
58 5 The Untyped Lambda-Calculus

The choice of evaluation strategy actually makes little difference when dis-
cussing type systems. The issues that motivate various typing features, and
the techniques used to address them, are much the same for all the strate-
gies. In this book, we use call by value, both because it is found in most
well-known languages and because it is the easiest to enrich with features
such as exceptions (Chapter 14) and references (Chapter 13).

5.2 Programming in the Lambda-Calculus

The lambda-calculus is much more powerful than its tiny definition might
suggest. In this section, we develop a number of standard examples of pro-
gramming in the lambda-calculus. These examples are not intended to sug-
gest that the lambda-calculus should be taken as a full-blown programming
language in its own right—all widely used high-level languages provide clearer
and more efficient ways of accomplishing the same tasks—but rather are in-
tended as warm-up exercises to get the feel of the system.

Multiple Arguments

To begin, observe that the lambda-calculus provides no built-in support for
multi-argument functions. Of course, this would not be hard to add, but it is
even easier to achieve the same effect using higher-order functions that yield
functions as results. Suppose that s is a term involving two free variables x
and y and that we want to write a function f that, for each pair (v,w) of
arguments, yields the result of substituting v for x and w for y in s. Instead
of writing f = λ(x,y).s, as we might in a richer programming language, we
write f = λx.λy.s. That is, f is a function that, given a value v for x, yields a
function that, given a value w for y, yields the desired result. We then apply
f to its arguments one at a time, writing f v w (i.e., (f v) w), which reduces
to ((λy.[x � v]s) w) and thence to [y � w][x� v]s. This transformation
of multi-argument functions into higher-order functions is called currying in
honor of Haskell Curry, a contemporary of Church.

Church Booleans

Another language feature that can easily be encoded in the lambda-calculus
is boolean values and conditionals. Define the terms tru and fls as follows:

tru = λt. λf. t;
fls = λt. λf. f;

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

5.2 Programming in the Lambda-Calculus 59

(The abbreviated spellings of these names are intended to help avoid confu-
sion with the primitive boolean constants true and false from Chapter 3.)

The terms tru and fls can be viewed as representing the boolean values
“true” and “false,” in the sense that we can use these terms to perform the
operation of testing the truth of a boolean value. In particular, we can use
application to define a combinator test with the property that test b v w
reduces to v when b is tru and reduces to w when b is fls.

test = λl. λm. λn. l m n;

The test combinator does not actually do much: test b v w just reduces to
b v w. In effect, the boolean b itself is the conditional: it takes two arguments
and chooses the first (if it is tru) or the second (if it is fls). For example, the
term test tru v w reduces as follows:

test tru v w
= (λl. λm. λn. l m n) tru v w by definition
�→ (λm. λn. tru m n) v w reducing the underlined redex
�→ (λn. tru v n) w reducing the underlined redex
�→ tru v w reducing the underlined redex
= (λt.λf.t) v w by definition
�→ (λf. v) w reducing the underlined redex
�→ v reducing the underlined redex

We can also define boolean operators like logical conjunction as functions:

and = λb. λc. b c fls;

That is, and is a function that, given two boolean values b and c, returns c if
b is tru and fls if b is fls; thus and b c yields tru if both b and c are tru
and fls if either b or c is fls.

and tru tru;

� (λt. λf. t)

and tru fls;

� (λt. λf. f)

5.2.1 Exercise [�]: Define logical or and not functions. �

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

60 5 The Untyped Lambda-Calculus

Pairs

Using booleans, we can encode pairs of values as terms.

pair = λf.λs.λb. b f s;
fst = λp. p tru;
snd = λp. p fls;

That is, pair v w is a function that, when applied to a boolean value b, applies
b to v and w. By the definition of booleans, this application yields v if b is tru
and w if b is fls, so the first and second projection functions fst and snd
can be implemented simply by supplying the appropriate boolean. To check
that fst (pair v w) �→∗ v, calculate as follows:

fst (pair v w)
= fst ((λf. λs. λb. b f s) v w) by definition
�→ fst ((λs. λb. b v s) w) reducing the underlined redex
�→ fst (λb. b v w) reducing the underlined redex
= (λp. p tru) (λb. b v w) by definition
�→ (λb. b v w) tru reducing the underlined redex
�→ tru v w reducing the underlined redex
�→∗ v as before.

