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Abstract—Games became popular, within the formal
verification community, after their application to automatic
synthesis of circuits from specifications, and they have been
receiving more and more attention since then. This paper
focuses on coding the “Sokoban” puzzle, i.e., a very complex
single-player strategy game. We show how its solution can be
encoded and represented as a Bounded Model Checking
problem, and then solved with a SAT solver. After that, to cope
with very complex instances of the game, we propose two
different ad-hoc divide-and-conquer strategies. Those
strategies, somehow similar to state-of-the-art abstraction-and-
refinement schemes, are able to decompose deep Bounded
Model Checking instances into easier subtasks, trading-off
between efficiency and completeness. We analyze a vast set of
difficult hard-to-solve benchmark games, trying to push
forward the applicability of state-of-the-art SAT solvers in the
field. Those results show that games may provide one of the
next frontier for the SAT community.

Index Terms—artificial intelligence, algorithm design and
analysis, Boolean algebra, formal verification, partitioning
algorithms.

I. INTRODUCTION

Since their application to automatic synthesis of circuits
from specifications [1], games have become popular in
several formal fields. These include control of discrete event
systems [2], realizability and synthesis, model checking [3],
planning [4], u -calculus [5-6], and the analysis of systems

where the distinction among the choices controlled by
different components are made explicit.

Research and related applications have led to a variety of
game formulations [6-10], such as infinite games on finite
graph, concurrent multi-player games, etc. [5]. Though the
theoretical complexity of solving various games is well
understood, there has been relatively less effort in
identifying how modern symbolic strategies can be applied
and perform on them.

The simplest games, that most solutions computationally
rely on, are single and two-player reachability and safety
games on finite graphs.

Single-player games are played by one single entity,
usually referred to as the system. The target of the system is
to reach a fixed goal starting from the initial configuration
of the game. This problem is usually analyzed as a
reachability quest, i.e., as a task where it is necessary to
check the existence of a sequence of moves that will force
the game from the initial configuration to the final goal.

Two-player games are played between two entities, the
system and the environment. The problem is to check
whether the system has a winning strategy, i.e., a strategy
that will force the game from the initial configuration to
some target position, no matter how the environment plays.
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As far as single player games are concerned, these problems
are often analyzed in terms of reachability, as the system
must be able to reach a winning position, starting from the
initial configuration, in all possible scenarios.

In this paper, we will consider only perfect-information
and positional (or memory-less) games, i.e., games in which
the player(s) has (have) perfect information about the game.
In those puzzles the strategy is based only on the current
state of the game.

Recent works, such as the one from Alur et al. [6],
showed how Binary Decision Diagrams (BDDs) are more
efficient than Satisfiability (SAT) and Quantified Boolean
Formulas (QBF) tools to solve a few selected games.
Anyhow, given the increasing efficiency of SAT and QBF
solvers, the effort in coding problems in different ways, and
the variety of available games and encodings to experiment
with, this issue is still open.

This paper focuses on encoding the “Sokoban” puzzle”,
i.e.,, a very complex strategy game, and to encode it as a
Bounded Model Checking (BMC) problem. As far as we
know, this sort of encoding, and the subsequent resolution
schemes, has never been presented before.

Sokoban is a “transport” puzzle, that is, a game in which
the player has to push boxes in a labyrinth, in order to put
them in designed places. The BMC formulation encodes the
existence of a winning strategy, i.e., a sequence possible
legal moves done by the player to reach the final
configuration (the final goal). As a consequence, the length
(or depth) K of the BMC unrolling coincides with the
number of moves of the player. Checking the existence of a
solution with increasing bound delivers the shortest
sequence of moves leading to success.

We show that, even with modern state-of-the-art
satisfiability solvers, this straightforward “standard” BMC
formulation is able to solve only extremely simple, and
shallow, instances of the game.

