
Abstracting Procedures

7.1 Overview

In this chapter, we first see how procedures can be passed as arguments to

other procedures and how procedures may be the values of other procedures.

We illustrate these ideas with a development of the Ackermann procedure.

We then show how a procedure of two arguments may be rewritten as a

procedure of one argument whose value is a procedure of one argument. This

process is called currying. We next look at several programs that are similar

in structure and we abstract these common features in a program that can be

used easily to generate any other program with these features. This process

is called procedural abstraction. Flat recursion on lists is often encountered

in program.ming, so we have selected it as the first candidate for abstraction.

That is followed by an abstraction of deep recursion.

7.2 Procedures as Arguments and Values

In this section, we shall study the use of procedures as arguments to other

procedures and as values of procedures. In Chapter 1, we included procedures

as a type of datum and have on occasion used procedures as arguments to

other procedures. For example, in the definition of max in terms of extreme-

value in Chapter 3, we passed the procedure > as an argument to the proce-

dure extreme-value. In Scheme, all procedures may be used as arguments

to other procedures and as values of procedures. This idea is illustrated by

many examples in this section.

Suppose we have a list of numbers, such as (13 5 79), and we want to

Program 7.1 map

(define map

(lambda (proc Is)

(if (null? Is)

'()

(cons (proc (car Is)) (map proc (cdr Is))))))

produce a new list that is obtained from the old by adding 1 to each item in

the list, so that in our example, we would get (2468 10). We can define

a procedure addl-to-each-item that takes a list Is and returns the new list

with each number augmented by 1.

(define addl-to-each-item

(lambda (Is)

(if (null? Is)

'()

(cons (+ 1 (car Is)) (addl-to-each-item (cdr Is))))))

Now if we want to add 2 to each element, we have to write the definition

again but with (+1 (car Is)) replaced by (+ 2 (car Is)). Since we may
want to perform many different operations on the elements of the list, it

would be more efficient if we had a procedure that takes as arguments both

the procedure we wish to apply to each element and the list. There is a

Scheme procedure map that has the parameters proc and Is and returns a

list that contains those elements that are obtained when the procedure proc

of one argument is applied to each element of Is. Thus

(map addl ' (1 3 5 7 9)) => (2 4 6 8 10)

A definition of map is given in Program 7.1. To add 2 to each element in the

list, we pass the procedure of one argument, (Isunbda (num) (+ num 2)), as

the first argument to map. Thus we have

(map (lambda (num) (+ num 2)) ' (1 3 5 7 9)) =* (3 5 7 9 11)

We can also apply map with a procedure that operates on lists as its first

argument. For example:

(let ((proc (lambda (Is) (cons 'a Is))))

(map proc '((be) (d e) (f g h)))) => ((a b c) (a d e) (a f g h))

196 Abstracting Procedures

Program 7.2 lor-each

(define for-each

(lambda (proc Is)

(if (not (null?

(begin

Is))

(proc (car Is))

(for-each proc (cdr Is))))))

(let ((x 'a))

(let ((proc (lambda (Is) (member? x Is))))

(map proc '((a b c) (bed) (c d a))))) =* (#t #f #t)

Observe that the elements of the list making up the second argument to map

must be of the correct type for the procedure that is applied to them. In

the first of these two examples, proc is a procedure that takes a list as its

argument and conses the symbol a onto the list. Thus each element of the

second argument to map is a list, and the list that is returned consists of

sublists, each of which begins with the a that was consed onto it.

There are procedures, such as display, that produce side effects of interest

to us rather than their returned values. If we apply such a procedure to each

item in a list, the list that is returned is not what interests us but only the side

effects produced by the procedure. In such cases, we use the Scheme procedure

for-each instead of map to apply the side-effecting procedure to the elements

of the list. When lor-each is applied with a side-effecting procedure as its

first argument and a list as its second argument, the procedure is applied

to each item in the list, the desired side effects are produced, and the value

that is returned is unspecified, that is, it depends upon the implementation

of Scheme being used. A definition of for-each is given in Program 7.2. An
example using for-each is:

[1] (for-each display '("Hello. How are you?"))

Hello. How eire you?

We shall see several more examples of the use of for-each below. But first

we introduce the form of lambda that is used to define a procedure that takes

an arbitrary number of arguments. We use this unrestricted lambda to define

the procedures writeln and error, which we have been using.

In a lambda expression, the keyword lambda is followed by a list of param-

eters. Its syntax is

7.2 Procedures as Arguments and Values 197

(Isunbda (parameteri . . .) expri expr2 • • •)

where zero or more parameters are in the list of parameters and where the

number of arguments passed to the procedure, which is the value of this

lambda expression, must match the number of parameters. The body of the

lambda expression consists of one or more expressions, which are evaluated in

order and the value of the last one is returned. Suppose we want to define a

procedure add that can be applied to arbitrarily many numbers and returns

their sum. For example, we would like to have

(add 1 3 5 7 9) =» 25

(add 1 3 5 7 9 11) ==* 36

(add 1 3 5 7 9 11 13) =» 49

It is possible to define a procedure that can be applied to any number of

arguments using the unrestricted lambda, whose syntax is

(lauabda var expri expr2 .)

and it may be applied to any number of operands by invoking

(danbda var expri expr2) operandi ...)

If the operands operandi . . . have the values argi . . ., then the variable var is

bound to the list of arguments (argi .

.

.). The expressions expri expr2 . .

.

in the body are evaluated with this binding in eff'ect.

Program 7.3 add

(define add

(letrec ((list-add

(laabda (Is)

(if (null? Is)

(+ (car Is) (list-add (cdr Is)))))))

(lambda eurgs

(list-add args))))

As an example. Program 7.3 shows the definition of a procedure add that

produces the sum of its arguments. For example, (add 12 3 4 6) =^ 16.

198 Abstracting the Structure of Procedures

Program 7.4 list

(define list (lambda args args))

Program 7.5 writeln

(define writeln

(lambda arge

(for-each display <irgs)

(newline)))

Program 7.6 error

(define error

(lambda args

(display "Error:")

(for-each (leunbda (value) (display " ") (display value)) eirgs)

(nevline)

(reset)))

The general strategy for using this form of lambda is to remember that eurgs is

a list, so we define a local procedure list-add that takes a list as its argument

and let it do what we want add to do. Then we call list-add with the list

args as its argument.

