Part IV

Gaming

The Mechanical Theorem Prover

This part of the book is concerned with the mechanization of the logic.
Our goal is to teach you how to use the theorem prover. We start, in this
chapter, by sketching how the theorem prover works. Of course, knowing
how something works—e.g., an automobile, a programming language, a
violin—is quite different from knowing how to use it effectively. So, in
Chapter 9, we begin to explain how to use the theorem prover. Finally, in
Chapter 10, we use the theorem prover to do many example proofs.

As you read this chapter you may begin to get the idea that the machine
does everything for you. This is not true. A more accurate view is that the
machine is a proof assistant that fills in the gaps in your “proofs.” These
gaps can be huge. When the system fails to follow your reasoning, you can
use your knowledge of the mechanization to figure out what the system is
missing. But you may find that the machine’s inability to fill in the gap is
because your “proof” was simply wrong. Indeed, you may even find that
the formula you “proved” is not even a theorem!

You may come to think of the proof process as a game. The theorem
is the “opponent.” It will use all legal means to dodge your weapons and
squirm free of your traps and fences. It can hide amid innocuous detail,
shatter into a swarm of subproblems, or stand crystalline still and shimmer-
ing in front of you, daring you to find a chink in its armor. In recognition of
this view of theorem proving we have named this part of the book “Gam-
ing.” You will be hard pressed to find a more challenging game.

8.1 A Sample Session

Here is how the theorem prover responds to the command to prove that
app (defined on page 104) is associative. The user input consists of the
first three lines of text following the ACL2 > prompt. Everything else was
produced automatically. You should read this proof and compare it to the
one on page 105.
ACL2 >(defthm associativity-of-app
(equal (app (app a b) c)
(app a (app b ¢))))

M. Kaufmann et al., Compurer-Aided Reasoning
© Kluwer Academic Publishers 2000

120 Computer-Aided Reasoning: An Approach

Name the formula above *1.

Perhaps we can prove *1 by induction. Three induction schemes
are suggested by this conjecture. Subsumption reduces that
number to two. However, one of these is flawed and so we

are left with one viable candidate.

We will induct according to a scheme suggested by (APP A B).
If we let (:P A B C) denote *1 above then the induction
scheme we’ll use is
(AND (IMPLIES (AND (NOT (ENDP 4)) (:P (CDR A) B C))
(:P A B C))

(IMPLIES (ENDP A) (:P A B C))).
This induction is justified by the same argument used to
admit APP, namely, the measure (ACL2-COUNT A) is decreasing
according to the relation EO-ORD-< (which is known to be
well-founded on the domain recognized by EO-ORDINALP). When
applied to the goal at hand the above induction scheme produces
the following two nontautological subgoals.

Subgoal #*1/2
(IMPLIES (AND (NOT (ENDP A))
(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C))))
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/2°
(IMPLIES (AND (CONSP A)
(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C))))
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But simplification reduces this to T, using the :definition
APP, the :rewrite rules CDR-CONS and CAR-CONS and primitive
type reasoning.

Subgoal *1/1
(IMPLIES (ENDP A)
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/1’
(IMPLIES (NOT (CONSP A))

The Mechanical Theorem Prover 121

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But simplification reduces this to T, using the :definition
APP and primitive type reasoning.

That completes the proof of *1.
Q.E.D.

Summary
Form: (DEFTHM ASSOCIATIVITY-OF-APP ...)
Rules: ((:REWRITE CDR-CONS)
(:REWRITE CAR-CONS)
(:DEFINITION NOT)
(:DEFINITION ENDP)
(:FAKE-RUNE~FOR-TYPE-SET NIL)
(:DEFINITION APP))
Warnings: None
Time: 0.04 seconds (prove: 0.03, print: 0.00, other: 0.01)
ASSOCIATIVITY-QF-APP

8.2 Organization of the Theorem Prover

As noted earlier and as depicted in Figure 8.1, the theorem prover takes
input from both you and a data base, called the logical world or simply
world. The world embodies a theorem proving strategy, developed by you
and codified into rules that direct certain aspects of the theorem prover’s
behavior. When trying to prove a theorem, the theorem prover applies your
strategy, possibly using hints you supply with the theorem, and prints its
proof attempt. You have no interactive control over the system’s behavior
once it starts a proof attempt, except that you can interrupt it and abort
the attempt. When the system succeeds, new rules, derived from the just-
proved theorem, are added to the world according to directions supplied
by you. When the system fails, you must inspect the proof attempt to see
what went wrong.