To alleviate this problem, we present two abstraction and
refinement techniques. Both methods decompose the game
into several easier sub-problems, usually one sub-problem
for each box present in the initial configuration scheme. In
the first strategy, those sub-problems are solved in a loosely
coupled way, i.e., they are analyzed in a specific order, one
at a time, such that the solution of one of them is used to
constrain all subsequent ones. This strategy, albeit more
efficient and scalable than the original straightforward
algorithm, is able to solve the game only when there exists a
complete serial decomposition of the solution. In the second
algorithm, sub-games are more tightly coupled. They evolve
in lock-step, one step at a time, such that any partial
solutions is used to restrict the search spaces of all others
sub-games. Albeit less effective to decompose the game into
easier sub-problems, this strategy is sound and complete,
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and it allows a better trade-off between efficiency and
completeness.

Although our resolution strategies are not intended as a
serious attack on solving the Sokoban puzzle, they are
indicative of the performance of a SAT using standard

techniques, without heuristics or propagation rules
specifically realized and tuned for the game.
A. Contributions

Given the previously described overall flow, our

contributions are the following.

We present a Conjunctive Normal Form (CNF) encoding
of a real challenging game, and we solve it through proper
divide-and-conquer decomposition, adopting two abstraction
and refinement methods. Those strategies target the
decomposition of very deep BMC instances into several
easier sub-problems. The presented problems are
challenging benchmarks for the SAT community. We
compare the most efficient SAT solvers available today, and
we contrast them on different hardware architectures.

To sum up, our experiments show that, albeit SAT tools
can be very efficient on simple games, they are not yet
mature enough to deal with complex games, which still
provide extremely hard-to-solve instances.

B. Road-Map

The paper is organized as follows. Section Il introduces
our notation and the model we adopted. Section Il presents
the Sokoban game and our solution procedures. Section 1V
concentrates on benchmarks and related experimental
results. Finally, Section V concludes the paper with some
summarizing remarks.

Il. BACKGROUND

A. Model and Notation

In our notation, B indicates the Boolean space. Symbols
such as A, v, —,¢<>, and — are used for Boolean
conjunction (AND), disjunction (OR), negation (NOT),
exclusive-nor (XNOR) and implication

X Yy=—XVvYy Q)

respectively.

We frequently adopt an indexed set of Boolean variables
V ={v,,v,,...,v,}, and the notation V' to indicate such a

set V referred to time frame 1. We use both v (—Vv) and
v=1 (v=0) to express the same meaning, that is, a
variable in its uncomplemented or complemented form.

A state predicate (SP ) is a Boolean formula over V . We
write. SP(X) to denote SP | i.e., the predicate SP

v /% !

with each variable v; replaced by X;.

B. The Game Structure

We model single- and two-player games using the
structure S = (W, X, TR), where W, X, TR indicate the
input variables, the state variables, and the transition
predicate, respectively. Among the X variables we make
distinction between the present state variables, denoted with
P, and the next state variables, denoted with N . The
transition relation TR(«,, f3) is true if and only if the
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game moves from state « to state S when the player
selects the move @ .

Given a game structure S, we define a game G as a
tuple G =(S,1,T,F), where | is the initial state of the
game, T is the target predicate (the goal), and F is a
safety predicate.

The behavior of a two-player game G is the following
one. G starts in its initial state | . At each time frame, the
two players (the system and the environment) make their
move, such that the game evolves according to the rules
given by its transition predicate TR . Given a state P, then
as long as F(P) is true the game stays in its safe region;
whereas whether T (P) is true the goal of the game has
been reached. If a move makes the game reach the goal
region, the player playing that move wins. If a move makes
the game going outside the safe region, the player playing
the move loses. Thus a winning strategy for a player consists
of a set of moves which, starting from the initial
configuration |, allows the player to make the move
entering the goal region T for every possible move done by
the other player. A reachability game (or guarantee game) is
a game in which the problem is to check whether one player
has a winning strategy, forcing the game from | to T . A
safety game is a game in which F must always be false.

C. Satisfiability

Given a Boolean formula f depending on V , the
Boolean Satisfiability problem [11], usually known as SAT,
consists in finding, if it exists, an assignment to the variables
of f, namely {v,,v,,..,v,}, such that f is true, ie.,

f(v,,v,,..,v,)=1. SAT solvers work on Boolean

formulas usually expressed in Conjunctive Normal Form
(CNF), even if several extension have been proposed over
the year (see for example [12-14]). A CNF formula is a
conjunction of clauses, each of which is a disjunction of
literals. Each literal is either a wvariable or its
complementation.