Similarly, the procedure list is defined in Program 7.4 so that

(list 'a 'b 'c 'd) =» (a b c d)

Two procedures, writeln and error, can also be defined using the unre-

stricted lambda. These are shown in Programs 7.5 and 7.6. The procedure

of no arguments reset in Program 7.6 returns the user to the prompt. Many

implementations of Scheme provide the procedure reset. A discussion of the

concepts used to define reset is given in Chapter 16. (See Exercise 16.6.)

Suppose we now want to find the maximum of two numbers in a list Is.

We cannot invoke (max Is), since the list Is is not the correct data type for

an argument to max, which expects each of its arguments to be a number.

If Is were, for example, (2 4), we would be looking at the expression (max

'(2 4)), which has the wrong type of argument for max. We could write

a recursive program that would compute the maximum of the values in Is.

7.2 Procedures as Arguments and Values 199

Program 7.7 add

(define add

(lambda args

(if (null? args)

(+ (car args) (apply add (cdr args))))))

However, there is the Scheme procedure, apply, that allows us to apply a

procedure of k arguments to a list of k items, and the results are the same as

if the items in the list were passed as the k arguments. The procedure apply

has the call structure

(apply proc list-of-items)

where the procedure proc takes the same number of arguments as the number

of items in the list Hst-of-items. It returns the value obtained when we invoke

proc with the items in list-of-items as its arguments. For example, we can

call

(apply max '(2 4)) =* 4

(apply + '(4 ID) =^ 15

The use of apply gives us another way to define procedures using the un-

restricted leunbda. Program 7.7 illustrates it by redefining the procedure add

given in Program 7.3, this time using apply in the recursive invocation of add

on the list (cdr args). There add is defined to apply to an arbitrary number

of numbers, so it cannot be applied directly to (cdr aorgs), which is a list

of numbers. Thus we use apply to invoke add on the items in the list (cdr

args).

The Scheme procedures + and are also defined to take an arbitrary number

of arguments. Thus we have:

(+ 1 3 5 7 9) => 25

(+ 5) => 5

(+) =>
(* 2 4 6) =« 48

(5) ==» 5

(*) => 1

200 Abstracting the Structure of Procedures

Similarly, the Scheme procedures maa and min are defined to take one or

more arguments. Thus we have

(ax 5 -10 15 -20) ^ 15

(in 5 -10 15 -20) =* -20

An object in Scheme is said to be a firsi-class object if it can be petssed as

an argument to procedures, can be returned by procedures, and variables may
be bound to it. We have been using data objects such as numbers, symbols,

or lists of numbers or symbols as arguments to procedures and as values of

procedures, and we have bound them to variables using define, lambda, let

and letrec. Procedures are also treated as first-class objects in Scheme. This

is not the case in many other programming languages. We now explore further

the implications of procedures as first-class objects.

To discuss the composition of two procedures, we first look at the composi-

tion of two functions from a mathematical point of view. Assume that / and

g are functions that take one argument and that each value of the function g

is a valid argument of the function /. We can then speak of the composition

h of the two functions / and g to be the function of one argument defined

by h{x) = fig{x)): that is. to get the value of h at x. we first evaluate g at

X. and then invoke / on the value gix). This idea can be interpreted for the

procedures we use in our programs. We now define a procedure compose that

takes two procedures f and g as parameters and returns another procedure

that is the composition of f and g.

Program 7.8 compose

(define compose

(la«bda (f g)

(laabda (x)

(f (g x)))))

The body of the first lambda expression constructs the procedure

(laabda (x)

(f (g x)))

with one parameter x. Thus (compose f g) is a procedure of one argument,

and we invoke this new procedure on 8 by writing ((compose f g) 8). As

7.2 Procedures as Arguments and \'alues 201

an example, let us take addl for g and sqrt for f . Then we can define the

composition h by writing

(define h (compose sqrt addl))

The new procedure h is the procedure that adds 1 to x and then takes the

square root of the result; expressed mathematically, h{x) = yjx + 1. If we

invoke h with argument 8, we get (h 8) ==* 3. Observe that we have passed

the procedures sqrt and addl as arguments to the procedure compose. Fur-

thermore, the value of the procedure compose is itself a procedure of one

argument. This illustrates both the fact that we can pass procedures, such as

sqrt and addl, as arguments to a procedure and we can have the value of a

procedure be a procedure.

If we reverse the order of the two procedures addl and sqrt as arguments

of compose in our previous example, we get the procedure

(define k (compose addl sqrt))

The procedure k so defined first takes the square root of its argument and

then adds one to the result; that is, A:(x) = ^Jx-\- 1. Thus k is quite a diff"erent

function from h.

Exercise

Exercise 1.1

What operand do we pass to k to get the same value eis (h 8)?

We next develop several basic arithmetic procedures that lead to an inter-

esting example that illustrates the use of procedures as values. The procedure

plus may be defined in terms of addl and subl by making use of the fact

that to add two nonnegative integers x and y, we can add 1 to x repeatedly

y times. This leads to Program 7.9. Similarly, using the fact that multipli-

cation of positive integers can be considered as repeated addition, times can

be defined in terms of plus and subl as shown in Program 7.10. This says

that multiplication of positive integers x and y is the same as adding x to

itself y times. In the same way, we can consider raising x to the exponent y

eis multiplying x by itself y times, so we can write the procedure exponent cis

shown in Program 7.11.

202 Abstracting Procedures

Program 7.9 plus

(define plus

(Icimbda (x y)

(if (zero? y)

X

(addl (plus X (subl y))))))

Program 7.10 times

(define times

(lambda (x y

(if (zero?

)

y)

(plus X (times x (subl y))))))

Program 7.11 exponent

(define exponent

(Icimbda (x y)

(if (zero? y)

1

(times X (exponent x (subl y))))))

Program 7.12 super

(define super

(lambda (x y)

(if (zero? y)

1

(exponent x (super x (subl y))))))

The three procedures we have defined follow a simple pattern. Using this

pattern, we can define another procedure, which we call super, that uses

exponent and subl, as shown in Program 7.12. What does super do? Let us

evaluate (super 2 3).