Your main activity when using the theorem prover is designing your
theorem proving strategy and expressing it as rules derived from theo-
rems. There are over a dozen kinds of rules, each identified by a rule
class name. The most common are rewrite rules, but other classes include
type-prescription, linear, elim, and generalize rules. The basic command
for telling the system to (try to) prove a theorem and, if successful, add
rules to the data base is the defthm command.

(defthm name formula
:rule-classes (class;...class,))

122 Computer-Aided Reasoning: An Approach

definitions,
conjectures,
and advice rules

——— [Theorem | ————p=(Logical
B e\ World
proofs and
proof attempts

Prover

theorems

Figure 8.1: Data Flow in the Theorem Prover

The command directs the system to try to prove the given formula and, if
successful, remember it under the name name and build it into the data
base in each of the ways specified by the class;. We will discuss many of the
common rule classes in this chapter. But to find out details of the various
rule classes, see rule-classes, and the documentation links under it.

Every rule has a status of either enabled or disabled. The theorem prover
only uses enabled rules. So by changing the status of a rule or by specifying
its status during a particular step of a particular proof with a “hint” (see
hints), you can change the strategy embodied in the world. A set of
rules can be collected together into a theory and the entire theory can be
enabled or disabled. This allows a world to offer alternative strategies from
which you may choose by enabling the appropriate theory. See in-theory
for details. We ignore these issues during our description of the theorem
prover but remind the reader that only enabled rules are relevant.

The theorem prover is organized as shown in Figure 8.2. At the center is
a pool of formulas to be proved. Initially, your conjecture is the only formula
in the pool. Surrounding the pool are six proof techniques. Although not
depicted in the figure, each of the proof techniques uses rules in the logical
world. To operate on a non-empty pool, a formula is drawn out and given
to the first technique. Each technique is either applicable to the formula, in
which case it reduces the formula to a set of n other formulas and deposits
them into the pool, or else the technique is inapplicable to the formula,
in which case it passes the formula to the next technique. In the case
where n is 0, the formula is actually proved by the technique. The original
conjecture is proved when there are no formulas left in the pool and the
proof techniques have all halted. This organization is sometimes called “the
waterfall” because in [5] it was described in those terms.!

The six proof techniques surrounding the pool are described at a high
level in the successive sections below.

1Not discussed here is the modification to the waterfall to accommodate force and
case-split.

The Mechanical Theorem Prover 123

Simplify

Eliminate
Destructors

User

Use

Equivalences

Generalize
Induct

Eliminate Irrelevance

Figure 8.2: Organization of the Theorem Prover

124 Computer-Aided Reasoning: An Approach

The descriptions are tied together by a single classic Boyer-Moore ex-
ample, the so-called rev-rev example. Consider the following recursive
function definition:

(defun rev (x)

(if (endp x)

nil
(app (rev (cdr x)) (list (car x)))))

This function reverses a list. For example, (rev ’(1 2 3)) evaluates to
(3 2 1). It has the property that if a is a true list, i.e., one whose “final
cdr” is nil, then (rev (rev a)) is a. The hypothesis is necessary: (rev
(rev ’(1 2 3 . 4)))is (1 2 3), not the original input.

The rev-rev formula we shall prove is

(implies (true-listp a)
(equal (rev (rev a)) a)).

When this formula is put into the pool, it is drawn out and given to the
simplification technique. That technique can do nothing with it and passes
it to the next technique. In fact none of the first five techniques apply and
the formula arrives at induction.

8.2.1 Induction

The key to a successful inductive argument is figuring out how to construct
a proof of the formula from certain instances of the same formula. Those
instances must be “smaller.” The recursive functions in the formula provide
suggestions for which instances to use: supply the instances obtained by
expanding one or more of the recursive functions. Each recursive function
decomposes its arguments in a well-founded way. Not only is this estab-
lished when the function is admitted but the admission process identifies a
set of measured arguments whose “size” is decreasing. Thus, an induction
is suggested by each application of the function in which those measured
arguments are occupied by distinct variable symbols: under the case split
used in the function definition, provide inductive hypotheses corresponding
to each recursive call (e.g., replace each measured variable by the term used
in its slot in each recursion). This suggested induction is justified by the
same measure used to justify the function admission. See Exercise 6.25 for
an exploration of the duality between recursion and the suggested induc-
tion.