D. Bounded Model Checking

Given a sequential system, SAT based Bounded Model
Checking (BMC) [15] builds a propositional formula that is
satisfiable iff there is a path from | to T of bounded
length K . More specifically, a BMC run of depth K unfolds
the transition relation of the system K times

TR*V°,..V)=TR(V° V) A..ATR (V¥ VY)
@

and uses a SAT solver to check the satisfiability of
f=IVO)ATR*V ,...V)ATVY) ©)
If f, is unsatisfiable, there is no path of length Kk

connecting | and T , and a larger value of K should be
tried.

A special version of the BMC process exploits the
concept of incrementality [16], whose main idea is re-using
the set of conflict clauses (generated by the solver) across
several calls to the SAT solving routine. We also exploit this
notion by means of the unit assumptions mechanism [17].
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I1l. THE SOKOBAN GAME

Sokoban was created by Hiroyuki Imabayashi in 1980.
The game is a transport puzzle, as perfectly described by its
name “Sokoban”, meaning “warehouse keeper” in Japanese.
Fig. 1 reports a graphical representation of the game board.

The goal of the game is simple. The player (the black dot)
has to push the boxes (gray squares) in a labyrinth (black
walls), in order to put them in designed places (crossed cells
in the grid). The rules that have to be respected are simple as
well. The player may move on the grid only horizontally or
vertically, one cell at a time; boxes may be pushed but they
cannot be pulled; only one box at a time may be pushed,
provided that the cell it will occupy is empty.

Figure 1. The Sokoban puzzle: A correct initial configﬁration on a square
board of size 20.

The game can be encoded as an automaton, implicitly
represented through its transition relation TR . An instance
of TR represents exactly one move of a player, where the
move is specified through the system primary inputs. The
set of allowed moves is up, down, left, right. Such a set can
be encoded by means of two Boolean variables. However,
we will actually use a non-deterministic transition relation

TR, , formally defined as:

TR (P,N)=3,TR(P,W,N) ()

We do this because the expression of TRy, is easier to

specify, thus leading to a smaller set of clauses. The
sequence of moves the player has to perform in order to
solve the game can be then retrieved by examining the
solution itself. Once the transition relation is generated, our

target is to find a sequence of states (Sy,S;,...,Sy)
connecting the initial game configuration (1(S,)) to the
goal one (T(S,)), without violating the game rules

(TR (S:,Si.1) )- We perform this task resorting to SAT-
based BMC. In our approach, each cell rc of the Sokoban
game board is encoded with two Boolean variables, denoted
as high (h) and low (1), with the following meaning:

e The cell is empty.

p"=0Ap' =0 (5)
e The cell is occupied by the player

p'=0Ap' =1 (6)
e The cell is occupied by a box.

p'=1ap'=0 (7)

In other words, the two bits can be viewed as representing
the presence of a box or the player respectively. In other
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words the cell is:

e Occupied by a box iff the high bit is true.

e Occupied by the player iff the low bit is true.

o Empty iff both bits are false.

The two bits cannot both be true at the same time.

Given this representation, the rules for the case of a cell
not surrounded by wall cells (constraints coming from walls
can be directly used to simplify the equations) are encoded
as follows:

e Rule number 1: In every reachable state, the bits
encoding the cell cannot be asserted at the same
time. Since this condition obviously holds for the
initial state, the rule is expressed only on the next
state variables:

| h
—|an \Y —|an (8)
o Rule number 2: If a cell will be occupied in the next

state by the player, the player must be in one of the

adjacent cells in the current state (see Fig. 2):
n, —

| | | | (9)
(p(rfl)c Vv p(r+1)c Vv pr(c—l) Vv pr(c+1))
c—l‘ ¢ ctl c—l‘ ¢ ctl
-1 T
r @ | = @
-t Tr-Tr oo -t Tr-Tr oo
r+1 | | | | r+1

Figure 2. Rule number 2: Player position for a left-to-right move. All other
moves have similar graphical representations.

