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1Abstract—Games became popular, within the formal 

verification community, after their application to automatic 
synthesis of circuits from specifications, and they have been 
receiving more and more attention since then. This paper 
focuses on coding the “Sokoban” puzzle, i.e., a very complex 
single-player strategy game. We show how its solution can be 
encoded and represented as a Bounded Model Checking 
problem, and then solved with a SAT solver. After that, to cope 
with very complex instances of the game, we propose two 
different ad-hoc divide-and-conquer strategies. Those 
strategies, somehow similar to state-of-the-art abstraction-and-
refinement schemes, are able to decompose deep Bounded 
Model Checking instances into easier subtasks, trading-off 
between efficiency and completeness. We analyze a vast set of 
difficult hard-to-solve benchmark games, trying to push 
forward the applicability of state-of-the-art SAT solvers in the 
field. Those results show that games may provide one of the 
next frontier for the SAT community. 
 

Index Terms—artificial intelligence, algorithm design and 
analysis, Boolean algebra, formal verification, partitioning 
algorithms. 

I. INTRODUCTION 

Since their application to automatic synthesis of circuits 
from specifications [1], games have become popular in 
several formal fields. These include control of discrete event 
systems [2], realizability and synthesis, model checking [3], 
planning [4],  -calculus [5-6], and the analysis of systems 

where the distinction among the choices controlled by 
different components are made explicit. 

Research and related applications have led to a variety of 
game formulations [6-10], such as infinite games on finite 
graph, concurrent multi-player games, etc. [5]. Though the 
theoretical complexity of solving various games is well 
understood, there has been relatively less effort in 
identifying how modern symbolic strategies can be applied 
and perform on them. 

The simplest games, that most solutions computationally 
rely on, are single and two-player reachability and safety 
games on finite graphs. 

Single-player games are played by one single entity, 
usually referred to as the system. The target of the system is 
to reach a fixed goal starting from the initial configuration 
of the game. This problem is usually analyzed as a 
reachability quest, i.e., as a task where it is necessary to 
check the existence of a sequence of moves that will force 
the game from the initial configuration to the final goal. 

Two-player games are played between two entities, the 
system and the environment. The problem is to check 
whether the system has a winning strategy, i.e., a strategy 
that will force the game from the initial configuration to 
some target position, no matter how the environment plays. 

 
1 

As far as single player games are concerned, these problems 
are often analyzed in terms of reachability, as the system 
must be able to reach a winning position, starting from the 
initial configuration, in all possible scenarios.  

In this paper, we will consider only perfect-information 
and positional (or memory-less) games, i.e., games in which 
the player(s) has (have) perfect information about the game. 
In those puzzles the strategy is based only on the current 
state of the game. 

Recent works, such as the one from Alur et al. [6], 
showed how Binary Decision Diagrams (BDDs) are more 
efficient than Satisfiability (SAT) and Quantified Boolean 
Formulas (QBF) tools to solve a few selected games. 
Anyhow, given the increasing efficiency of SAT and QBF 
solvers, the effort in coding problems in different ways, and 
the variety of available games and encodings to experiment 
with, this issue is still open. 

This paper focuses on encoding the “Sokoban” puzzle”, 
i.e., a very complex strategy game, and to encode it as a 
Bounded Model Checking (BMC) problem. As far as we 
know, this sort of encoding, and the subsequent resolution 
schemes, has never been presented before. 

Sokoban is a “transport” puzzle, that is, a game in which 
the player has to push boxes in a labyrinth, in order to put 
them in designed places. The BMC formulation encodes the 
existence of a winning strategy, i.e., a sequence possible 
legal moves done by the player to reach the final 
configuration (the final goal). As a consequence, the length 
(or depth) k  of the BMC unrolling coincides with the 
number of moves of the player. Checking the existence of a 
solution with increasing bound delivers the shortest 
sequence of moves leading to success. 

We show that, even with modern state-of-the-art 
satisfiability solvers, this straightforward “standard” BMC 
formulation is able to solve only extremely simple, and 
shallow, instances of the game. 

