ x 2))

evaluates, which increases its argument by 2, and b is bound to 0.5, and the

whole expression returns 0.2.

The local binding always takes precedence over the global or other nonlocal

bindings, as illustrated by the following sample computation:

132 Locally Defined Procedures

[1] (define a 5) [5] (let ((a 5))

[2] (addl a) (begin

6 (writeln (addl a))

[3] (let ((a 3)) (let ((a 3))

(addl a)) (sriteln (addl a)))

4 (addl a)))

[4] (addl a) 6

6 4

6

The define expression makes a binding of a to 5. When a is encountered in

(addl a) in [2] , its value is found in the global environment and 6 is returned.

In [3] , a is locally bound to 3, and the expression (addl a) is evaluated with

this local binding to give the value 4. The scope of the variable a in the let

expression is only the body of the let expression. Thus in [4] , the value of

the variable a in (addl a) is again found in the global environment, where

a is bound to 5, so the value returned for (addl a) is 6. In [5], we see a

version of the same computation in which no global bindings of a are made,

but here the local binding takes precedence over the nonlocal bindings.

We get a better understanding of the meaning of the let expression

(let ((a 2) (b 3))

(+ab))

when we realize that it is equivalent to an application of a lambda expression:

((lambda (a b) (+ a b)) 2 3)

To evaluate this application, we first bind a to 2 and b to 3 in a local envi-

ronment and then evaluate (+ a b) in this local environment to get 5.

In general, the let expression

(let iivari vali) ivar2 ^0/2) ... ivarn vain)) body)

is equivalent to the following application of a lambda expression:

((lambda ivari var2 ... varn) body) vali va/2 ... vain)

From this representation, we see that any free variable appearing in the

operands vali, va/2, . ., vain is looked up in a nonlocal environment. For

example, let's consider

5.2 Let and Letrec 133

[1] (define a 10)

[2] (define b 2)

[3] (let ((a (+ a 5)))

(a b))

30

[4] (let ((a 10) (b 2))

(let ((a (+ a 5)))

(* a b)))

30

In this example, a is bound globally to 10 in Cl], and b is bound globally

to 2 in [2]. Then in [3], the expression (+ a 5) is first evaluated.^ The

variable a is free in the expression (+ a 5), so the value to which a is bound

must be looked up in the nonlocal (here global) environment. There we find

that a is bound to 10, so (+ a 5) is 15. The next step is to make a local

environment where a is bound to 15. We are now ready to evaluate the body

of the let expression (* a b). We first try to look up the values of a and b

in the local environment. We find that a is locally bound to 15, but b is not

found there. We must then look in the nonlocal (here global) environment,

and there we find that b is bound to 2. With these values, (* a b) is 30, so

the let expression has the value 30. In [4] , we see a similar program in which

the free variables are looked up in a nonlocal but not global environment.

Looking back at the let expressions, we see how the lexical scoping helps us

decide which environment (local or nonlocal) to use to look up each variable.

It is important to keep track of which environment to use in evaluating an

expression, for if we do not do so, we might be surprised by the results. Here

is an interesting example:

[1] (define addb

(let ((b 100))

(Icunbda (x)

(+ X b))))

[2] (let ((b 10))

(addb 25))

125

Because b is bound to 10 in [2] and (addb 25) is the body of the let expres-

sion with this local environment, one might be tempted to say that the answer

in [2] should have been 35 instead of 125. In [1] , however, the lambda ex-

pression falls within the scope of the let expression in which b is bound to

^ The symbol + is also free in (+ a 5) , and its value is found in the initi£d global environment

to be the addition operator. The number 5 eveduates to itself. Simileirly, the symbol » is free

in the body, eind its value is found in the initial globed environment to be the multiplication

operator.

134 Locally Defined Procedures

100. This is the binding that is "remembered" by the lambda expression, and

when it is later applied to the argument 25, the binding of 100 to b is used

and the answer is 125.