e Rule number 3: The player may only move in one
of the adjacent cells (see Fig. 3):

Pre =

[(nzr—l)c A _'n(|r+l)c A _'n:(c—l) A _'nll’(c+1)) %
(_‘n(lr—l)c A n(|r+1)c A _'nll'(c—l) A _‘nll'(c+1)) Vv
(_‘n(lr—l)c A _'n(|r+1)c A n:(c—l) A _‘nlr(c+1)) 4
(_‘n(lr—l)c A _'n(lr+1)c A _'nll'(c—l) A nll'(c+l))]

(10)

,,,,,,,,,

,,,,,,,,,

¢l c ctl c-1 ¢ ‘c+1 c-1 ¢ c+l
r-1 ! r-1 r-1
fffffffffffffffffffffffffff
r @ —~— [ ) [ — ®
fffffffffffffffffffffffffff
r+1 ! ! r+1 r+1
c—l‘ c ‘c+1
r-1
,,,,,,,,,
r
,,,,,,,,,
'@ r+1

Figure 3. Rule number 3: The player may move horizontally or vertically of
one single cell.

e Rule number 4: If a cell will be occupied by a box
in the next state, the box was already there or it has
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just been pushed there. In this case, the player must
be behind the box in the current time step, and he
will take the box position in the next time step (see
Fig. 4):

h

N —

h
[prc 4

h | nl
(p(r+l)c A p(r+2)c A (r+l)c) Vv

h | |
(p(r—l)c A p(r—2)c A n(r—l)c) \4

h | |
(pr(c+l) A pr(c+2) A nr(c+1)) Vv

h | |
(pr(c—l) A Pre-gy A nr(c—l))]

(11)

r+1 | ]

Figure 4. Rule number 4: Box and player positions for a left-to-right move.
All other moves have similar graphical representations.

Notice that the walls of the Sokoban game board are not
explicitly represented: In our framework, constraints coming
from walls are directly used to simplify the given formulas.

Once all these expressions are in place, the automaton
transition relation is simply given by their conjunction. The
system description is then completed by expressing the
initial and the target states, which is straightforward to do
given the encoding previously described.

In Section IV we will show that the game, encoded as we
have just described, is extremely difficult to solve, even for
the fastest SAT tools available today. Although this
limitation is due to several factors, our analysis shows that
one of the main problems is the depth of the unrollings that
have to be considered to find a solution with BMC. In turn,
the solution depth strongly depends on the number of boxes
that have to be moved onto the right place (schemes with
just one box are usually trivial, and having several boxes on
the grid, let us say up to 10 boxes, is normal). From the one
hand, it is understandable that the number of moves tends to
increase as the number of boxes increases. From the other
one, we have observed that, with several boxes, most of the
moves are performed just to relocate the player (not the
boxes) from one place of the board to another one, without
making any real progress.

In order to alleviate this problem, we present a divide-
and-conquer approach, in which the player has the ability to
duplicate himself whenever necessary, so that he (they) can
push more than one box at a time. The approach can also be
seen as an abstraction and refinement strategy, as the initial
solution is found on an abstract model, and it has to be
refined to be compliant with the concrete model. This
approach can be implemented in different ways. We will
present two different decomposition techniques in the
following two subsections. We refer to these decomposition
strategies as “Game by Game” and “Frame by Frame”,
rephrasing a terminology firstly introduced by Cho et al.
[18] while performing over-approximate reachability
analysis with BDDs.
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A. Game by Game Decomposition

Let us deal with a game G, as defined in Section I1-B. In
the Game by Game (GBG) approach, the player is
conceptually duplicated up-front, before even starting any
move. The number of player copies is equal to the number
of boxes that have to be moved to the right place. We then
divide the game into several sub-games, one for each box
pushed by one copy of the player. All sub-games are
analyzed in turn using BMC. Every solution found is used to
constrain the following sub-games.