To alleviate this problem, we present two abstraction and 
refinement techniques. Both methods decompose the game 
into several easier sub-problems, usually one sub-problem 
for each box present in the initial configuration scheme. In 
the first strategy, those sub-problems are solved in a loosely 
coupled way, i.e., they are analyzed in a specific order, one 
at a time, such that the solution of one of them is used to 
constrain all subsequent ones. This strategy, albeit more 
efficient and scalable than the original straightforward 
algorithm, is able to solve the game only when there exists a 
complete serial decomposition of the solution. In the second 
algorithm, sub-games are more tightly coupled. They evolve 
in lock-step, one step at a time, such that any partial 
solutions is used to restrict the search spaces of all others 
sub-games. Albeit less effective to decompose the game into 
easier sub-problems, this strategy is sound and complete, 
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and it allows a better trade-off between efficiency and 
completeness. 

Although our resolution strategies are not intended as a 
serious attack on solving the Sokoban puzzle, they are 
indicative of the performance of a SAT using standard 
techniques, without heuristics or propagation rules 
specifically realized and tuned for the game. 

A. Contributions 

Given the previously described overall flow, our 
contributions are the following.  

We present a Conjunctive Normal Form (CNF) encoding 
of a real challenging game, and we solve it through proper 
divide-and-conquer decomposition, adopting two abstraction 
and refinement methods. Those strategies target the 
decomposition of very deep BMC instances into several 
easier sub-problems. The presented problems are 
challenging benchmarks for the SAT community. We 
compare the most efficient SAT solvers available today, and 
we contrast them on different hardware architectures.  

To sum up, our experiments show that, albeit SAT tools 
can be very efficient on simple games, they are not yet 
mature enough to deal with complex games, which still 
provide extremely hard-to-solve instances. 

B. Road-Map 

The paper is organized as follows. Section II introduces 
our notation and the model we adopted. Section III presents 
the Sokoban game and our solution procedures. Section IV 
concentrates on benchmarks and related experimental 
results. Finally, Section V concludes the paper with some 
summarizing remarks. 

II. BACKGROUND 

A. Model and Notation 

In our notation, B  indicates the Boolean space. Symbols 
such as  ,  ,  , , and   are used for Boolean 
conjunction (AND), disjunction (OR), negation (NOT), 
exclusive-nor (XNOR) and implication 

yxyx     (1) 

respectively. 
We frequently adopt an indexed set of Boolean variables 

},...,,{ 21 nvvvV  , and the notation iV  to indicate such a 

set V  referred to time frame i . We use both v  ( v ) and 

1v  ( 0v ) to express the same meaning, that is, a 
variable in its uncomplemented or complemented form. 

A state predicate ( SP ) is a Boolean formula over V . We 

write )(xSP  to denote 
ii xvSP /| , i.e., the predicate SP  

with each variable iv  replaced by ix . 

B. The Game Structure 

We model single- and two-player games using the 
structure ),,( TRXWS  , where W , X , TR  indicate the 

input variables, the state variables, and the transition 
predicate, respectively. Among the X  variables we make 
distinction between the present state variables, denoted with 
P , and the next state variables, denoted with N . The 
transition relation ),,( TR  is true if and only if the 

game moves from state   to state   when the player 

selects the move  . 

Given a game structure S , we define a game G  as a 
tuple ),,,( FTISG  , where I  is the initial state of the 

game, T  is the target predicate (the goal), and F  is a 
safety predicate. 

The behavior of a two-player game G  is the following 

one. G  starts in its initial state I . At each time frame, the 
two players (the system and the environment) make their 
move, such that the game evolves according to the rules 
given by its transition predicate TR . Given a state P , then 
as long as )(PF  is true the game stays in its safe region; 

whereas whether )(PT  is true the goal of the game has 

been reached. If a move makes the game reach the goal 
region, the player playing that move wins. If a move makes 
the game going outside the safe region, the player playing 
the move loses. Thus a winning strategy for a player consists 
of a set of moves which, starting from the initial 
configuration I , allows the player to make the move 
entering the goal region T  for every possible move done by 
the other player. A reachability game (or guarantee game) is 
a game in which the problem is to check whether one player 
has a winning strategy, forcing the game from I  to T . A 
safety game is a game in which F  must always be false. 