Let's look at [1] again. The variable addb is bound to the value of the

lambda expression, thereby defining addb to be a procedure. The value of

this lambda expression must keep track of three things as it "waits" to be

applied: (1) the list of parameters, which is (x), (2) the body of the lambda

expression, which is (+ x b), and (3) the nonlocal environment in which the

free variable b is bound, which is the environment created by the let expression

in which b is bound to 100. The value of a lambda expression is a procedure

(also called a closure), which consists of the three parts just described. In

general, the value of any lambda expression is a procedure (or closure) that

consists of (1) the list of parameters (which follows the keyword lambda), (2)

the body of the lambda expression, and (3) the environment in which the

free variables in the body are bound at the time the lambda expression is

evaluated. When the procedure is applied, its parameters are bound to its

arguments, and the body is evaluated, with the free variables looked up in

the environment stored in the closure. Thus in [2], (addb 25) produces the

value 125 because the addb is bound to the procedure in which b is bound to

100.

Consider the following nested let expressions:

(let ((b 2))

(let ((add2 (lambda (x) (+ x b)))

(b 0.5))

(/ b (add2 b))))

The first let expression sets up a local environment that we call Environment 1

(Figure 5.1).

m

Figure 5.1 Environment 1

The inner let expression sets up another local environment, which we call

Environment 2. The first entry in this environment is add2, which is bound

to the value of (lambda (x) (+ x b)). The x in (+ x b) is lambda bound

in that lambda expression, and the value of b can be found in Environment 1.

5.2 Let and Letrec 1S5

But the inner let expression is in the body of the first let expression, so

Environment 1 is in effect and we find that the value associated with b in

Environment 1 is 2. Thus we have Environment 2 (Figure 5.2).

add2 Procedure (x) (+ I b) Environment 1

0.5

Figure 5.2 Environment 2

All of the variables in the expression to which add2 is bound are either

bound in that expression itself (a^ was x) or are bound outside of the let

expression (as was b). We are now ready to evaluate the expression (/ b

(add2 b)). In which environment do we look up b? We always search the

environments from the innermost let or lambda expression's environment out-

ward, so we search Environment 2 first, finding that b is bound to 0.5. Thus

the whole expression is (/ 0.5 2.5), which evaluates to 0.2.

As an example of how let is used in the definitions of procedures, we

reconsider the definition of the procedure remove-leftmost, which was given

in Program 4.15. Recall that our objective is to produce a list the same

as the list Is except that it has removed from it the leftmost occurrence

of item. In the base case, when Is is empty, the answer is the empty list.

If (car Is) is equal to item, (car Is) is the leftmost occurrence of item

and the answer is (cdr Is). If neither of the cases is true, there are two

possibilities: either (car Is) is a pair, or it is not a pair. If it is a pair,

we want to determine whether it contains item. In Program 4.15, we used

member-all? to determine this. Another way is to check whether (car Is)

changes when we remove the leftmost occurrence of item from it. If so, then

item must belong to (car Is), in which case the answer is

(cons (remove-leftmost item (car Is)) (cdr Is))

But if we use this approach, we have to evaluate

(remove-leftmost item (car Is))

twice, once when making the test and again when doing the consing. To avoid

the repeated evaluations of the same thing, we use a let expression to bind a

variable, say rem-list, to the value of

136 Locally Defined Procedures

(remove-leftmost item (cju: Is))

and use rem-list each time the value of this expression is needed. Here is

the new code for remove-leftmost:

Program 5.3 remove-leftmost

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

((pair? (car Is))

(let ((rem-list (remove-leftmost item (car Is))))

(cons rem-list (cond

((equal? (ceir Is) rem-list)

(remove--leftmost item (cdr Is)))

(else (cdr Is))))))

(else (cons (ecu: '.Ls) (remove--leftmost item (cdr Is)))))))

In a let expression

(let ((war val)) body)

any variables that occur in val and are not bound in the expression val itself

must be bound outside the let expression (i.e., in a nonlocal environment), for

in evaluating val, Scheme looks outside the let expression to find the bindings

of any free variables occurring in val. Thus

(let ((fact (lambda (n)

(if (zero? n)

1

(* n (fact (subl n)))))))

(fact 4))

will return a message that fact is unbound. You should try entering this code

to become familiar with the messages that your system returns. This message

refers to the fact occurring in the lambda expression (written here in italics),

5.2 Let and Letrec 137

which is not bound outside of the let expression. ^ Thus if we want to use a

recursive definition in the "val" part of a let-like expression, we have to avoid

the problem of unbound variables that we encountered in the above example.