7.2 Procedures as Arguments and Values 203

Program 7.13 superduper

(define superduper

(lafflbda (x y)

(if (zero? y)

1

(super I (superduper i (subl y))))))

Program 7.14 super-order

(define super- order

(lambda (n)

(cond

((= n 1) plus)

((= n 2) times)

(else (lambda (3: y)

(cond

((zerc>? y) 1)

(else ((super- order (subl n))

z

((super -order n) I (subl y))))))))))

(super 2 3) ^^ (erponent 2 (super 2 2))

=* (exponent 2 (exponent 2 (super 2 1)))

==> (exponent 2 (exponent 2 (exponent 2 (super 2 0))))

=* (exponent 2 (exponent 2 (exponent 2 1)))

^^ (exponent 2 (exponent 2 2))

^^ (exponent 2 4)

=> 16

Thus (super 2 3) is 2^
. In the same way we get that (super 2 4) is 2^

(a tower of 4 twos), which is 65,536. We see that super yields large numbers

even with relatively small arguments like 2 and 4.

We now go to the next step and define superduper using super ajid subl, as

shown in Program 7.13. Then (superduper 2 3) is (super 2 4) or 65,536,

and (superduper 2 4) is (super 2 65536), which is a tower of 65,536 twos.

This is a very large number.

We can continue defining successive procedures by this process, but we must

make up a new name for each one. It would be better to define a procediire

204 Abstracting Procedures

super-order that depends upon a number n, so that (super-order 1) is the

same procedure as plus, (super-order 2) is the same procedure as times,

(super-order 3) is the same procedure as exponent, and so forth. The

definition of super-order is given in Program 7.14. If n is 1, super-order

is the same as plus, and if n is 2, then super-order is the same as times.

For each value of n, (super-order n) is a procedure of two arguments; for

example, ((super-order 4) 2 3) is the same as (super 2 3) or simply 16.

We can now write any procedure in the sequence by selecting the appropriate

value for the parameter n in (super-order n). For example, the procedure

that comes after superduper is (super-order 6).

If all three of the arguments, n, x, and y, in super-order are the same, it

is called the Ackermann procedure. Specifically, we can define

Program 7.15 ackermann

(define ackermemn

(lanbda (n)

((super-order n) n n)))

Then

(ackermann 1) is the sane as (plus 1 1) which is 2.

(ackermetnn 2) is the same as (times 2 2) which is 4.

(ackermanx. 3) is the same as (exponent 3 3) which is 27.

(ackermann 4) is the same as (super 4 4) which is 4

To get an estimate of how large (ackermann 4) is, we first note that 4'* is

256. To estimate 4^ = 4^^®, we set z = 4^"® and take the logarithm to get

logioz = 256logio4 = 154.13. Thus we get 4^^^ % 10^^* as our estimate for

4"*
. Finally we estimate

similarly. If we set y = (ackermann 4), then log^oy ~ 10^^'*logio4 %
10^^'*0.602. Then y » 10^°"^ which means that (ackermann 4) has ap-

proximately 10^^^ digits. Can you estimate the magnitude of (ackermann

S)? The Ackermann procedure played an important role as an example in

the general theory of recursive functions. (See, for example, Minsky, 1967.)

It certainly does grow fast as n increases.

7.2 Procedures as Arguments and Values 205

We see in the definition of super-order that we have a procedure with

parameter n whose value is itself a procedure with parameters x and y, il-

lustrating again how procedures are first-class objects in Scheme. We shall

explore these ideas further in the next section, which deals with procedural

abstraction.

Exercises

Exercise 7.2: composes

Use the procedure compose to define a procedure composes that takes as

arguments three procedures. /. g. and h, and returns the composition k such

that for each argument x, k{x) = f{g{h{x))).

ExeTcise 7.3: compose -many

Use the unrestricted lambda to define a composition procedure compose-many

that forms the composition of arbitrarily many procedures of one argument.

Test your procedure on

((compose-many addl addl addl addl) 3) ^^ 7

((coapose-aany sqrt abs subl (lambda (n) (* n n))) 0.6) ==* 0.8

(let ((f (lambda (n) (if (even? n) (/ n 2) (addl n))))

)

((compose-many f f f f f f) 21)) =^ 4

Exercise 7.4: subtract

Based on the technique used in this chapter to define plus, times, etc., define

the procedure subtract that has as parameters two nonnegative integers x

and y, with x > y. and returns the difference between x and y.

Exercise 7.5

In the following experiment, fill the blanks with the values of the expressions.

[1] (let ((h (lambda (i) (cons i i))))

(aap h '((1 2) (3 4) (5 6))))
7

[2] (aap (lambda (i) (cons i i)) '((12) (3 4) (5 6)))

9

[3] (aap (laabda (x) (+ 5 i)) '(1234))
7

[4] (let ((n 5))

(let ((proc (lambda (i) (+ n i))))

(map proc '(1 2 3 4))))

206 Abstracting Procedures

[5] (define iota

(lambda (n)

(letrec ((iota-helper

(lambda (k ace)

(cond

((zero? k) (cons ace))

(else (iota-helper (subl k) (eons k ace)))))))
(iota-helper (subl n) '()))))

[6] (letrec ((fact

(lambda (n)

(if (zero? n) 1 (* n (fact (subl n)))))))
(map fact (iota 6)))

[7] (map (lambda (x) (+ x (addl x))) (iota 5))
7

[8] (define mystery

(lambda (len base)

(letrec

((mystery-help

(lambda (n s)

(if (zero? n)

(list s)

(let ((h (lambda (i)

(mystery-help (subl n) (cons x s)))))

(apply append (map h (iota base))))))))

(mystery-help len *()))))

[9] (mystery 4 3)

Exercise 7.6: map-first-two

Define a procedure, map-first-two, that works exactly like map except that

the procedure argument is always a procedure of two arguments instead of

just one argument. Use the first and second elements of the list as the first

pair of arguments to the procedure, then the second and third elements, then

the third and fourth elements, and so on, until the end of the list is reached.

If there are fewer than two elements in the list, the empty list is the value.