C. Satisfiability 

Given a Boolean formula f  depending on V , the 

Boolean Satisfiability problem [11], usually known as SAT, 
consists in finding, if it exists, an assignment to the variables 
of f , namely },...,,{ 21 nvvv , such that f  is true, i.e., 

1),...,,( 21 nvvvf . SAT solvers work on Boolean 

formulas usually expressed in Conjunctive Normal Form 
(CNF), even if several extension have been proposed over 
the year (see for example [12-14]). A CNF formula is a 
conjunction of clauses, each of which is a disjunction of 
literals. Each literal is either a variable or its 
complementation. 

D. Bounded Model Checking 

Given a sequential system, SAT based Bounded Model 
Checking (BMC) [15] builds a propositional formula that is 
satisfiable iff there is a path from I  to T  of bounded 
length k . More specifically, a BMC run of depth k  unfolds 

the transition relation of the system k  times 

),(...),(),...,( 110
1

0 kk
k

kk VVTRVVTRVVTR 
 (2) 

and uses a SAT solver to check the satisfiability of 

)(),...,()( 00 kkk
k VTVVTRVIf    (3) 

If kf  is unsatisfiable, there is no path of length k  

connecting I  and T , and a larger value of k  should be 
tried. 

A special version of the BMC process exploits the 
concept of incrementality [16], whose main idea is re-using 
the set of conflict clauses (generated by the solver) across 
several calls to the SAT solving routine. We also exploit this 
notion by means of the unit assumptions mechanism [17]. 
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III. THE SOKOBAN GAME 

Sokoban was created by Hiroyuki Imabayashi in 1980. 
The game is a transport puzzle, as perfectly described by its 
name “Sokoban”, meaning “warehouse keeper” in Japanese. 
Fig. 1 reports a graphical representation of the game board. 

The goal of the game is simple. The player (the black dot) 
has to push the boxes (gray squares) in a labyrinth (black 
walls), in order to put them in designed places (crossed cells 
in the grid). The rules that have to be respected are simple as 
well. The player may move on the grid only horizontally or 
vertically, one cell at a time; boxes may be pushed but they 
cannot be pulled; only one box at a time may be pushed, 
provided that the cell it will occupy is empty. 

 

 
Figure 1. The Sokoban puzzle: A correct initial configuration on a square 
board of size 20. 

 
The game can be encoded as an automaton, implicitly 

represented through its transition relation TR . An instance 
of TR  represents exactly one move of a player, where the 
move is specified through the system primary inputs. The 
set of allowed moves is up, down, left, right. Such a set can 
be encoded by means of two Boolean variables. However, 
we will actually use a non-deterministic transition relation 

NDTR , formally defined as: 

),,(),( NWPTRNPTR wND 
  (4) 

We do this because the expression of NDTR  is easier to 

specify, thus leading to a smaller set of clauses. The 
sequence of moves the player has to perform in order to 
solve the game can be then retrieved by examining the 
solution itself. Once the transition relation is generated, our 

target is to find a sequence of states ),...,,( 10 ksss  

connecting the initial game configuration ( )( 0sI ) to the 

goal one ( )( ksT ), without violating the game rules 

( ),( 1iiND ssTR ). We perform this task resorting to SAT-

based BMC. In our approach, each cell rc  of the Sokoban 
game board is encoded with two Boolean variables, denoted 
as high ( h ) and low ( l ), with the following meaning: 

 The cell is empty. 

00  lh pp    (5) 

 The cell is occupied by the player 

10  lh pp    (6) 

 The cell is occupied by a box. 