Often, more than one set of arguments could be measured to justify a
function definition. To each such set there corresponds an induction. But
ACL2 only finds one justification at definition-time and hence, initially,
each recursive function suggests just one induction. It is possible to prove
an induction rule (see induction) so that a term suggests other inductions.

The Mechanical Theorem Prover 125

When a formula arrives at the induction technique, ACL2 computes
all the inductions suggested by the terms in the formula. It then compares
them, possibly combining several into one, and selects one regarded as most
appropriate. It then prints the selected induction scheme, applies it to the
formula at hand, uses simple propositional calculus to normalize the result,
and puts each of the new formulas back into the pool. You can override its
choice of induction by supplying an induction hint. See hints.

The “propositional calculus normalization” sometimes makes the in-
stantiation of the induction scheme look different than the scheme itself.
Suppose the induction step of the scheme is to assume test g and inductive
instance p’ to prove p. Suppose that the formula to be proved, p, is of the
form o — (. Then the scheme would seem to call for the induction step
(gA (e =) = (o — B). But the propositional normalization actually
produces two formulas to prove: (¢gA—a’Aa) — B and (gAB' Aa) — 3. The
conjunction of these two is propositionally equivalent to the step required
by the scheme.

The application of the induction technique to the rev-rev formula pro-
duces the following output. We have manually added the line numbers on
the left.

4. Name the formula above *1.

5.

6. Perhaps we can prove *1 by induction. Two induction schemes

7. are suggested by this conjecture. These merge into one derived
8. induction scheme.

9.

10. We will induct according to a scheme suggested by (REV A4).
11. If we let (:P A) dencte *1 above then the induction scheme
12. we’ll use is

13. (AND (IMPLIES (AND (NOT (ENDP A)) (:P (CDR A)))

14. (:P A))

15. (IMPLIES (ENDP A) (:P A))).

16. This induction is justified by the same argument used to

17. admit REV, namely, the measure (ACL2-COUNT A) is decreasing
18. according to the relation EO0-ORD-< (which is known to be

19. well-founded on the domain recognized by EO-ODRDINALP). When
20. applied to the goal at hand the above induction scheme produces
21. the following three nontautological subgoals.

Line 4 is printed when a subgoal enters the induction mechanism. Lines
6-8 describe the candidate inductions. The candidates were suggested by
(true-listp a) and (rev a); but both make the same suggestion: in-
duction on the cdr structure of a. Lines 13-15 give the induction scheme
selected. This scheme calls for two formulas to be proved (the induction
step, on the first two lines, and the base case, on the last).

Lines 16-19 explain why the induction is legal under the induction prin-
ciple. Finally, lines 20-21 indicate how many goals are being put into the

126 Computer-Aided Reasoning: An Approach

pool. Note that three goals are added here, not two as might indicated by
the induction scheme. Propositional normalization is responsible for the
difference.

The three subgoals are not printed until they are removed from the pool
for proof, but the goals and the names they are assigned are shown below.

23. Subgoal *1/3
24. (IMPLIES (AND (NOT (ENDP A))

25. (EQUAL (REV (REV (CDR A))) (CDR A4))
26. (TRUE-LISTP 4))
27. (EQUAL (REV (REV A)) 1))

95. Subgoal *1/2
96. (IMPLIES (AND (NOT (ENDP A))

97. (NOT (TRUE-LISTP (CDR A4)))
98. (TRUE-LISTP A4))
99. (EQUAL (REV (REV 4)) A))

103. Subgoal *1/1
104. (IMPLIES (AND (ENDP A) (TRUE-LISTP A))
105. (EQUAL (REV (REV A)) A))

Subgoal *1/1 is the base case. The other two, together, are the induction
step. Subgoal *1/3isthe “interesting” part of the induction step, in which
one uses the conclusion of the induction hypothesis to prove the conclusion
of the induction conclusion. Subgoal *1/2 is a frequently overlooked case
in which one must show that the hypothesis of the induction conclusion
implies the hypothesis of the induction hypothesis. All three of these are
put in the pool by induction. They are drawn out in the order listed above.