Test your procedure on:

(map-first-tHO + ' (2 3 4 5 7)) => (5 7 9 12)

(map-first-two max '(2 4 3 5 4 1)) => (44554)

Exercise 1.1: reduce

Define a procedure, reduce, that has two parameters, proc and Is. The

procedure proc takes two arguments. The procedure reduce reduces the list

7.2 Procedures as Arguments and Values 207

Is by successively applying this operation: it builds a new list with the first

two elements of the preceding list replaced by the value obtained when proc

is applied to them. When the list is reduced to containing only two elements,

the value returned is the value of proc applied to these two elements. If the

original list Is contains fewer than two elements, an error is reported. Here

is how the successive stages in the reduction look when proc is + and Is is

(3 5 7 9):

(3 5 7 9) -> (8 7 9) ^ (15 9) -* 24

Test your procedure on:

(reduce + ' (1 3 5 7 9)) =J> 25

(reduce max ' (2 -4 6 8 3 1)) => 8

(reduce (lambda (i y) (and x y)) ' (#t #t #t #t)) => #t

The last example is not written as (reduce and ' (#t #t #t #t)) because

and is a keyword of a special form and not a procedure. Keywords only appear

in the first position of a list.

Exercise 7.8: andmap

Define a predicate andmap that takes two arguments, a one-argument predicate

pred and a list Is. The value returned by andmap is true when pred applied

to each of the elements of Is is true. If pred applied to any one of the elements

of Is is false, andmap returns false. The solution

(define andmap

(lambda (pred Is)

(reduce (lambda (x y) (and x y)) (map pred Is))))

is unacceptable because of the extra recursion. Test your predicate on:

(andmap positive? '(3 4 6 9)) =* #t

(andmap positive? '(3-148)) => #f

(let ((not-null? (compose not null?)))

(andmap not-null? '((a b) (c) (c d e)))) => #t

Exercise 7.9: map2

Define map2, which is exactly like map except that its procedure argument

is always a procedure that takes two arguments, and it takes an additional

argument that is a list the same length as its second argument. The additional

list is where it gets its second argument. Test your procedure on:

(map2 + '(1234) '(579 11)) => (6 9 12 15)

208 Abstracting ProceduTes

(inap2 (let ((n 5))

(leunbda (x y)

(and « X n) « n y))))
'(13 2 1 7)

'(9 11 4 7 8)) => (#t #t #f #t #f))

Exercise 7.10: map, ormap

We now present a definition of map that accepts any number of arguments.

(map proc Isi I32 ...Isn)

where proc is a procedure that takes n arguments and each of the n lists has

the same length. This generalizes the procedures map and map2 given above.

(define map

(leunbda args

(let ((proc (car args)))

(letrec ((map-helper

(lambda (a*)

(if (any-null? a*)

•()

(cons

(apply proc (.map car a*))

(map-helper (.map cdr a*)))))))

(map-helper (cdr args))))))

This program, as written, is incorrect because the two invocations of map
within the definition refer to the simple map we defined earlier in the chapter.

Add a definition of the simple map to the letrec (in the same way that even?

and odd? are in the same letrec) so that no names will be changed in the

definition of map-helper, and write zmy-null? using the definition of ormap

given below.

(define ormap

(lambda (pred Is)

(if (null? Is)

#f

(or (pred (car Is)) (ormap pred (cdr Is))))))

What does this version of map return when the n lists are not of equal length?

7.2 Procedures aa Arguments and Values 209

7.3 Currying

Exercise 7.11

To test your understanding of scope, determine the value of the expression

(letrec ((a (let ((a (lambda (b c)

(if (zero? b) c (a (subl b))))))

(lambda (x) (a x x)))))

(a 3))

The procedure + takes two numbers as arguments and returns their sum. The

procedure addl adds 1 to its argument. We can also define a procedure addS

that adds 5 to its argument by writing

(define add5

(lambda (n)

(+ 5 n)))

This can clearly be done for any number in place of 5. Another way of

approaching this problem makes use of the fact that a procedure may return

another procedure as its value. We can define a procedure curried+ that has

only one parameter, m, and returns a procedure having one parameter n, that

adds m and n:

(define curried+

(lambda (m)

(lambda (n)

(+mn))))

Thus (curried+ 5) returns a procedure defined by

(lambda (n) (+ m n))

where m is bound to 5. To add 5 and 7, we would then invoke

((curried* 5) 7) ^ 12

We can now define add5 by writing

(define add5 (curried+ 5))

210 Abstracting the Structure of Procedures

Moreover, we can define add8 by writing

(define add8 (curried* 8))

and we clearly can do the same for any other number in place of 8. What
underlies this method is the fact that we can take any procedure that has two

parameters, say x and y, and rewrite it as a procedure with one parameter

X that returns a procedure with one parameter y. The process of writing a

procedure of two parameters as a procedure of one parameter that returns

a procedure of one parameter is called currying the procedure.^ It is often

advantageous to use a curried procedure when you want to keep one argument

fixed while the other varies, so in essence, you are using a procedure of one

argument.

We next use currying to rewrite the definitions of four procedures in a way

that demonstrates certain common structural features that they possess. In

the next section, we shall abstract these common features and write a single

procedure from which the original four and many others can be obtained. The

four procedures are member?, map, sum, and product.

The procedure member? can be defined as follows:

(define member?

(Icunbda (item Is)

(if (null? Is)

»f

(or (equal? (car Is) item)

(member? item (cdr Is))))))

It tests whether the object item is a top-level object in the list Is. We are

going to apply the procedure member? with the same object item but different

lists Is, so we define the curried procedure member?-c, which is a procedure

with parameter item and returns a procedure that has the parameter Is and

tests whether item is a top-level member of Is. We do that in Program 7.16.

Observe the following points in the definition of member?-c:

1. member?-c is a procedure with one parameter item.

2. The procedure member?-c returns a procedure helper that has one param-

eter Is.

^ Conceived by Moses Schonfinkel in 1924 (See Schonfinkel, 1924) and neimed after the

logician Haskell B. Curry.