This situation is depicted in Fig. 5. In this case, the
original puzzle of Fig. 5(a) is decomposed into the three
sub-problems of Fig. 5(b), one for each box. Once the first
sub-problem (the one on top) is solved, its solution is used
to constrain the subsequent two sub-problems, as the
presence of the first box and the first player in the labyrinth
(in specific places at specific times) may be used to restrict
the resolution spaces of all other sub-problems. If it is
possible to solve all sub-problems, the global solution can
be derived from those solutions. Otherwise, if one of the
problem does not have a solution given the restrictions
imposed by previous sub-problems (or because a global
solution requires a more fine-grained interaction among sub-
problems), these restrictions have to be ruled-out and that
particular sub-problem re-analyzed to find a different
solution.

Solution of
— sub—problem 1
constraints
sub-problems
2and 3
1

1

1 Solution of

1 sub—problem 2
1 constraints

| 1 sub—problem 3
N e | 1

Vo - —

] - - - -

(b)
Figure 5. Sokoban decomposition following the GBG strategy: The original
problem (a) is decomposed into three sub-problems (b). Sub-problems
solved in sequence one after the other. Each partial solution is used to
restrict the search space of all subsequent sub-problems.

As the main idea of the method is to process each sub-
game separately, we call this method Game by Game. Fig. 6
shows the pseudo-code of the procedure applying this
strategy.

The GBG routine receives the game G as parameter.
This game G is then decomposed into the necessary sub-

games {G, } by the decomposeGame function (line 2).
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1 GBG (G)

2 {G,} = decomposeGame (G)
3 do

4 Trace = ¢

5  {G}=sort({G})

6 for each g €{G;}

7 trace = BMC (g)

8

9

if (trace = ¢)
break

10 // Constrain {G,} with trace
11 {G,} = constrain ({G;}\ g,trace)
12 Trace = Trace U trace
13 /l Find Global Trace
14 if (trace # ¢)
15 G = constrain (G, Trace)
16 trace = BMC (G)

17 while (trace = ¢ A —globaLimit)
18 return (trace)

19 BMC (9)

20 {I, TR, T}=extract (g)

21 k=0

22 do

23 f =1V AT TRV V) ATV
24 trace = SAT(f)

25 k=k+1

26 while (trace = ¢ A —localLimit)

27 return (trace)

Figure 6. Serial decomposition of the Sokoban game, using the Game by
Game (GBG) strategy.

Decomposing G into the set of sub-problems {G;} (one

for each box on the game board) implies partitioning the
initial and target state sets, so that each element of {G,} is

described by a proper initial state set |, and a proper target

state set T, . In particular, I; specifies an initial condition in

which only one player and one box are on the board,
whereas all other boxes are considered as walls.

Furthermore, T, generally encodes a situation in which the

current box may be moved to one among all possible final
destinations.

Once this decomposition is performed, all sub-games
have to be traversed independently. The order in which the
sub-games are traversed is very important to obtain a good
performance of the algorithm. This order is computed by
function sort on line 5. One strategy we use in this context
is to assign to each sub-game a priority depending on the
physical distance between the initial position of the box and
the closest target not yet assigned.

After that, we perform a BMC analysis for each sub-

problem g €{G,}. The BMC routine (called on line 7 and

defined on lines 19-27) is used to find a trace from I, to T,

for the current sub-game. To solve a sub-problem, a Boolean
formula f is built by unrolling k times the game transition
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relation, in conjunction with the system initial and target
states (line 23). Function SAT , called on line 24, performs
the satisfiability analysis of the formula, possibly returning
the satisfying assignment. If the formula is false, k is
increased and the process restarts from line 23.

The main iteration of function BMC is also controlled
by a local threshold on the available resources (CPU and
memory). This threshold is tighter than the global one
(globalLimit ) used in line 17. Controlling the resource

limit is necessary because, in the GBG decomposition, sub-
games are not guaranteed to have a solution. When a trace is
not found (i.e., the local resource limit is exceeded) the
break command on line 9 forces a jump to line 17, where the
global resource limits (CPU and memory) are checked, and
the entire process is possibly restarted by reordering the sub-
games on line 5. When a trace is found, it is used to
constrain all other sub-games (line 11) using function
constrain. In this way, though each sub-problem is
traversed individually, the current trace is used to pose
constraints on all sub-games still to be analyzed. This means
that the solution eventually found for each sub-game will be
compatible, as far as the position of the boxes is concerned,
with the ones obtained up to that moment. Once all single

sub-games g €{G;} have been analyzed, all single traces

have to be checked for congruence. This step is performed
in lines 15-16, where the original game G is constrained
with the global trace (Trace), and then it is checked for a
global solution.