8.2.2 Simplification

Simplification is the heart of the theorem prover. We will discuss simplifi-
cation in more detail later. The main things it does are:

¢ apply propositional calculus, equality, and rational linear arithmetic
decision procedures,

¢ use type information and forward chaining rules to construct a “con-
text” describing the assumptions governing each occurrence of each
subterm,

¢ rewrite each subterm in the appropriate context, using definitions,
conditional rewrite rules, and metafunctions,

¢ use propositional calculus normalization to convert the resulting for-
mula to an equivalent set of formulas, reduce the set under subsump-
tion, and deposit the surviving formulas back in the pool.

The Mechanical Theorem Prover 127

By “conditional rewrite rules” we mean rules that cause the system to
replace certain terms by other terms, provided certain hypotheses can be
established. For example, the axiom (equal (car (cons x y)) x) gives
rise to a rewrite rule in the data base that directs the system to replace
every term of the form (car (cons a (3)) by a. The axiom (implies
(not (consp x)) (equal (car x) nil)) gives rise to a rule that directs
the system to replace (car a) by nil, if the system can prove that (consp
«a) is false. When you command the system to prove a theorem and to
store it as a rewrite rule, the system generates such a rule. The generated
rule is sensitive to the exact syntactic form of the theorem.

ACL2 supports congruence-based rewriting: it supports “substitution of
equivalents,” not just substitution of equals. That is, rewrite rules can be
generated from theorems that conclude not just with an equal-term but an
equiv-term, where equiv is an arbitrary user-defined equivalence relation.
You may define special equivalence relations and prove congruence rules
permitting substitution of equivalents rewriting deep inside of terms. See
Section 8.3.1 and see also and equivalence congruence.

The simplifier above is not guaranteed to produce formulas that are sta-
ble under simplification; repeated trips through the simplifier, via insertion
into and extraction from the pool, are used to reach the final stable form
(if any).

When Subgoal *1/3, above, arrives at the simplifier, it is simplified in
two successive steps. The first merely expands (ENDP A) to (NOT (CONSP
A)) and removes the double NOT’s, naming the resulting formula Subgoal
*1/3’. (When a formula is transformed to exactly one other formula, the
new formula is given the same name as the old one with a prime appended
at the end.) When Subgoal *1/3’ is put into the pool, it is immediately
extracted and simplified. That simplification expands the recursive func-
tions TRUE-LISTP and REV to produce Subgoal *1/3’°’, which is put into
the pool.

Line 23 below shows Subgoal *1/3 as it is drawn out of the pool and
given to the simplifier. The message printed by the first simplification is
on line 29. The formula produced follows that. The second simplification’s
message and output formula start at line 37.

23. Subgoal *1/3
24. (IMPLIES (AND (NOT (ENDP 4))

25. (EQUAL (REV (REV (CDR 4))) (CDR A))
26. (TRUE-LISTP A4))

27. (EQUAL (REV (REV A)) A)).

28.

29. By the simple :definition ENDP we reduce the conjecture to
30.

31. Subgoal *1/3’

32. (IMPLIES (AND (CONSP &)

33. (EQUAL (REV (REV (CDR A))) (CDR 4))

128 Computer-Aided Reasoning: An Approach

34, (TRUE-LISTP A))
35. (EQUAL (REV (REV A4)) A)).
36.

37. This simplifies, using the :definitions TRUE-LISTP and REV,
38. to

39.

40. Subgoal *1/3’°

41. (IMPLIES (AND (CONSP 1)

42. (EQUAL (REV (REV (CDR 4))) (CDR A4))

43. (TRUE-LISTP (CDR A)))

44. (EQUAL (REV (APP (REV (CDR A)) (LIST (CAR A))))
45. A)).

The last subgoal is immediately extracted from the pool and given to the
simplifier, but the simplifier does not change it. It is stable and is passed
to the next proof technique.

8.2.3 Destructor Elimination

Destructor elimination is a way to get rid of certain function applications by
expanding certain variables into terms that make explicit their construction.
For example, suppose a formula mentions (CAR A) and (CDR A). If A is not
a cons, those expressions simplify to NIL. If A is a cons, we could, without
loss of generality, replace A by (CONS A1 A2), for new variable symbols
A1 and A2. Doing so would allow us to get rid of (CAR A) and (CDR A),
replacing them, respectively, with A1 and A2.