7.3 Currying 211

Program 7.16 member?-c

(define member?-c

(lambda (item)

(letrec

((helper

(lambda (Is)

(if (null? Is)

#f

(or (equal? (car Is) item) (helper (cdr Is)))))))

helper)))

3. We introduced the letrec expression to avoid having to pass the argument

item each time we make a recursive procedure call, since item does not

change throughout the program.

We can now define the original procedure member? in terms of member?-c

by writing

(define member?

(lambda (a Is)

((member?-c a) Is)))

As another example of currying, we look at the definition of the procedure

map, presented in Program 7.1, which hcis two parameters, a procedure proc,

and a list Is. It applies the procedure proc elementwise to Is and returns a

list of the results. For example,

(map addl ' (1 2 3 4)) ^ (2 3 4 5)

Its definition is:

(define map

(lambda (proc Is)

(if (null? Is)

'()

(cons (proc (car Is)) (map proc (cdr Is))))))

This can be written in curried form by using the procedure apply-to-all,

which takes one argument proc and is itself a procedure of the argument

Is. We give its definition in Program 7.17. We can write map in terms of

apply-to-all by defining

212 Abstracting Procedures

Program 7.17 apply-to-all

(define apply-to-all

(lambda (proc)

(letrec

((helper

(lambda (Is)

(if (null? Is)

'0

(cons (proc (c«ir Is)) (helper (cdr Is)))))))

helper))

)

Program 7.18 sum

(define sum

(letrec

((helper

(lambda (Is)

(if (null? Is)

(+ (cai Is) (helper (cdr Is0))))))

helper)

)

Program 7.19 product

(define product

(letrec

((helper

(lambda (Is)

(if (null?

1

(* (cai

Is)

• Is) (helper (cdr Is)))))))

helper)

)

(define map

(lambda (proc Is)

((apply-to-all proc) Is)))

We next look at two more procedures that take lists as arguments. The first,

7.3 Currying 213

Program 7.20 swapper-m

(define swapper-m

(laMbda (x y)

(letrec

((helper

(laabda (Is)

(cond

((null? Is) '())

((equal? (car Is) x) (cons y (helper (cdr Is))))

((equal? (car Is) y) (cons X (helper (cdr is))))

(else (cons (cao: Is) (helper (cdr Is))))))))

helper)))

sum, assumes that the objects in the list are numbers and returns the sum of

the numbers in the list, and the second, product, assumes that the objects

in the list are numbers and returns the product of the numbers in the list.

We write their definitions in Programs 7.18 and 7.19 in such a way that they

demonstrate the same structure as the preceding definitions of member?-c

and apply-to-all. We could have written the procedures sum and product

without the letrec expressions, but we have chosen to do it this way to be

able to compare the structure of these two procedures with the structure of

member?-c and apply-to-all when we abstract this structure in the next

section.

We close this section with an example that is similar to currying, this time

modifying a procedure with three parameters to get a procedure with two

parameters that returns a procedure with one parameter. We look at the

procedure swapper introduced in Program 2.8. Its definition is:

(define swapper

(laabda (x y Is)

(cond

((null? Is) '())

((equal? (car Is) x) (cons y (swapper x y (cdr Is))))

((equjd? (car Is) y) (cons x (swapper x y (cdr Is))))

(else (cons (car Is) (swapper x y (cdr Is)))))))

We modify it to get a procedure swapper-m (we use -m for "modified") that

has the two parameters x and y and that returns a procedure of one parameter

Is. Its definition is given in Program 7.20. To swap the numbers and 1 in

the list (0 1 2 1 2), we would invoke

214 Abstracting the Structure of Procedures

((swapper-m 1) ' (0 1 2 1 2)) => (1 2 1 2)

This example illustrates that a generalization of currying can be used to re-

define a procedure with n = m + k parameters to become a procedure with

m parameters that returns a procedure with k parameters. The term curry-

ing refers to redefining a procedure with n parameters to be expressed as n

procedures, each having only one parameter.

In this section, we have introduced the concept of currying a procedure of

two arguments to get a procedure of one argument that returns a procedure of

one argument. This technique is useful when we want to consider the behavior

of the procedure as the second argument varies while the first argument is

fixed. More generally, a procedure o{ n = m-j- k arguments may be modified

to get a procedure of m arguments that returns a procedure of k arguments.

Exercises

Exercise 7.12: curried*

Curry the procedure to get a procedure curried* and use it to define the

procedure timeslO that multiplies its argument by 10. Test your procedures

on:

((curried* 25) 5) =^ 125

(timeslO 125) =* 1250

Exercise 7.13: swapper-c

Curry the procedure swapper-m so that the curried procedure swapper-c has

one parameter x. It returns a procedure with one parameter y, which in turn

returns a procedure with one parameter Is. That procedure swaps x and y

in Is.

Exercise 7.14-' round-n-places

In Program 6.5, the procedure round-n-places was defined to take two pa-

rameters, n and dec-num, and returned the number dec-num rounded off" to

n decimal places. Rewrite the definition of round-n-places so that it takes

one parameter, n, and returns a procedure with one parameter, dec-num, that

rounds the number dec-num off" to n decimal places. We can then write

(define round-5-places (roimd-n-places 5))

to get the procedure that rounds a given number off" to five decimal places.

7.3 Currying 215

Exercise 7.15: subst-all-m

Modify the deeply recursive procedure subst-all, which has the parameters

new, old, and Is, to get a procedure subst-all-m with the two parameters

new and old, which returns a procedure with the parameter Is, which replaces

each occurrence of old in Is by new. Test your procedure on:

((subst-all-m 10) ' (0 1 2 1 2)) => (1 1 2 1 1 2)

((subst-all-m 1 0) '(0 1 2 ((0 1 2)))) => (1 1 2 ((1 1 2)))

Exercise 7.16: extreme-value-c

In Program 3.19, the procedure extreme-value was defined and then it was

used to define the procedures rmajc and rmin by pcissing it the appropriate

predicate. Write the definition of the procedure extreme-value-c, which

takes the predicate pred and returns a procedure that finds the maximum
of its two arguments or the minimum of its two arguments, depending upon

pred. Then express rmax and rmin in terms of extreme-value-c.