Church Numerals

Representing numbers by lambda-terms is only slightly more intricate than
what we have just seen. Define the Church numerals c0, c1, c2, etc., as follows:

c0 = λs. λz. z;
c1 = λs. λz. s z;
c2 = λs. λz. s (s z);
c3 = λs. λz. s (s (s z));
etc.

That is, each number n is represented by a combinator cn that takes two
arguments, s and z (for “successor” and “zero”), and applies s, n times, to z.
As with booleans and pairs, this encoding makes numbers into active entities:
the number n is represented by a function that does something n times—a
kind of active unary numeral.

(The reader may already have observed that c0 and fls are actually the
same term. Similar “puns” are common in assembly languages, where the
same pattern of bits may represent many different values—an int, a float,

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

5.2 Programming in the Lambda-Calculus 61

an address, four characters, etc.—depending on how it is interpreted, and in
low-level languages such as C, which also identifies 0 and false.)

We can define the successor function on Church numerals as follows:

scc = λn. λs. λz. s (n s z);

The term scc is a combinator that takes a Church numeral n and returns
another Church numeral—that is, it yields a function that takes arguments s
and z and applies s repeatedly to z. We get the right number of applications
of s to z by first passing s and z as arguments to n, and then explicitly
applying s one more time to the result.

5.2.2 Exercise [��]: Find another way to define the successor function on Church
numerals. �

Similarly, addition of Church numerals can be performed by a term plus
that takes two Church numerals, m and n, as arguments, and yields another
Church numeral—i.e., a function—that accepts arguments s and z, applies s
iterated n times to z (by passing s and z as arguments to n), and then applies
s iterated m more times to the result:

plus = λm. λn. λs. λz. m s (n s z);

The implementation of multiplication uses another trick: since plus takes
its arguments one at a time, applying it to just one argument n yields the
function that adds n to whatever argument it is given. Passing this function
as the first argument to m and c0 as the second argument means “apply the
function that adds n to its argument, iterated m times, to zero,” i.e., “add
together m copies of n.”

times = λm. λn. m (plus n) c0;

5.2.3 Exercise [��]: Is it possible to define multiplication on Church numerals
without using plus? �

5.2.4 Exercise [Recommended, ��]: Define a term for raising one number to the
power of another. �

To test whether a Church numeral is zero, we must find some appropriate
pair of arguments that will give us back this information—specifically, we
must apply our numeral to a pair of terms zz and ss such that applying ss
to zz one or more times yields fls, while not applying it at all yields tru.
Clearly, we should take zz to be just tru. For ss, we use a function that
throws away its argument and always returns fls:

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

62 5 The Untyped Lambda-Calculus

copy +1ss

copy +1ss

copy +1ss

pair c0 c0

copy +1ss

pair c0 c1

pair c1 c2

pair c2 c3

pair c3 c4
...

Figure 5-1: The predecessor function’s “inner loop”

iszro = λm. m (λx. fls) tru;

iszro c1;

� (λt. λf. f)

iszro (times c0 c2);

� (λt. λf. t)

Surprisingly, subtraction using Church numerals is quite a bit more difficult
than addition. It can be done using the following rather tricky “predecessor
function,” which, given c0 as argument, returns c0 and, given ci+1, returns ci :

zz = pair c0 c0;
ss = λp. pair (snd p) (plus c1 (snd p));
prd = λm. fst (m ss zz);

This definition works by using m as a function to apply m copies of the func-
tion ss to the starting value zz. Each copy of ss takes a pair of numerals
pair ci cj as its argument and yields pair cj cj+1 as its result (see Figure 5-
1). So applying ss, m times, to pair c0 c0 yields pair c0 c0 when m = 0 and
pair cm−1 cm when m is positive. In both cases, the predecessor of m is found
in the first component.

5.2.5 Exercise [��]: Use prd to define a subtraction function. �

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

5.2 Programming in the Lambda-Calculus 63

5.2.6 Exercise [��]: Approximately how many steps of evaluation (as a function
of n) are required to calculate prd cn? �

5.2.7 Exercise [��]: Write a function equal that tests two numbers for equality
and returns a Church boolean. For example,

equal c3 c3;

� (λt. λf. t)

equal c3 c2;

� (λt. λf. f) �

Other common datatypes like lists, trees, arrays, and variant records can
be encoded using similar techniques.