Here is the output produced when destructor elimination is applied to
Subgoal *1/3°’ above.

47. The destructor terms (CAR A) and (CDR A) can be eliminated
48. by using CAR-CDR-ELIM to replace A by (CONS A1l A2),

49. generalizing (CAR A) to Al and (CDR A) to A2. This produces
50. the following goal.

51.

52. Subgoal *1/3’’’

53. (IMPLIES (AND (CONSP (CONS Al A2))

54, (EQUAL (REV (REV A2)) A2)

55. (TRUE-LISTP A2))

56. (EQUAL (REV (APP (REV A2) (LIST A1)))
57. (CONS A1 A2))).

Observe the hypothesis on line 53 produced by replacing A in (CONSP A4).
This hypothesis is now manifest in the construction of A. When Subgoal
*1/3°77 is put into the pool, it is immediately drawn out and simplified.
Simplification eliminates this redundant hypothesis and otherwise changes
nothing. The simplified goal is named Subgoal *1/3’4’. (The system will

The Mechanical Theorem Prover 129

not produce a name with more than three primes, but you can think of 4’
as four primes, ’5’ as five primes, and so on.)
The transformation above is justified logically by the

Axiom. CAR-CDR-ELIM:
(implies (consp x)
(equal (cons (car x) (cdr x)) x)).

This axiom is an example of a more general form:

(implies (ﬁyp z)
(equal (constructor (dest; z) ... (dest, z))

T)).

Such theorems can be stored as “destructor elimination” or elim rules. See
elim. The (dest; z) are the destructor terms. When destructor elimi-
nation is applied to a formula containing an instance of some (dest;)
in which the variable z is bound to some variable a, the technique ap-
plies. It “splits” the formula into two cases according to whether (hyp a)
is true and in the case where it is true, it replaces all of the a’s in the for-
mula (except those inside dest; applications) by (constructor (dest; a)
(dest,, a)). Then it generalizes all the (dest; a) terms (including the
ones just introduced) to distinct new variable symbols, a1, ..., a,. In gen-
eralizing it restricts the a; using generalization rules discussed below. The
resulting formulas are put in the pool.
Here is another example of a destructor elimination rule. Suppose
firstn and nthedr are defined so that the following is a theorem.

(implies (and (integerp n)
(<= 0 n)
(<= n (len x)))
(equal (append (firstn n x) (nthcdr n x))
x))

This is in the form of a destructor elimination rule. The destructor terms are
(firstn n x) and (nthedr n x). The constructor is append. Suppose the
destructor elimination technique were applied to the formula (p (firstn
i a) (nthedr i a) i a), i.e., to a formula involving one or more suitable
instances of the destructor terms. Then destructor elimination would split
the conjecture into two subgoals.

(implies (not (and (integerp i)
(<= 0 1)
(<= i (len a))))
(p (firstn i a) (nthcdr i a) i a))
(implies (and (and (integerp i)
(<= 0 1)
(<= 1 (len (append u v)))))
)
(p uvi (append u v)))

130 Computer-Aided Reasoning: An Approach

The first of these subgoals handles the “pathological” case where the de-
structors are being “inappropriately” used. To prove that subgoal it would
be best to have rules to reduce (firstn i a) and (nthcdr i a) to other
expressions in this case.

The second of these subgoals handles the “normal” case. Note that here
a has been replaced by (append u v), and (firstn i a) and (nthcdr i
a) have been replaced, respectively, by u and v. The “...” in the hypotheses
of the second subgoal stand for hypotheses about u and v that are derived by
the generalization technique from rules about (firstn i a) and (nthcdr
i a). Observe that the effect of the elimination rule here is to eliminate
firstn and nthedr in favor of append, i.e., to trade “destructors” for
“constructors.” Whether this is a good move in the context of a proof really
depends on which rules are in the data base. We often arrange strategies
based on rewriting patterns of constructors.

A more sophisticated destructor elimination rule is shown below.