Exercise 7.17: extreme-value-c

In the previous exercise, the procedure (extreme-value-c pred) expects

only two arguments. Rewrite the definition of extreme-value-c using the

unrestricted lambda so that (extreme-value-c pred) is a procedure that

takes arbitrarily many numbers as arguments and returns the extreme value

(maximum or minimum) depending upon the predicate pred.

Exercise 7.18: between?, between?-c

Define a predicate between? that has three numbers i, y, and z, as parameters

and returns true when y is strictly between x and z, that is, when x < y <

z. Then define between?-c, a curried version of between?, where each of the

procedures has only one parameter. That is, between?-c has the parameter

X and returns a procedure that has the parameter y, which in turn returns

a procedure with the parameter z, that tests whether y is strictly between x

and z. Test your procedure on:

(((betHeen?-c 5) 6) 7) =^ #t

(((betBeen?-c 5) 5) 7) => »f

(((betHeen?-c 5) 4) 7) ==» #f

Exercise 7.19: andmap-c, ormap-c

Consider this definition of andmap-c:

216 Abstracting Procedures

(define emdmap-c

(lambda (pred)

(letrec

((and-help

(lambda (Is)

(cond

((null? Is) #t)

(else (and (pred (car Is)) (and-help (cdr Is))))))))

and-help)))

Fill in the blanks below.

[1] (define all-positive? (£m.dmap-c positive?))

[2] (all-positive? '(3489))
7

[3] (all-positive? '(3 -1 4 8))

7

[4] ((andmap-c (compose not null?)) '((a b) (c) (c d e)))

7

Now define the procedure ormap-c, which takes a predicate as an argument

and returns a predicate that accepts a list as a value. We can define ormap

(see Exercise 7.10) using ormap-c as follows:

(define ormap

(lambda (pred Is)

((ormap-c pred) Is)))

Test ormap-c by filling in the blanks below.

[5] (define some-positive? (ormap-c positive?))

[6] (some-positive? '(3 4 8 9))

7

[7] (some-positive? '(3 -1 4 8))

7

[8] ((ormap-c (compose not null?)) '(() (a b) (c) (c d e)))

9

Exercise 7.20: is-divisible-by?, prime?

Consider the definition

(define is-divisible-by?

(leunbda (n)

(lambda (k)

(zero? (remainder n k)))))

7.3 Currying S17

A prime number is a positive integer greater than 1 that is not divisible by any

positive number other than 1 and itself. Using is-divisible-by?, write a

definition of the procedure prime? that tests whether a positive integer n > 2

is prime by first testing whether it is odd and greater than 1 and then testing

whether it is not divisible by any of the odd integers from 3 to the largest odd

integer less than or equal to the square root of n. Why is it necessary only to

try integers less than the square root of n?

Exercise 7.21

Justify the statement "If we restrict ourselves to using only lambda expressions

having only one parameter in its list of parameters, we can still define any

procedure, regardless of how many parameters it has." Note that the currying

examples in this section show how to define procedures having two and three

parameters using only lambda expressions with one parameter.

7.4 Procedural Abstraction of Flat Recursion

In this section, we show how to abstract the structure of flatly recursive pro-

cedures to obtain a general procedure in terms of which the various special

cases can be defined. We illustrate this idea by looking for common structural

features in the four procedures member?-c, apply-to-all, sum, and product

defined in Section 7.3. A comparison of the code for these four procedures

yields the fact that the four lines

(letrec

((helper

(lambda (Is)

(if (null? Is)

and the leist line

helper

are identical in all four programs. Furthermore, in all four, we do something

to (car Is) and make the recursive call to helper on (cdr Is). We want

to define a procedure flat-recur that abstracts the structure of these four

programs; that is, it embodies the common features of these programs, and

they can all be derived from it by using suitable parameters. Let us see how

much of flat-recur we can write based on the above observations.

218 Abstracting Procedures

(define flat-recur

(Icunbda (

(letrec

((helper

(Icu&bda (Is)

(if (null? Is)

))))

helper)))

How do we fill in the blanks? Let us first look at the blank that is the

consequent of the if expression. It is the action taken when Is is empty.

We call this consequent of the test (null? Is) the seed and denote it by the

variable seed. This will be the first parameter in the outer lambda expression.

Table 7.21 shows the seed for each of the four cases.

Procedure seed

inember?-c #f

apply-to-all

sum

product 1

Table 7.21 Seeds for the four procedures

The other blank in the if expression is in the action taken on (car Is) and

(helper (cdr Is)) when (null? Is) is false. The action taken on (car

Is) and (helper (cdr Is)) is a procedure that takes (car Is) and (helper

(cdr Is)) as arguments, and we call this procedure list-proc. We write

list-proc as a procedure with the parameters x and y. When list-proc is

invoked, x will be bound to (caur Is) and y will be bound to (helper (cdr

Is)) to give us the alternative action when (null? Is) is false. For example,

the alternative action in the case of apply-to-all is

(cons (proc (car Is)) (helper (cdr Is)))

If list-proc is the value of

(lambda (x y) (cons (proc x) y))

then

7.4 Procedural Abstraction of Flat Recursion 219

(list-proc (car Is) (helper (cdr Is)))

is the desired alternative action. We pass list-proc as the second parameter

in the outer lambda expression. Table 7.22 gives list-proc for each of the

four programs.^

Procedure list-proc

member?-c (lambda (x y) (or (equal? x item) y))

apply-to-all (lambda (x y) (cons (proc x) y))

sum +

product

Table 7.22 The four list procedures

We are now ready to define the procedure flat-recur, which takes seed

and list-proc as arguments and produces precisely the procedure with pa-

rameter Is that abstracts the structure of the four procedures. (See Pro-

gram 7.23.) We can then write each of the four procedures in terms of this

new procedure. Furthermore, we can use it to write any procedure using

recursion on a list of top-level items.

We can now write the four procedures using flat-recur as follows:

(define member?-c

(lambda (item)

(flat-recuT #f (lambda (x y) (or (equal? i item) y)))))

(define apply-to-all

(launbda (proc)

(flat-recur '() (launbda (x y) (cons (proc i) y)))))

(define sum (flat-recur +))

(define product (flat-recur 1 *))

^ The procedure that we selected for list-proc in the case of meniber?-c does more pro-

cessing than is necessary, for it loses the benefit of the behavior of or. Generally when the

first argument to or is true, the value #t is returned without evaluating the second argu-

ment. However, when list-proc is called, both arguments are first evaluated, and then

the or expression is evaluated, so the argument to which y is bound is always evaluated.