5.2.8 Exercise [Recommended, ���]: A list can be represented in the lambda-
calculus by its fold function. (OCaml’s name for this function is fold_left;
it is also sometimes called reduce .) For example, the list [x,y,z] becomes
a function that takes two arguments c and n and returns c x (c y (c z n))).
What would the representation of nil be? Write a function cons that takes
an element h and a list (that is, a fold function) t and returns a similar rep-
resentation of the list formed by prepending h to t. Write isnil and head
functions, each taking a list parameter. Finally, write a tail function for this
representation of lists (this is quite a bit harder and requires a trick analogous
to the one used to define prd for numbers). �

Enriching the Calculus

We have seen that booleans, numbers, and the operations on them can be
encoded in the pure lambda-calculus. Indeed, strictly speaking, we can do all
the programming we ever need to without going outside of the pure system.
However, when working with examples it is often convenient to include the
primitive booleans and numbers (and possibly other data types) as well. When
we need to be clear about precisely which system we are working in, we will
use the symbol λ for the pure lambda-calculus as defined in Figure 5-3 and
λNB for the enriched system with booleans and arithmetic expressions from
Figures 3-1 and 3-2.

In λNB, we actually have two different implementations of booleans and
two of numbers to choose from when writing programs: the real ones and
the encodings we’ve developed in this chapter. Of course, it is easy to convert
back and forth between the two. To turn a Church boolean into a primitive
boolean, we apply it to true and false:

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

64 5 The Untyped Lambda-Calculus

realbool = λb. b true false;

To go the other direction, we use an if expression:

churchbool = λb. if b then tru else fls;

We can build these conversions into higher-level operations. Here is an equal-
ity function on Church numerals that returns a real boolean:

realeq = λm. λn. (equal m n) true false;

In the same way, we can convert a Church numeral into the corresponding
primitive number by applying it to succ and 0:

realnat = λm. m (λx. succ x) 0;

We cannot apply m to succ directly, because succ by itself does not make
syntactic sense: the way we defined the syntax of arithmetic expressions,
succ must always be applied to something. We work around this by pack-
aging succ inside a little function that does nothing but return the succ of
its argument.

The reasons that primitive booleans and numbers come in handy for ex-
amples have to do primarily with evaluation order. For instance, consider
the term scc c1. From the discussion above, we might expect that this term
should evaluate to the Church numeral c2. In fact, it does not:

scc c1;

� (λs. λz. s ((λs’. λz’. s’ z’) s z))

This term contains a redex that, if we were to reduce it, would bring us (in
two steps) to c2, but the rules of call-by-value evaluation do not allow us to
reduce it yet, since it is under a lambda-abstraction.

There is no fundamental problem here: the term that results from evalu-
ation of scc c1 is obviously behaviorally equivalent to c2, in the sense that
applying it to any pair of arguments v and w will yield the same result as
applying c2 to v and w. Still, the leftover computation makes it a bit difficult
to check that our scc function is behaving the way we expect it to. For more
complicated arithmetic calculations, the difficulty is even worse. For example,
times c2 c2 evaluates not to c4 but to the following monstrosity:

times c2 c2;

� (λs.
λz.

(λs’. λz’. s’ (s’ z’)) s
((λs’.

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

5.2 Programming in the Lambda-Calculus 65

λz’.
(λs”. λz”. s” (s” z”)) s’
((λs”. λz”.z”) s’ z’))

s
z))

One way to check that this term behaves like c4 is to test them for equality:

equal c4 (times c2 c2);

� (λt. λf. t)

But it is more direct to take times c2 c2 and convert it to a primitive number:

realnat (times c2 c2);

� 4

The conversion has the effect of supplying the two extra arguments that
times c2 c2 is waiting for, forcing all of the latent computation in its body.

Recursion

Recall that a term that cannot take a step under the evaluation relation is
called a normal form. Interestingly, some terms cannot be evaluated to a nor-
mal form. For example, the divergent combinator

omega = (λx. x x) (λx. x x);

contains just one redex, and reducing this redex yields exactly omega again!
Terms with no normal form are said to diverge.