This approach is relatively simple, but it does not
guarantee to find a solution for complex games. This is due
to two factors:

e The game may not be solvable with a serial
decomposition of its simple components, as it may
require their interaction during the solution phase.
For example, there are situations in which one box
can be moved to one of the final destinations only
when another one has been moved around “to free”
a passage for it.

e Even if the game is solvable adopting a serial
decomposition, the existence of a solution depends
on the order in which the components are analyzed.
To be complete, given n components we should try
n! possible permutations, which is obviously
feasible only for very small values of n. This
possibility is taken into consideration by the do-
while loop starting in line 3, by which we may try
another sub-game order to solve the problem, until
the available resources are exhausted.

B. Frame by Frame Decomposition

In this section, we present an algorithm based on a quite
different strategy from the one adopted by the GBG
algorithm of Section Il1-A. The approach is more complex
and somehow less efficient in terms of its decomposition
power, but it is guaranteed to find a solution, given enough
time and memory, when a solution exists. As for the GBG
algorithm, the new approach adopts an abstraction and
refinement strategy, as an initial over-approximation of the
original problem is subsequently refined to deliver a correct

95



Advances in Electrical and Computer Engineering

result. However, this decomposition is closer than the GBG
approach to the original method in its algorithmic
construction.

The idea is simple. Instead of traversing each sub-game

completely before processing the next one, the new method
handles all sub-games in parallel. Interaction between sub-
games is more fine-grained, since the base unit of
interaction is a time frame rather than an entire BMC
verification phase. These considerations led us to call the
new technique “Frame by Frame” (FBF).
This is represented in Fig. 7. Fig. 7(a) shows the initial
situation. After that, Fig. 7(b) illustrates the analysis done
for the first time frame, and Fig. 7(c) for the second one.
Whenever a conflict is detected, the conflict has to be ruled-
out before proceeding along with the analysis.

Conflict Conflict
check check
s [ e
NN ) i :
-] & =]
s - U I S U A U U U : = :

s b T W
-i-J. . - ., -
o | oo

@ N ! BN

ool g
] =]

(b) ©
Figure 7. Sokoban decomposition following the FBF strategy: The original
problem (a) is decomposed into three sub-problems (b) which are analyzed
in parallel for one step and then validated with respect to each other. After
the validation a further step (c) is performed on the three of them, till
resolution.

1 FBF (G)
2 do
3 G = changeGame (G)
4 Trace = BMC (G)
5 if (Trace =¢)
6 return (@)
7 /I Constrain G with trace Frame by Frame
8 trace = ¢
9 for i =1to length (Trace)
10 g = extract (G, timeFrames (Trace,i —1,i))
11 trace, = BMC (g)
12 if (trace, =¢)
13 G = constrain (G,—Trace)
14 break
15 else
16 trace = trace U trace,

17 while (trace, = ¢ A —globalLimit)

18 return (trace)

Figure 8. Parallel decomposition of the Sokoban game, using the Frame by
Frame (FBF) strategy.

Fig. 8 presents the pseudo-code illustrating the entire
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procedure.
Function changeGame , in line 3, generates a new game

structure G from the original game G . In G the player's
rules are modified. More specifically, moving from time
frame t to time frame t+1 one single copy of the player
can generate multiple copies of himself or, vice-versa, more
copies of the player can converge in a single copy.

All copies have to respect the same set of rules as far as
movements, or position incompatibility with walls and
boxes are concerned.