Even though the resulting version of member?-c is less efficient, it illustrates the principle

of procediiral abstraction and a feature that one should be aware of when applying it.

220 Abstracting Procedures

Program 7.23 flat-recur

(define flat-recur

(lambda (seed list-proc)

(letrec

((helper

(laabda (Is)

(if (null? Is)

seed

(list-proc (car Is) (helper (cdr Is)))))))

helper)))

You may be concerned that the procedure list-proc in these last two ex-

amples has a different structure from those in the first two examples. This is

really not the case, since we could also have used (lambda (x y) (+ x y))

in place of the variable +. and we could have used (lambda (x y) (* x y))

in place of the variable *.

The process we have used here looks for common features in several pro-

grams and then produces a procedure that embodies the code that is similar

in all of these programs. It enables us to express each of the original proce-

dures more simply. This process is called procedural abstraction. This is a very

powerful programming tool that should be exploited when it is applicable.

The procedure llat-recur can be used whenever a program does recursion

on the top-level objects in a list. We now see an example of how we can use

it to define the procedure f ilter-in-c. Let Is be a list and suppose that

we have a predicate pred that we want to apply to each top-level object in

the list. If the result of applying pred to an object in the list is false, then

the object is to be dropped from the list. Thus the procedure f ilter-in-c

returns a list consisting of those objects from Is that "pass" the test. This

program involves recursion on the top-level objects in the list Is, and if Is is

empty, f ilter-in-c returns the empty list, so seed is (). To get list-proc

we shall again use x for the (car Is) and y for (helper (cdr Is)). Then

if pred applied to x is true, we cons x to y; otherwise we just return y. Thus

the list-proc of flat-recur can be written as

(lambda (x y)

(if (pred x)

(cons X y)

y))

7.4 Procedural Abstraction of Flat Recursion 221

Program 7.24 filter-in-c

(define filter-in-c

(lambda (pred)

(flat-recur

'()

(lambda (x y)

(if (pred x)

(cons X y)

y)))))

and we can define filter-in-c as shown in Program 7.24. If we do not want

to use filter-in-c in curried form, we can define the procedure filter-in

as:

(define filter-in

(lambda (pred Is)

((filter-in-c pred) Is)))

Here are some examples using filter-in:

(filter-in odd? ' (1 2 3 4 5 6 7 8 9)) =» (1 3 5 7 9)

(filter-in positive? ' (1 2 3 4)) => (1 2 3 4)

(filter-in (lambda (x) « x 5)) ' (1 2 3 4 5 6 7 8 9)) => (1 2 3 4)

In this section, we have illustrated the process of procedural abstraction of

flat recursion. We defined a procedure flat-recur from which procedures

that use flat recursion can be derived by passing flat-recur the appropriate

arguments. This is a powerful tool that can often be used to make programs

easier to write and to understand.

Exercises

Exercise 7.22: mult-by-scalar

In Exercise 3.1, we called a list of numbers an n-tuple. Using flat-recur,

deflne a procedure mult-by-scalar that takes as its argument a number c and

returns a procedure that takes as its argument an n-tuple ntpl and multiplies

each component of ntpl by the number c. Test your procedure on:

((mult -by-scalar 3) '(1-2 3 -4)) =*> (3 -6 9 -12)

((mult-by-scalar 5) '()) =>

222 Abstracting Procedures

Exercise 7.23: filter-out

The procedure filter-out takes two arguments, a predicate pred and a list

Is. It removes from the list Is all of its top-level elements that "pass" the

test, that is, it removes those top-level objects item for which (pred item)

is true. Write the definition of filter-out using a local procedure f ilter-

out-c that is defined using flat-recur.

Exercise 7.24: insert-left

Starting with the procedure insert-left described in Exercise 4.1 and using

flat-recur, define the modified version insert-left-m that takes as pa-

rameters the new and old values and returns a procedure with the list as its

parameter. Then define insert-left using insert-left-m.

Exercise 7.25: partial

Let proc be a procedure of one numerical argument with numerical values.

a. Define a procedure partial-sum that computes the sum of the numbers

(proc i) for i ranging from k to n, where k <.n. For example,

(partial-sum (lambda (m) (* m m)) 3 7) =* 135

b. Define a procedure partial-product that computes the product of the

numbers (proc i) for i ranging from k to n, where k < n. For example

(partial-product (lambda (m) (* m m)) 3 7) =^ 6350400

c. Define an abstraction of partial-sum and partial-product named par-

tial so that partial-sum and partial-product can be defined as

(define partial-sum (partial +))

(define partial-product (partial 1 *))

7.5 Procedural Abstraction of Deep Recursion

The deeply recursive procedures defined in Chapter 4 use recursion on nested

sublists rather than being limited to top-level objects of lists. They also

display a common structure that can be abstracted in a procedure deep-

recur. We now look at some deeply recursive procedures to find their common
structure and then formulate the definition of deep-recur.

We start with f ilter-in-all-c, which takes a pred as its argument and

returns a procedure that has a list Is as its parameter and, when applied to

7.5 Procedural Abstraction of Deep Recursion 223

Is, drops from the list those items that do not "pass" the test. For example,

if pred is odd? and Is is ((4 6) 2 (3 5 (8 7))) we have

((filter-in-all-c odd?) Is) => ((5) (3 5 (7)))

The code for filter-in-all-c is given in Program 7.25. We define lilter-

in-all as the procedure of two arguments, pred and Is, in terms of filter-

in-all-c as shown in Program 7.26.

In the same way, we define sum-all as a procedure of one argument Is,

which is a list of numbers, such that (sum-all Is) is the sum of all of the

numbers in Is. For example

(sum-all '(3 (1 4) (2 (-3 5)))) ^ 12

The code for sum-all is presented in Program 7.27. Both of these procedures,

sum-all and filter-in-all-c, share the following lines:

(letrec

((helper

(lambda (Is)

(if (null? Is)

(let ((a (car Is)))

(if (or (pair? a) (null? a))

helper

We are going to define a procedure deep-recur to abstract the structure

of these two procedures. Let us see how much of the code we can fill in from

the above observations.