01  lh pp    (7) 

In other words, the two bits can be viewed as representing 
the presence of a box or the player respectively. In other 

words the cell is: 
 Occupied by a box iff the high bit is true. 
 Occupied by the player iff the low bit is true. 
 Empty iff both bits are false. 

The two bits cannot both be true at the same time. 
Given this representation, the rules for the case of a cell 

not surrounded by wall cells (constraints coming from walls 
can be directly used to simplify the equations) are encoded 
as follows:  

 Rule number 1: In every reachable state, the bits 
encoding the cell cannot be asserted at the same 
time. Since this condition obviously holds for the 
initial state, the rule is expressed only on the next 
state variables: 

h
rc

l
rc nn 

   (8) 
 Rule number 2: If a cell will be occupied in the next 

state by the player, the player must be in one of the 
adjacent cells in the current state (see Fig. 2): 

)( )1()1()1()1(
l

cr
l

cr
l

cr
l

cr

l
rc

pppp

n

 


 (9) 
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Figure 2. Rule number 2: Player position for a left-to-right move. All other 
moves have similar graphical representations. 

 
 Rule number 3: The player may only move in one 

of the adjacent cells (see Fig. 3): 
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Figure 3. Rule number 3: The player may move horizontally or vertically of 
one single cell. 

 
 Rule number 4: If a cell will be occupied by a box 

in the next state, the box was already there or it has 
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just been pushed there. In this case, the player must 
be behind the box in the current time step, and he 
will take the box position in the next time step (see 
Fig. 4): 

)](

)(

)(

)(

[

)1()2()1(

)1()2()1(

)1()2()1(

)1()2()1(
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  (11) 
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Figure 4. Rule number 4: Box and player positions for a left-to-right move. 
All other moves have similar graphical representations. 

 
Notice that the walls of the Sokoban game board are not 

explicitly represented: In our framework, constraints coming 
from walls are directly used to simplify the given formulas. 

Once all these expressions are in place, the automaton 
transition relation is simply given by their conjunction. The 
system description is then completed by expressing the 
initial and the target states, which is straightforward to do 
given the encoding previously described.  

In Section IV we will show that the game, encoded as we 
have just described, is extremely difficult to solve, even for 
the fastest SAT tools available today. Although this 
limitation is due to several factors, our analysis shows that 
one of the main problems is the depth of the unrollings that 
have to be considered to find a solution with BMC. In turn, 
the solution depth strongly depends on the number of boxes 
that have to be moved onto the right place (schemes with 
just one box are usually trivial, and having several boxes on 
the grid, let us say up to 10 boxes, is normal). From the one 
hand, it is understandable that the number of moves tends to 
increase as the number of boxes increases. From the other 
one, we have observed that, with several boxes, most of the 
moves are performed just to relocate the player (not the 
boxes) from one place of the board to another one, without 
making any real progress. 

In order to alleviate this problem, we present a divide-
and-conquer approach, in which the player has the ability to 
duplicate himself whenever necessary, so that he (they) can 
push more than one box at a time. The approach can also be 
seen as an abstraction and refinement strategy, as the initial 
solution is found on an abstract model, and it has to be 
refined to be compliant with the concrete model. This 
approach can be implemented in different ways. We will 
present two different decomposition techniques in the 
following two subsections. We refer to these decomposition 
strategies as “Game by Game” and “Frame by Frame”, 
rephrasing a terminology firstly introduced by Cho et al. 
[18] while performing over-approximate reachability 
analysis with BDDs. 

A. Game by Game Decomposition 

Let us deal with a game G , as defined in Section II-B. In 
the Game by Game (GBG) approach, the player is 
conceptually duplicated up-front, before even starting any 
move. The number of player copies is equal to the number 
of boxes that have to be moved to the right place. We then 
divide the game into several sub-games, one for each box 
pushed by one copy of the player. All sub-games are 
analyzed in turn using BMC. Every solution found is used to 
constrain the following sub-games. 