The new game G is a strict over-approximation of the
original game G, and it coincides with G when no player

is duplicated. From a practical point of view, the game G is
obtained from G by:
o Modifying the rule of Equation (9) such that the
player is allowed to remain in the same cell.
o Deleting the rule of Equation (10).
¢ Modifying the rule of Equation (11) so that no box
duplication may occur. Notice that according to
Equations (8-11), no box duplication may occur
when a single player is on the board. However, this
is no more true when multiple players are available.
On this new game structure, function BMC looks for a
solution trace. The BMC procedure, called in line 4, is the
one defined in Fig. 6, and, for this reason, it is not
duplicated here. If no solution is found, the function just
returns an empty result (line 6), otherwise the solution has to
be refined. Refinement is performed in the following way.
For each time frame of the trace with multiple players (line
9), we generate a new game g, with the same rules of G
(i.e., only one player), but with the target of performing a
single step of the trace itself (line 10). Then, we look for a
concrete trace on ¢, using again function BMC (line 11).

If this trace exists, the process goes on to the next time
frame. If the trace does not exist, we have to constrain the
original game G such that the trace found in line 4 will be
excluded in the future (line 13). The entire process is then
restarted until the global resource limits are exceeded.

Theorem. Function FBF is sound and complete.
Sketch of Proof. Soundness. Every trace discovered on

the abstract game G is verified on the concrete model G

before being returned. Completeness. As G is an
abstraction of G, including all behaviors of G itself, no
solution is omitted.

IV. EXPERIMENTAL RESULTS

In this section, we present our results to solve the
Sokoban game. We compare the basic “monolithic” method
(beginning of Section 11l) with the decomposed ones
(Sections I11-A and 111-B).

We present results using several state-of-the-art SAT
solvers, and we present the ones obtained with the fastest
one plus the one gathered with Minisat (version 2.0). In
particular, Minisat is used both as an external tool (as all the
other solvers), and as an internal package, directly linked
with the top-level procedure. In this last case, we adopt
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incremental SAT in order to evaluate the strength of
incrementality (see Section I1-D) on these verification
problems.

We ran all experiments on an AMD Phenom 9850 Quad
Core 2.4 GHz, 64 bits machine, with 16 GBytes of main
memory (limited to 8 GBytes), running Ubuntu Linux
(version 14.04). The time limit was set to 3600 seconds (one
hour) for all experiments.

We performed experiments on 20 home-made grids
(named home;) and on 100 instances (called push_push; and
soko;) publicly available.

The home-made benchmarks include the less constrained
configurations, whereas the soko suite is made up of quite
large puzzles, with a remarkable number of boxes
(sometimes more than 20). We provide data only for those
instances on which we were able to complete the game
within the given time limit (1 hour). In all the other schemes
we ran out of time.

We present two sets of experiments.

In the first set, we applied the monolithic technique
presented at the beginning of Section IlI. All results are
reported in Table 1. The performance of the different SAT
solvers (such as Riss, Picosat, Lingeling, Minisat, etc.)
seems to vary with the instance more than in other cases,
and there is no clear winner among them. Incrementality
also seems to help, sometimes drastically, but not in all the
cases. Memory usage (that we do not detail) does not seem
to be a problem, as it is limited to less than 0.5 GB in all
cases. On the contrary, running time is the major hurdle for
all unsolved instances. Indeed, we can complete, with the
original approach, only 13 instances out of 120, all of them
with relatively small value of the BMC bound.

In the second set of experiments, we ran the GBG and
FBF techniques described in Sections I11-A and I11-B.

The GBG approach was able to solve 8 puzzles among
the home-made instances, whereas it completed only 3
benchmarks taken from the WEB. The reason for this is that,
for almost all these benchmarks, the solution cannot be
obtained through a simple serial decomposition, since
reaching a solution requires alternate movements of
different boxes. Anyway, on the solved instances the GBG
technique outperformed both the original method and the
FBF technique in terms of time and memory.