(define deep-recur

(lambda ()

(letrec

((helper

(leunbda (Is)

(if (null? Is)

(let ((a (car Is)))

(if (or (pair? a) (null? a))

))))))

helper)))

224 Abstracting the Structure of Procedures

Program 7.25 f ilter-in-all-c

(define f ilter-in-all-c

(Icunbda (pred)

(letrec

((helper

(lambda (Is)

(if (null? Is)

'0

(let ((a (car Is)))

(if (or (pair? a) (null? a))

(cons (helper a) (helper (cdr Is)))

(if (pred a)

(cons a (1-lelper (cdr Is)))

(helper (cdr Is)))))))))

helper))

)

Program 7.26 filter-in-all

(define filter-in-edl

(Icunbda (pred Is)

((f ilter-in-all-c pred) Is)))

Program 7.27 sum-all

(define sum-all

(letrec ((helper

(lambda (Is)

(if (null

(let

? Is)

((a (car Is)))

(if (or (pair? a) (null? a))

(+ (helper a) (helper (cdr Is)))

(+ a (helper (cdr Is)))))))))

helper))

7,5 Procedural Abstraction of Deep Recursiori 225

Once again, we use the variable seed to denote the consequent of the first

if expression with test (null? Is). In the case of sum-all, seed is 0, and

in the case of f ilter-in-all-c, seed is (). We take seed to be the first

parameter for the outer lambda expression.

In the consequent of the second if expression with test (or (pair? a)

(null? a)), the local procedure helper for lilter-in-all-c invokes

(cons (helper a) (helper (cdr Is)))

and the local procedure helper for sum-all invokes

(+ (helper a) (helper (cdr Is)))

We refer to the procedure that is applied to (helper a) and (helper (cdr

Is)) as list-proc. We fill the blank with the application

(list-proc (helper a) (helper (cdr Is)))

and to generate the expression needed for f ilter-in-all-c. we bind list-

proc to cons, and to generate the expression needed for sum-all, we bind

list-proc to +. We take list-proc as the third parameter to the outer

lambda expression. We next consider what to use as the second parameter.

In both of our examples, the alternative of the second if expression with

test (or (pair? a) (null? a)) is a procedure invocation that involves a

and (helper (cdr Is)). For f ilter-in-all-c, we want to generate the

expression

(if (pred a) (cons a (helper (cdr Is))) (helper (cdr Is)))

while for sum-aill, we need

(+ a (helper (cdr Is)))

We can generate both of these using a procedure item-proc that has two

parameters, x and y. If we fill the blank with

(ite»-proc a (helper (cdr Is)))

then to get what we need for sum-all, we bind item-proc to +. To get what

we need for lilter-in-all-c, we bind item-proc to

226 Abstracting the Structure of Procedures

Program 7.28 deep-recur

(define deep-reciir

(lambda (seed item -proc list-proc)

(letrec

((helper

(leunbda (Is)

(if (null ? Is)

seed

(let ((a (car Is)))

(if (or (pair? a) (null? a))

(list-proc (h Blper a) (he Iper (cdr Is)))

(item-proc a (helper (cdr Is.)))))))))

helper)))

(lambda (z y)

(if (pred x)

(cons z y)

y))

We are now in a position to write a procedure deep-recur that abstracts

the structure of these procedures (and those in the exercises at the end of

this section). The procedure deep-recur hcis three parameters: seed, item-

proc, and list-proc. It returns helper, which is a procedure with only one

parameter Is. Combining the observations made above, we get the definition

presented in Program 7.28.

In particular, we can now write

(define sum-all (deep-recxir + +))

anc

(define f ilter-in-all-c

(lambda (pred)

(deep-recur

'()

(lambda (z y)

(if (pred z)

(cons z y)

y))

cons)))

7.5 Procedural Abstraction of Deep Recursion 2S7

In this chapter, we looked at the definitions of the four procedures sum.

product. member?-c. and filter-in-c. all of which performed flat recur-

sion, and abstracted from them their common structural features. We then

defined the procedure flat-recur, which incorporated those common fea-

tures and took as arguments the things that produced the features of the four

procedures that were not common to them all. This enabled us to recover the

original four procedures and others that do flat recursion from flat-recur

by passing to flat-recur the appropriate arguments. We then did a similar

thing with procedures that performed deep recursions. We abstracted from

the two procedures f ilter-in-all-c and sum-all their common features

and defined the procedure deep-rec\ir. We were able to recover the original

two procedures by passing to deep-recur the appropriate arguments. This

process of defining a procedure incorporating the common structural features

of a class of procedures, and then obtaining the procedures in that class by

passing the abstraction the appropriate arguments, is what we called proce-

dural abstraction.

Exercises

Exercise 7.26: remove-all-c. product-all

Write the definitions of remove-all-c and product-eill for arbitrary lists.

The procedure remove-all-c takes an object item as its argument and re-

turns a procedure of the list Is, which removes all occurrences of item in Is.

The call (product-all Is) returns the product of all of the numbers in the

list of numbers Is. In both procedures, preserve the structure displayed in

the above definitions of siun-all and f ilter-in-all-c using letrec.

Exercise 7.27: remove-all-c. product-all (continued)

Define the two procedures product-all and remove-all-c described in the

previous exercise using deep-recur.

Exercise 7.28: filter-out-all

In a manner analogous to that used in Exercise 7.23, use deep-recur to define

the deeply recursive procedure f ilter-out-all-c. and then use it to define

filter-out-all.

Exercise 7.29: subst-all-m

The procedure subst-cQl-m was described in Exercise 7.15. Define it using

deep-recur.

228 Abstracting the Structure of Procedures

Exercise 7.30: reverse-all

The procedure reverse-all was defined in Program 4.10. Define it using

deep-recur.

Exercise 7.31: flat-recur

Define flat-recur using deep-recur.

Exercise 7.32: deep-recur

Define deep-recur using flat-recur. Hint: Use letrec.

7.5 Procedural Abstraction of Deep Recursion 229