This situation is depicted in Fig. 5. In this case, the 
original puzzle of Fig. 5(a) is decomposed into the three 
sub-problems of Fig. 5(b), one for each box. Once the first 
sub-problem (the one on top) is solved, its solution is used 
to constrain the subsequent two sub-problems, as the 
presence of the first box and the first player in the labyrinth 
(in specific places at specific times) may be used to restrict 
the resolution spaces of all other sub-problems. If it is 
possible to solve all sub-problems, the global solution can 
be derived from those solutions. Otherwise, if one of the 
problem does not have a solution given the restrictions 
imposed by previous sub-problems (or because a global 
solution requires a more fine-grained interaction among sub-
problems), these restrictions have to be ruled-out and that 
particular sub-problem re-analyzed to find a different 
solution. 
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Solution of 

 
Figure 5. Sokoban decomposition following the GBG strategy: The original 
problem (a) is decomposed into three sub-problems (b). Sub-problems 
solved in sequence one after the other. Each partial solution is used to 
restrict the search space of all subsequent sub-problems. 

 
As the main idea of the method is to process each sub-

game separately, we call this method Game by Game. Fig. 6 
shows the pseudo-code of the procedure applying this 
strategy. 

The GBG  routine receives the game G  as parameter. 
This game G is then decomposed into the necessary sub-

games }{ iG by the amedecomposeG function (line 2). 
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Figure 6. Serial decomposition of the Sokoban game, using the Game by 
Game (GBG) strategy. 

 
Decomposing G  into the set of sub-problems }{ iG  (one 

for each box on the game board) implies partitioning the 
initial and target state sets, so that each element of }{ iG  is 

described by a proper initial state set iI  and a proper target 

state set iT . In particular, iI specifies an initial condition in 

which only one player and one box are on the board, 
whereas all other boxes are considered as walls. 
Furthermore, iT  generally encodes a situation in which the 

current box may be moved to one among all possible final 
destinations. 

Once this decomposition is performed, all sub-games 
have to be traversed independently. The order in which the 
sub-games are traversed is very important to obtain a good 
performance of the algorithm. This order is computed by 
function sort  on line 5. One strategy we use in this context 
is to assign to each sub-game a priority depending on the 
physical distance between the initial position of the box and 
the closest target not yet assigned. 
After that, we perform a BMC analysis for each sub-
problem }{ iGg . The BMC routine (called on line 7 and 

defined on lines 19-27) is used to find a trace from iI  to iT  

for the current sub-game. To solve a sub-problem, a Boolean 
formula f  is built by unrolling k  times the game transition 

relation, in conjunction with the system initial and target 
states (line 23). Function SAT , called on line 24, performs 
the satisfiability analysis of the formula, possibly returning 
the satisfying assignment. If the formula is false, k  is 
increased and the process restarts from line 23. 

The main iteration of function BMC  is also controlled 
by a local threshold on the available resources (CPU and 
memory). This threshold is tighter than the global one 
( tglobalLimi ) used in line 17. Controlling the resource 

limit is necessary because, in the GBG decomposition, sub-
games are not guaranteed to have a solution. When a trace is 
not found (i.e., the local resource limit is exceeded) the 
break command on line 9 forces a jump to line 17, where the 
global resource limits (CPU and memory) are checked, and 
the entire process is possibly restarted by reordering the sub-
games on line 5. When a trace is found, it is used to 
constrain all other sub-games (line 11) using function 
constrain . In this way, though each sub-problem is 
traversed individually, the current trace is used to pose 
constraints on all sub-games still to be analyzed. This means 
that the solution eventually found for each sub-game will be 
compatible, as far as the position of the boxes is concerned, 
with the ones obtained up to that moment. Once all single 
sub-games }{ iGg  have been analyzed, all single traces 

have to be checked for congruence. This step is performed 
in lines 15-16, where the original game G  is constrained 
with the global trace (Trace ), and then it is checked for a 
global solution. 