We can avoid this difficulty by using a letrec expression (a special form with

keyword letrec) instead of a let expression to make the local binding when

recursion is desired.

The syntax for letrec is the same as that for let:

(letrec ((.vari vali) (vor2 ^0^3) ••• (.varn vain)) body)

but now any of the variables vari, var2, • • • , varn can appear in any of the

expressions vali , va/2 , • • • , vain , and refer to the locally defined variables

uori, var2, . . •, varn, so that recursion is possible in the definitions of these

variables. The scope of the variables vari, var2, . .
.

, varn now includes vali,

val2, . . ., vain, as well as body. Thus,

(letrec ((fact (leunbda (n)

(if (zero? n)

1

(* n (fact (subl n)))))))

(fact 4))

has the value 24.

We can also have mutual recursion in a letrec expression, as the next ex-

ample illustrates:

(letrec ((even? (lambda (x)

(or (zero? x) (odd? (subl x)))))

(odd? (lambda (x)

(and (not (zero? x)) (even? (subl x))))))

(odd? 17))

has the value #t.

In Program 5.4 we take another look at the iterative version of the factorial

procedure discussed in Program 4.19, this time written with letrec. Here we

are able to define the procedure fact with parameter n and define the iterative

helping procedure fact-it within the letrec expression. This enables us to

If we call (fact 0), the value 1 is returned, since the consequent of the if expression is

true and the alternative, in which the call to fact is made, is not evaluated. In this case

no error message would result.

138 Locally Defined Procedures

Program 5.4 fact

(define fact

(lambda (n)

(letrec ((fact-it

(lambda (k ace)

(if (zero? k)

ace

(fact-it (subl k) (* k ace))))))

(fact-it n 1))))

Program 5.5 swapper

(define swapper

(lambda (x y Is)

(letrec

((swap

(lambda (Is*)

(eond

((null? Is*) '())

((equal? (car Is*) x) (eons y (swap (cdr Is*))))

((equal? (ceir Is*) y) (eons X (swap (cdr Is*))))

(else (cons (<:ar Is*) (swap (cdr Isi'))))))))

(swap Is))))

define an iterative version of fact without having to use a globally defined

helping procedure. There is an advantage to keeping the number of globally

defined procedures small to avoid name clashes. Otherwise you might forget

that you used a name for something else earlier and assign that name again.

The letrec expression provides a more convenient way of writing code for

procedures that take several arguments, many of which stay the same through-

out the program. For example, consider the procedure swapper defined in

Program 2.8, which has three parameters, x, y, and Is, where x and y are

items and Is is a list. Then (swapper x y Is) produces a new list in which

x's and y's are interchanged. Note that in Program 2.8 each time we invoked

swapper recursively, we had to rewrite the variables x and y. We can avoid

this rewriting if we use letrec to define a local procedure, say swap, which

takes only one formal argument, say Is*, and rewrite the definition of the

procedure swapper as shown in Program 5.5.

5.2 Let and Letrec 139

The parameter to swap is Is*, and when the locally defined procedure

swap is called in the leist line of the code, its argument is Is, which is lambda

bound in the outer lambda expression. We could just as well use the variable

Is instead of Is* as the parameter in swap since the lexical scoping specifies

which binding is in effect. When we call swapper recursively in the old code,

we write all three arguments, whereas when we call swap recursively in the

new code, we must write only one argument. This makes the writing of the

program more convenient and may make the code itself more readable.

In this section, we have seen how to bind variables locally to procedures

using the special forms with keywords let and letrec. We use these impor-

tant tools extensively in writing programs that are more efficient and easier

to understand.