The FBF approach is usually fast at finding a solution on
the abstract model, but often these solutions have to be
refined to hold on the concrete game. Overall, the FBF
strategy could complete 87 abstract schemes, and it was able
to refine 35 of them to a true concrete solution within the
time limit. Given the large amount of data collected, Table 2
reports results only for the FBF strategy, and only for those
instances that the monolithic method was able to solve (i.e.,
the ones presented in Table 1). We also report data only for
the Minisat solver adopting incremental SAT. For the
monolithic approach the meaning of the columns is the same
of Table I. For the FBF strategy the meaning of the columns
is the following. The abstract bound (column Abs) is the
depth of the trace on the abstract model (named Trace in
Fig. 8). The concrete bound (column Con) is instead the
length of the final trace, i.e., the one valid on the concrete
model. Column #Ref indicates the number of refinements
done (the number of iterations of the loop at line 2 of Fig.
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8).
Analyzing the data of Table Il, we can draw the following
conclusions:

e First of all the (exact) bound obtained with the
monolithic method indicates the length of the
shortest possible solution on the concrete model. As
it can be noticed, the abstract bound is always
smaller than this value, and the concrete bound is
always larger. This is not surprising, as the FBF
method decomposes a single BMC quest into
several shortest and easier searches. If from the one
side, this choice avoids erratic behavior and
movements (which are really inconvenient while
looking for a very deep solution), on the other one it
focuses the player toward the target, often forcing
him to push in turn almost all boxes by one
position. These considerations explain the
advantages in terms of time and scalability but also
the possible overheads of our decomposition
scheme.

« The number of refinements needed by the technique
is quite small. This means that the number of
“adjustments” needed to concretize the abstract
model is limited.

o The time needed by the FBF approach can be larger
than the one required by the original encoding. This
is mainly due to the refinement process, which
represents the main current limit of the method.
Anyhow, we would like to highlight that the FBF
strategy allowed us to find a solution for 21
instances not solvable with the monolithic
approach, and not reported in the table for the sake
of readability.

TABLE |: BOUNDS AND RUNTIMES FOR THE (STANDARD) MONOLITHIC

APPROACH
Puzzle Name Bound Minisat Minisat Best
(linked) | Solver
homeg; 16 8.0 42 34
homegy 25 395 245 225
homega 36 94.6 78.9 69.2
homegg 37 594.6 481.9 363.5
homey, 41 993.9 738.9 591.6
push_pushqy 10 0.4 0.2 0.1
push_pushgy 89 1900.8 999.6 886.6
push_pushgg 33 4.1 38 31
push_pushgs 21 0.6 0.6 0.6
push_pushgg 34 100.8 714 70.7
push_pushig 57 862.7 457.9 371.8
push_pushy; 29 311 38.7 26.7
push_pushys 35 ovf 1234.8 736.9
sokoss 48 159.2 151.5 147.6
sokosg 53 1559.2 13515 | 1247.6

V. CONCLUSIONS

Games are receiving increasing attention from the formal
verification community. This paper analyses a very complex
single-player game, namely the “Sokoban puzzle”. This
puzzle is a transport game in which a player has to move
boxes from their initial positions into specific final
locations. First of all, we concentrate on how to encode the
puzzle in a logic (Boolean) form, and on how to solve it
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using Bounded Model Checking. Then, we focus on how to
efficiently apply two divide-and-conquer (abstraction-and-
refinement) strategies to decompose very deep Bounded
Model Checking instances into easier sub-problems.
Experimental results show that, although SAT tools are
becoming more and more efficient, complex games may
provide very difficult and hard-to-solve benchmarks to the
SAT community.

TABLE Il: RESULTS FOR THE MONOLITHIC AND THE FRAME BY FRAME
(FBF) DECOMPOSITION APPROACHES

Puzzle Monolithic FBF
Name Approach Approach
Bound | Time Abs Con | #Ref Time
[s] [s]
homeg; 16 34 7 21 0 2.3
homegy 25 225 11 38 0 174
homega 36 69.2 15 59 1 485
homegg 37 363.5 18 71 2 2212
home1, 41 591.6 21 83 3 3337
push_pushgy 10 0.1 3 16 7 0.3
push_pushgy 89 886.6 22 142 5 339.6
push_pushgg 33 31 13 75 2 21
push_pushgs 21 0.6 13 56 3 11
push_pushgg 34 70.7 14 92 6 77.9
push_pushig 57 371.8 14 118 6 245.7
push_pushyq 29 26.7 9 69 5 33.6
push_pushys 35 736.9 5 91 4 854.2
sokoys 48 147.6 21 88 4 131.8
s0K03; 53 1247.6 27 91 4 831.8
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