This approach is relatively simple, but it does not 
guarantee to find a solution for complex games. This is due 
to two factors: 

 The game may not be solvable with a serial 
decomposition of its simple components, as it may 
require their interaction during the solution phase. 
For example, there are situations in which one box 
can be moved to one of the final destinations only 
when another one has been moved around “to free” 
a passage for it. 

 Even if the game is solvable adopting a serial 
decomposition, the existence of a solution depends 
on the order in which the components are analyzed. 
To be complete, given n  components we should try 

!n  possible permutations, which is obviously 
feasible only for very small values of n . This 
possibility is taken into consideration by the do-
while loop starting in line 3, by which we may try 
another sub-game order to solve the problem, until 
the available resources are exhausted. 

B. Frame by Frame Decomposition 

In this section, we present an algorithm based on a quite 
different strategy from the one adopted by the GBG 
algorithm of Section III-A. The approach is more complex 
and somehow less efficient in terms of its decomposition 
power, but it is guaranteed to find a solution, given enough 
time and memory, when a solution exists. As for the GBG 
algorithm, the new approach adopts an abstraction and 
refinement strategy, as an initial over-approximation of the 
original problem is subsequently refined to deliver a correct 
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result. However, this decomposition is closer than the GBG 
approach to the original method in its algorithmic 
construction. 

The idea is simple. Instead of traversing each sub-game 
completely before processing the next one, the new method 
handles all sub-games in parallel. Interaction between sub-
games is more fine-grained, since the base unit of 
interaction is a time frame rather than an entire BMC 
verification phase. These considerations led us to call the 
new technique “Frame by Frame” (FBF). 
This is represented in Fig. 7. Fig. 7(a) shows the initial 
situation. After that, Fig. 7(b) illustrates the analysis done 
for the first time frame, and Fig. 7(c) for the second one. 
Whenever a conflict is detected, the conflict has to be ruled-
out before proceeding along with the analysis. 
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Figure 7. Sokoban decomposition following the FBF strategy: The original 
problem (a) is decomposed into three sub-problems (b) which are analyzed 
in parallel for one step and then validated with respect to each other. After 
the validation a further step (c) is performed on the three of them, till 
resolution. 
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Figure 8. Parallel decomposition of the Sokoban game, using the Frame by 
Frame (FBF) strategy. 

 
Fig. 8 presents the pseudo-code illustrating the entire 

procedure. 
Function changeGame , in line 3, generates a new game 

structure G


 from the original game G . In G


 the player's 
rules are modified. More specifically, moving from time 
frame t  to time frame 1t  one single copy of the player 
can generate multiple copies of himself or, vice-versa, more 
copies of the player can converge in a single copy. 

All copies have to respect the same set of rules as far as 
movements, or position incompatibility with walls and 
boxes are concerned. 

The new game G


 is a strict over-approximation of the 

original game G , and it coincides with G  when no player 

is duplicated. From a practical point of view, the game G


 is 

obtained from G  by: 
 Modifying the rule of Equation (9) such that the 

player is allowed to remain in the same cell. 
 Deleting the rule of Equation (10). 
 Modifying the rule of Equation (11) so that no box 

duplication may occur. Notice that according to 
Equations (8-11), no box duplication may occur 
when a single player is on the board. However, this 
is no more true when multiple players are available. 

On this new game structure, function BMC  looks for a 

solution trace. The BMC  procedure, called in line 4, is the 
one defined in Fig. 6, and, for this reason, it is not 
duplicated here. If no solution is found, the function just 
returns an empty result (line 6), otherwise the solution has to 
be refined. Refinement is performed in the following way. 
For each time frame of the trace with multiple players (line 
9), we generate a new game g, with the same rules of G  
(i.e., only one player), but with the target of performing a 
single step of the trace itself (line 10). Then, we look for a 
concrete trace on g , using again function BMC  (line 11). 

If this trace exists, the process goes on to the next time 
frame. If the trace does not exist, we have to constrain the 
original game G  such that the trace found in line 4 will be 
excluded in the future (line 13). The entire process is then 
restarted until the global resource limits are exceeded. 
 