The omega combinator has a useful generalization called the fixed-point
combinator ,6 which can be used to help define recursive functions such as
factorial.7

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

Like omega, the fix combinator has an intricate, repetitive structure; it is
difficult to understand just by reading its definition. Probably the best way
of getting some intuition about its behavior is to watch how it works on a
specific example.8 Suppose we want to write a recursive function definition

6. It is often called the call-by-value Y-combinator . Plotkin (1975) called it Z.
7. Note that the simpler call-by-name fixed point combinator

Y = λf. (λx. f (x x)) (λx. f (x x))
is useless in a call-by-value setting, since the expression Y g diverges, for any g.
8. It is also possible to derive the definition of fix from first principles (e.g., Friedman and
Felleisen, 1996, Chapter 9), but such derivations are also fairly intricate.

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

66 5 The Untyped Lambda-Calculus

of the form h = 〈body containing h〉—i.e., we want to write a definition where
the term on the right-hand side of the = uses the very function that we are
defining, as in the definition of factorial on page 52. The intention is that
the recursive definition should be “unrolled” at the point where it occurs; for
example, the definition of factorial would intuitively be

if n=0 then 1
else n * (if n-1=0 then 1

else (n-1) * (if (n-2)=0 then 1
else (n-2) * ...))

or, in terms of Church numerals:

if realeq n c0 then c1
else times n (if realeq (prd n) c0 then c1

else times (prd n)
(if realeq (prd (prd n)) c0 then c1
else times (prd (prd n)) ...))

This effect can be achieved using the fix combinator by first defining g =
λf.〈body containing f〉 and then h = fix g. For example, we can define the
factorial function by

g = λfct. λn. if realeq n c0 then c1 else (times n (fct (prd n)));
factorial = fix g;

Figure 5-2 shows what happens to the term factorial c3 during evaluation.
The key fact that makes this calculation work is that fct n �→∗ g fct n. That
is, fct is a kind of “self-replicator” that, when applied to an argument, sup-
plies itself and n as arguments to g. Wherever the first argument to g appears
in the body of g, we will get another copy of fct, which, when applied to
an argument, will again pass itself and that argument to g, etc. Each time we
make a recursive call using fct, we unroll one more copy of the body of g
and equip it with new copies of fct that are ready to do the unrolling again.

5.2.9 Exercise [�]: Why did we use a primitive if in the definition of g, instead of
the Church-boolean test function on Church booleans? Show how to define
the factorial function in terms of test rather than if. �

5.2.10 Exercise [��]: Define a function churchnat that converts a primitive natural
number into the corresponding Church numeral. �

5.2.11 Exercise [Recommended, ��]: Use fix and the encoding of lists from Exer-
cise 5.2.8 to write a function that sums lists of Church numerals. �

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

5.2 Programming in the Lambda-Calculus 67

factorial c3
= fix g c3
�→ h h c3

where h = λx. g (λy. x x y)
�→ g fct c3

where fct = λy. h h y
�→ (λn. if realeq n c0

then c1
else times n (fct (prd n)))

c3
�→ if realeq c3 c0

then c1
else times c3 (fct (prd c3))

�→∗ times c3 (fct (prd c3))
�→∗ times c3 (fct c′2)

where c′2 is behaviorally equivalent to c2
�→∗ times c3 (g fct c′2)
�→∗ times c3 (times c′2 (g fct c′1)).

where c′1 is behaviorally equivalent to c1
(by repeating the same calculation for g fct c′2)

�→∗ times c3 (times c′2 (times c′1 (g fct c′0))).
where c′0 is behaviorally equivalent to c0
(similarly)

�→∗ times c3 (times c′2 (times c′1 (if realeq c′0 c0 then c1
else ...)))

�→∗ times c3 (times c′2 (times c′1 c1))
�→∗ c′6

where c′6 is behaviorally equivalent to c6.

Figure 5-2: Evaluation of factorial c3

Representation

Before leaving our examples behind and proceeding to the formal definition
of the lambda-calculus, we should pause for one final question: What, exactly,
does it mean to say that the Church numerals represent ordinary numbers?