Exercises

Exercise 5.1

Find the value of each of the following expressions, writing the local environ-

ments for each of the nested let expressions. Draw arrows from each variable

to the parameter to which it is bound in a lambda or let expression. Also

draw an arrow from the parameter to the value to which it is bound.

a. (let ((a 5))

(let ((fun (lambda (i) (max x a))))

(let ((a 10)

(x 20))

(fun 1))))

b. (let ((a 1) (b 2))

(let ((b 3) (c (+ a b)))

(let ((b 5))

(cons a (cons b (cons c '()))))))

Exercise 5.2

Find the value of each of the following letrec expressions:

a. (letrec

((loop

(lambda (n k)

(cond

((zero? k) n)

(« n k) (loop k n))

(else (loop k (remainder n k)))))))

(loop 9 12))

140 Locally Defined Procedures

b. (letrec

((loop

(leifflbda (n)

(if (zero? n)

(+ (remainder n 10) (loop (quotient n 10)))))))

(loop 1234))

Exercise 5.3

Write the two expressions in Parts a and b of Exercise 5.1 as nested lambda

expressions without using any let expressions.

Exercise 5.4

Find the value of the following letrec expression.

(letrec ((mystery

(lambda (tuple odds evens)

(if (null? tuple)

(append odds evens)

(let ((next-int (car tuple)))

(if (odd? next-int)

(mystery (cdr tuple)

(cons next-int odds) evens)

(mystery (cdr tuple)

odds (cons next-int evens))))))))

(mystery ' (3 16 4 7 9 12 24) ' ' ()))

Exercise 5.5

We define a procedure mystery as follows:

(define mystery

(leUDbda (n)

(letrec

((mystery-helper

(lambda (n s)

(cond

((zero? n) (list s))

(else

(append

(mystery-helper (subl n) (cons s))

(mystery-helper (subl n) (cons 1 s))))))))

(mystery-helper n '()))))

What is returned when (mystery 4) is invoked? Describe what is returned

when mystery is invoked with an arbitrary positive integer.

5.2 Let and Letrec 141

Exercise 5.6: insert-left-all

Rewrite the definition of the procedure insert-left-all (See Exercise 4.6.)

using a locally defined procedure that takes the list Is as its only argument.

Exercise 5.7: fib

As in Program 5.4 for fact, write an iterative definition of fib using fib-it

(See Program 4.24.) as a local procedure.

Exercise 5.8: list-ref

Program 3.7 is a good definition of list-ref. Unfortunately, the informa-

tion displayed upon encountering a reference out of range is not as complete

as we might expect. In the definitions of list-ref, which precede it, how-

ever, adequate information is displayed. Rewrite Program 3.7, using a letrec

expression, so that adequate information is displayed.

5.3 Symbolic Manipulation of Polynomials

One of the eidvantages of a list-processing language like Scheme is its con-

venience for manipulating symbols in addition to doing the usual numericeil

calculations. We illustrate this feature by showing how to develop a sym-

bolic algebra of polynomials. By a symbolic algebra we mean a program that

represents the items under discussion as certain combinations of symbols and

then performs operations on these items as symbols rather than as numerical

values.

We begin by reviewing what is meant by a polynomial. An expression 5z^

is referred to as a term in which 5 is the coefficient and the exponent 4 is

the degree. In general, a term is an expression of the form a^x^ , where the

coefficient ajk is a real number emd the degree A; is a nonnegative integer. The

symbol x is treated algebraically as if it were a real number. Thus we may
add two terms of the same degree, as illustrated by 5z^ -\- 3z^ = 8z^. In

general, the sum of two terms of like degree is a term of the same degree with

coefficient that is the sum of the coefficients of the two terms. This rule is

expressed in symbols by

akx^ + hkx^ = (ajt + bk)x^

A term can also be multiplied by a real number, as illustrated by 7(5z^) =
35z^. In general, when we multiply the term akX^ by the reaJ number c, the

product is a term that has coefficient cajt and the same degree; thus

c(ajkz*) = (caifc)z*

14s Locally Defined Procedures