Theorem. Function FBF is sound and complete. 
Sketch of Proof. Soundness. Every trace discovered on 

the abstract game G


 is verified on the concrete model G  

before being returned. Completeness. As G


 is an 

abstraction of G , including all behaviors of G  itself, no 
solution is omitted. 

IV. EXPERIMENTAL RESULTS 

In this section, we present our results to solve the 
Sokoban game. We compare the basic “monolithic” method 
(beginning of Section III) with the decomposed ones 
(Sections III-A and III-B). 

We present results using several state-of-the-art SAT 
solvers, and we present the ones obtained with the fastest 
one plus the one gathered with Minisat (version 2.0). In 
particular, Minisat is used both as an external tool (as all the 
other solvers), and as an internal package, directly linked 
with the top-level procedure. In this last case, we adopt 
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incremental SAT in order to evaluate the strength of 
incrementality (see Section II-D) on these verification 
problems. 

We ran all experiments on an AMD Phenom 9850 Quad 
Core 2.4 GHz, 64 bits machine, with 16 GBytes of main 
memory (limited to 8 GBytes), running Ubuntu Linux 
(version 14.04). The time limit was set to 3600 seconds (one 
hour) for all experiments. 

We performed experiments on 20 home-made grids 
(named homei) and on 100 instances (called push_pushi and 
sokoi) publicly available. 

The home-made benchmarks include the less constrained 
configurations, whereas the soko suite is made up of quite 
large puzzles, with a remarkable number of boxes 
(sometimes more than 20). We provide data only for those 
instances on which we were able to complete the game 
within the given time limit (1 hour). In all the other schemes 
we ran out of time. 

We present two sets of experiments. 
In the first set, we applied the monolithic technique 

presented at the beginning of Section III. All results are 
reported in Table I. The performance of the different SAT 
solvers (such as Riss, Picosat, Lingeling, Minisat, etc.) 
seems to vary with the instance more than in other cases, 
and there is no clear winner among them. Incrementality 
also seems to help, sometimes drastically, but not in all the 
cases. Memory usage (that we do not detail) does not seem 
to be a problem, as it is limited to less than 0.5 GB in all 
cases. On the contrary, running time is the major hurdle for 
all unsolved instances. Indeed, we can complete, with the 
original approach, only 13 instances out of 120, all of them 
with relatively small value of the BMC bound. 

In the second set of experiments, we ran the GBG and 
FBF techniques described in Sections III-A and III-B. 

The GBG approach was able to solve 8 puzzles among 
the home-made instances, whereas it completed only 3 
benchmarks taken from the WEB. The reason for this is that, 
for almost all these benchmarks, the solution cannot be 
obtained through a simple serial decomposition, since 
reaching a solution requires alternate movements of 
different boxes. Anyway, on the solved instances the GBG 
technique outperformed both the original method and the 
FBF technique in terms of time and memory. 

The FBF approach is usually fast at finding a solution on 
the abstract model, but often these solutions have to be 
refined to hold on the concrete game. Overall, the FBF 
strategy could complete 87 abstract schemes, and it was able 
to refine 35 of them to a true concrete solution within the 
time limit. Given the large amount of data collected, Table 2 
reports results only for the FBF strategy, and only for those 
instances that the monolithic method was able to solve (i.e., 
the ones presented in Table 1). We also report data only for 
the Minisat solver adopting incremental SAT. For the 
monolithic approach the meaning of the columns is the same 
of Table I. For the FBF strategy the meaning of the columns 
is the following. The abstract bound (column Abs) is the 
depth of the trace on the abstract model (named Trace in 
Fig. 8). The concrete bound (column Con) is instead the 
length of the final trace, i.e., the one valid on the concrete 
model. Column #Ref indicates the number of refinements 
done (the number of iterations of the loop at line 2 of Fig. 