To answer, we first need to remind ourselves of what the ordinary numbers
are. There are many (equivalent) ways to define them; the one we have chosen
here (in Figure 3-2) is to give:

• a constant 0,

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

68 5 The Untyped Lambda-Calculus

• an operation iszero mapping numbers to booleans, and

• two operations, succ and pred, mapping numbers to numbers.

The behavior of the arithmetic operations is defined by the evaluation rules
in Figure 3-2. These rules tell us, for example, that 3 is the successor of 2,
and that iszero 0 is true.

The Church encoding of numbers represents each of these elements as a
lambda-term (i.e., a function):

• The term c0 represents the number 0.

As we saw on page 64, there are also “non-canonical representations” of
numbers as terms. For example, λs. λz. (λx. x) z, which is behaviorally
equivalent to c0, also represents 0.

• The terms scc and prd represent the arithmetic operations succ and
pred, in the sense that, if t is a representation of the number n, then
scc t evaluates to a representation of n + 1 and prd t evaluates to a rep-
resentation of n− 1 (or of 0, if n is 0).

• The term iszro represents the operation iszero, in the sense that, if t is
a representation of 0, then iszro t evaluates to true,9 and if t represents
any number other than 0, then iszro t evaluates to false.

Putting all this together, suppose we have a whole program that does some
complicated calculation with numbers to yield a boolean result. If we replace
all the numbers and arithmetic operations with lambda-terms representing
them and evaluate the program, we will get the same result. Thus, in terms
of their effects on the overall results of programs, there is no observable dif-
ference between the real numbers and their Church-numeral representation.

5.3 Formalities

For the rest of the chapter, we consider the syntax and operational semantics
of the lambda-calculus in more detail. Most of the structure we need is closely
analogous to what we saw in Chapter 3 (to avoid repeating that structure
verbatim, we address here just the pure lambda-calculus, unadorned with
booleans or numbers). However, the operation of substituting a term for a
variable involves some surprising subtleties.

9. Strictly speaking, as we defined it, iszro t evaluates to a representation of true as another
term, but let’s elide that distinction to simplify the present discussion. An analogous story can
be given to explain in what sense the Church booleans represent the real ones.

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

5.3 Formalities 69

Syntax

As in Chapter 3, the abstract grammar defining terms (on page 53) should be
read as shorthand for an inductively defined set of abstract syntax trees.

5.3.1 Definition [Terms]: Let V be a countable set of variable names. The set of
terms is the smallest set T such that

1. x ∈ T for every x ∈ V ;

2. if t1 ∈ T and x ∈ V , then λx.t1 ∈ T ;

3. if t1 ∈ T and t2 ∈ T , then t1 t2 ∈ T . �

The size of a term t can be defined exactly as we did for arithmetic expres-
sions in Definition 3.3.2. More interestingly, we can give a simple inductive
definition of the set of variables appearing free in a lambda-term.

5.3.2 Definition: The set of free variables of a term t, written FV(t), is defined as
follows:

FV(x) = {x}
FV(λx.t1) = FV(t1) \ {x}
FV(t1 t2) = FV(t1)∪ FV(t2) �

5.3.3 Exercise [��]: Give a careful proof that |FV(t)| ≤ size(t) for every term t. �

Substitution

The operation of substitution turns out to be quite tricky, when examined in
detail. In this book, we will actually use two different definitions, each opti-
mized for a different purpose. The first, introduced in this section, is compact
and intuitive, and works well for examples and in mathematical definitions
and proofs. The second, developed in Chapter 6, is notationally heavier, de-
pending on an alternative “de Bruijn presentation” of terms in which named
variables are replaced by numeric indices, but is more convenient for the
concrete ML implementations discussed in later chapters.

It is instructive to arrive at a definition of substitution via a couple of wrong
attempts. First, let’s try the most naive possible recursive definition. (For-
mally, we are defining a function [x� s] by induction over its argument t.)