(implies (acl2-numberp x)
(equal (+ (mod x y) (* y (floor x y))) x))

In this theorem, (mod x y) and (floor x y) are the destructor terms and
the constructor is the lambda expression (lambda (d1 d2 y) (+ d1 (* y
d2))). When this rule is available and the destructor elimination technique
is presented with a formula containing, say (MOD I J) or (FLOOR I J),
the technique splits on whether I is a number. In the affirmative case,
destructor elimination replaces I by (+ R (* J Q)), (MOD I J) by R, and
(FLOOR I J) by Q. Provided there are appropriate generalization lemmas
available for mod and floor, this eliminates the destructors mod and floor
in favor of the constructors + and * without loss of generality.

The destructor elimination technique, like the simplifier, actually sup-
ports substitution of equivalents for equivalents rather than just substitu-
tion of equals for equals. See page 139 and elim.

8.2.4 Use of Equivalences

The next step in the waterfall attempts the use of equalities appearing
in the goal formula. If the formula contains the hypothesis (equal lhs
rhs) and elsewhere in the formula there is an occurrence of {hs, then rhs
is substituted for ks in every such occurrence with one exception: if lAs
occurs on one side of an equality, we only substitute into that side of the
equality. This restricted substitution method is called cross-fertilization.
If the equality hypothesis comes from an inductive argument, we throw
it away after using it in this fashion. We treat equalities symmetrically
and, when it is possible to substitute left-for-right and right-for-left, make
a choice based on heuristics.

The Mechanical Theorem Prover 131

ACL2 actually supports a more general form of substitution involving
equivalence relations. The use of equalities is generalized to the use of any
equivalence relation, equiv, and substitution is correspondingly restricted
to equiv-hittable occurrences. See page 139.

Returning to the rev-rev proof, recall that destructor elimination pro-
duced Subgoal *1/3’’’, which was further simplified to Subgoal *1/3°4".
That subgoal cannot be further simplified and has no destructors in it.
Thus, ACL2 tries to use the equivalences in it. Below is the subgoal, the
message printed by equivalence substitution, and the formula produced and
added to the pool.

62. Subgoal *1/3°4’
63. (IMPLIES (AND (EQUAL (REV (REV A2)) A2)

64. (TRUE-LISTP A2))

65. (EQUAL (REV (APP (REV A2) (LIST 41)))
66. (CONS A1 A2))).

67.

68. We now use the first hypothesis by cross-fertilizing
69. (REV (REV A2)) for A2 and throwing away the hypothesis.
70. This produces

71.

72. Subgoal *1/3’5’

73. (IMPLIES (TRUE-LISTP A2)

74. (EQUAL (REV (APP (REV A2) (LIST A41)))

75. (CONS A1 (REV (REV A2))))).

Observe the rather peculiar substitution chosen: A variable was replaced by
a non-variable term on only one side of an equal even though the variable
occurred on both sides.? The fact that this proof techniques discards a
hypothesis makes it even more interesting. It is possible that the input
formula is a theorem but the output formula is not. This does not mean
that ACL2 is unsound! It means ACL2 may adopt a goal that it cannot
prove. If the output formula is a theorem, the input formula is too. That
is, the output may be more general than the input. Because we are likely,
at this point in the waterfall, to appeal eventually to induction, ACL2’s
heuristics have been designed to try to strengthen the goal.

Subgoal *1/3’5’ is added to the pool, extracted, and given in turn to
simplification, destructor elimination, and equivalence substitution. None
of them apply and so it arrives at the fourth technique.

2The substitution done by this heuristic may “undo” a previous rewrite or, as here,
may appear to use the equality “backwards” (i.e., not in the left-to-right sense imposed
on any rewrite rule that may later be generated from the equality). While the rewriter
gives special significance to the left /right orientation of certain equalities when generating
rewrite rules, equalities in the formula being proved are used symmetrically.

132 Computer-Aided Reasoning: An Approach

8.2.5 Generalization

The fourth proof technique explicitly attempts to generalize the goal. The
basic heuristic is to find a subterm that appears in both the hypothesis
and the conclusion, in two different hypotheses, or on opposite sides of an
equivalence, and replace that subterm by a new variable symbol. Further-
more, if type information (see type-prescription) or generalization rules
(see generalize) can be used to restrict the type of the new variable, then
it is so restricted. The generalized formula is then added to the pool.
Here is the contribution of generalization to the rev-rev proof.