8). 
Analyzing the data of Table II, we can draw the following 

conclusions: 
 First of all the (exact) bound obtained with the 

monolithic method indicates the length of the 
shortest possible solution on the concrete model. As 
it can be noticed, the abstract bound is always 
smaller than this value, and the concrete bound is 
always larger. This is not surprising, as the FBF 
method decomposes a single BMC quest into 
several shortest and easier searches. If from the one 
side, this choice avoids erratic behavior and 
movements (which are really inconvenient while 
looking for a very deep solution), on the other one it 
focuses the player toward the target, often forcing 
him to push in turn almost all boxes by one 
position. These considerations explain the 
advantages in terms of time and scalability but also 
the possible overheads of our decomposition 
scheme. 

 The number of refinements needed by the technique 
is quite small. This means that the number of 
“adjustments” needed to concretize the abstract 
model is limited. 

 The time needed by the FBF approach can be larger 
than the one required by the original encoding. This 
is mainly due to the refinement process, which 
represents the main current limit of the method. 
Anyhow, we would like to highlight that the FBF 
strategy allowed us to find a solution for 21 
instances not solvable with the monolithic 
approach, and not reported in the table for the sake 
of readability. 

 
TABLE I: BOUNDS AND RUNTIMES FOR THE (STANDARD) MONOLITHIC 

APPROACH 
Puzzle Name Bound Minisat Minisat 

(linked) 
Best 

Solver 

home01 16 8.0 4.2 3.4 

home02 25 39.5 24.5 22.5 

home04 36 94.6 78.9 69.2 

home08 37 594.6 481.9 363.5 

home12 41 993.9 738.9 591.6 

push_push01 10 0.4 0.2 0.1 

push_push02 89 1900.8 999.6 886.6 

push_push04 33 4.1 3.8 3.1 

push_push05 21 0.6 0.6 0.6 

push_push09 34 100.8 71.4 70.7 

push_push10 57 862.7 457.9 371.8 

push_push11 29 31.1 38.7 26.7 

push_push43 35 ovf 1234.8 736.9 

soko15 48 159.2 151.5 147.6 

soko31 53 1559.2 1351.5 1247.6 

V. CONCLUSIONS 

Games are receiving increasing attention from the formal 
verification community. This paper analyses a very complex 
single-player game, namely the “Sokoban puzzle”. This 
puzzle is a transport game in which a player has to move 
boxes from their initial positions into specific final 
locations. First of all, we concentrate on how to encode the 
puzzle in a logic (Boolean) form, and on how to solve it 
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using Bounded Model Checking. Then, we focus on how to 
efficiently apply two divide-and-conquer (abstraction-and-
refinement) strategies to decompose very deep Bounded 
Model Checking instances into easier sub-problems. 
Experimental results show that, although SAT tools are 
becoming more and more efficient, complex games may 
provide very difficult and hard-to-solve benchmarks to the 
SAT community. 
 

TABLE II: RESULTS FOR THE MONOLITHIC AND THE FRAME BY FRAME 

(FBF) DECOMPOSITION APPROACHES 
Monolithic 
Approach 

FBF 
Approach 

Puzzle 
Name 

Bound Time 
[s] 

Abs Con #Ref Time 
[s] 

home01 16 3.4 7 21 0 2.3 

home02 25 22.5 11 38 0 17.4 

home04 36 69.2 15 59 1 48.5 

home08 37 363.5 18 71 2 221.2 

home12 41 591.6 21 83 3 333.7 

push_push01 10 0.1 3 16 7 0.3 

push_push02 89 886.6 22 142 5 339.6 

push_push04 33 3.1 13 75 2 2.1 

push_push05 21 0.6 13 56 3 1.1 

push_push09 34 70.7 14 92 6 77.9 

push_push10 57 371.8 14 118 6 245.7 

push_push11 29 26.7 9 69 5 33.6 

push_push43 35 736.9 5 91 4 854.2 

soko15 48 147.6 21 88 4 131.8 

soko31 53 1247.6 27 91 4 831.8 
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