[x� s]x = s
[x� s]y = y if x ≠ y
[x� s](λy.t1) = λy. [x� s]t1
[x� s](t1 t2) = ([x� s]t1) ([x� s]t2)

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

70 5 The Untyped Lambda-Calculus

This definition works fine for most examples. For instance, it gives

[x� (λz. z w)](λy.x) = λy.λz. z w,

which matches our intuitions about how substitution should behave. How-
ever, if we are unlucky with our choice of bound variable names, the definition
breaks down. For example:

[x� y](λx.x) = λx.y

This conflicts with the basic intuition about functional abstractions that the
names of bound variables do not matter—the identity function is exactly the
same whether we write it λx.x or λy.y or λfranz.franz. If these do not
behave exactly the same under substitution, then they will not behave the
same under reduction either, which seems wrong.

Clearly, the first mistake that we’ve made in the naive definition of substitu-
tion is that we have not distinguished between free occurrences of a variable
x in a term t (which should get replaced during substitution) and bound ones,
which should not. When we reach an abstraction binding the name x inside
of t, the substitution operation should stop. This leads to the next attempt:

[x� s]x = s
[x� s]y = y if y ≠ x

[x� s](λy.t1) =
{
λy. t1 if y = x
λy. [x� s]t1 if y ≠ x

[x� s](t1 t2) = ([x� s]t1) ([x� s]t2)

This is better, but still not quite right. For example, consider what happens
when we substitute the term z for the variable x in the term λz.x:

[x� z](λz.x) = λz.z

This time, we have made essentially the opposite mistake: we’ve turned the
constant function λz.x into the identity function! Again, this occurred only
because we happened to choose z as the name of the bound variable in the
constant function, so something is clearly still wrong.

This phenomenon of free variables in a term s becoming bound when s is
naively substituted into a term t is called variable capture. To avoid it, we
need to make sure that the bound variable names of t are kept distinct from
the free variable names of s. A substitution operation that does this correctly
is called capture-avoiding substitution. (This is almost always what is meant

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

5.3 Formalities 71

by the unqualified term “substitution.”) We can achieve the desired effect by
adding another side condition to the second clause of the abstraction case:

[x� s]x = s
[x� s]y = y if y ≠ x

[x� s](λy.t1) =
{
λy. t1 if y = x
λy. [x� s]t1 if y ≠ x and y ∉ FV(s)

[x� s](t1 t2) = ([x� s]t1 ([x� s]t2)

Now we are almost there: this definition of substitution does the right thing
when it does anything at all. The problem now is that our last fix has changed
substitution into a partial operation. For example, the new definition does not
give any result at all for [x� y z](λy. x y): the bound variable y of the term
being substituted into is not equal to x, but it does appear free in (y z), so
none of the clauses of the definition apply.

One common fix for this last problem in the type systems and lambda-
calculus literature is to work with terms “up to renaming of bound variables.”
(Church used the term alpha-conversion for the operation of consistently
renaming a bound variable in a term. This terminology is still common—
we could just as well say that we are working with terms “up to alpha-
conversion.”)

5.3.4 Convention: Terms that differ only in the names of bound variables are
interchangeable in all contexts. �

What this means in practice is that the name of any λ-bound variable can
be changed to another name (consistently making the same change in the
body of the λ), at any point where this is convenient. For example, if we want
to calculate [x� y z](λy. x y), we first rewrite (λy. x y) as, say, (λw. x w).
We then calculate [x� y z](λw. x w), giving (λw. y z w).

This convention renders the substitution operation “as good as total,” since
whenever we find ourselves about to apply it to arguments for which it is
undefined, we can rename as necessary, so that the side conditions are satis-
fied. Indeed, having adopted this convention, we can formulate the definition
of substitution a little more tersely. The first clause for abstractions can be
dropped, since we can always assume (renaming if necessary) that the bound
variable y is different from both x and the free variables of s. This yields the
final form of the definition.

5.3.5 Definition [Substitution]:

[x� s]x = s
[x� s]y = y if y ≠ x
[x� s](λy.t1) = λy. [x� s]t1 if y ≠ x and y ∉ FV(s)
[x� s](t1 t2) = [x� s]t1 [x� s]t2 �

Pierce, Benjamin C.. Types and Programming Languages, MIT Press, 2002. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/northeastern-ebooks/detail.action?docID=3338823.
Created from northeastern-ebooks on 2021-02-12 09:14:00.

C
op

yr
ig

ht
 ©

 2
00

2.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