72. Subgoal *1/3’5’
73. (IMPLIES (TRUE-LISTP A2)

74. (EQUAL (REV (APP (REV A2) (LIST A1)))
75. (CONS A1 (REV (REV A2))))).
76.

77. We generalize this conjecture, replacing (REV A2) by RV.
78. This produces

79.

80. Subgoal *1/3’6°

81. (IMPLIES (TRUE-LISTP A2)

82. (EQUAL (REV (APP RV (LIST A1)))

83. (CONS A1 (REV RV)))).

Observe that (REV A2) occurs on both sides of an equal. It is generalized
to the new variable RV. This new subgoal is added to the pool. None of the
proof techniques discussed so far are applicable to it and the prover arrives
at the fifth technique. But before we discuss that technique we discuss the
restrictions imposed by generalize rules.

In this example there are no applicable generalize rules. But suppose
we had previously proved the theorem that REV preserves the length of its
argument,

(equal (len (rev x)) (len x))

and stored it as a generalize rule. Then when (REV A2) is replaced by RV,
the generalization heuristic would add the following additional hypothesis.

(EQUAL (LEN RV) (LEN A2))

What actually happens is that the applicable generalize rules are instan-
tiated so as to contain the term being generalized (e.g., x in the rule is
replaced by A2 so the rule mentions (REV A2)); that instance of the rule
is added as a hypothesis to the goal; finally, the target term, (REV A2), is
replaced by a new variable, RV.

The same restrictions are imposed when destructor terms are eliminated
by the introduction of new variable symbols.

The Mechanical Theorem Prover 133

8.2.6 Elimination of Irrelevance

The fifth proof technique is the last one before induction. It attempts to
eliminate irrelevant hypotheses in the conjecture, by partitioning them into
cliques according to the variables they mention. If it can find an isolated
clique of hypotheses, then either the formula is a theorem because those
hypotheses are collectively false, or else they are irrelevant. It uses type
information (see page 145) in a trivial way to guess that a clique is not
false.

This occurs when Subgoal *1/3’6°, above, arrives at the elimination
of irrelevance. Here is the exchange:

80. Subgoal *1/3’6’
81. (IMPLIES (TRUE-LISTP A2)

82. (EQUAL (REV (APP RV (LIST A1)))
83. (CONS A1 (REV RV)))).
84.

85. We suspect that the term (TRUE-LISTP A2) is irrelevant to
86. the truth of this conjecture and throw it out. We will thus
87. try to prove

88.

89. Subgoal *1/3°7’

90. (EQUAL (REV (APP RV (LIST A1)))

91. (CONS A1 (REV RV))).

Observe that the hypothesis, (TRUE-LISTP A2), is irrelevant once (REV
A2) is generalized to RV. Subgoal *1/3’7’ is then put into the pool.

When it is drawn out and passed around, none of the first five proof
techniques apply to it. Induction will be tried. The order in which formulas
are drawn from the pool is irrelevant, since all must be proved. But the draw
is so orchestrated that we do not try to prove a subgoal by induction until
we have processed every subgoal produced by the last induction. For that
reason, this subgoal Subgoal *1/3°7° is given a special name indicating
that it is destined for induction and that it is the first such subgoal arising
from the induction attempt on *1.

89. Subgoal *1/3°7’

90. (EQUAL (REV (APP RV (LIST A1)))
91. (CONS A1 (REV RV))).

92.

93. Name the formula above *1.1.

Recall that we have been following the progress of the first subgoal
produced by the induction on *1, namely Subgoal *1/3, the “interesting”
induction step. The pool at this point contains two other formulas from
that induction: Subgoal *1/2 and Subgoal *1/1. Those two formulas are
drawn out before induction is applied to *1.1. Both simplify to t.

134 Computer-Aided Reasoning: An Approach

8.2.7 The Rev-Rev Log

Here is the complete log of the rev-rev proof, starting with the user’s
input and annotated with line numbers. You should read it to acquaint
yourself with its structure and remind yourself of the waterfall underlying
this structure.

1. ACL2 >(defthm rev-rev
2. (implies (true-listp a) (equal (rev (rev a)) a)))

. Name the formula above *1.

4
5
6. Perhaps we can prove *1 by induction. Two induction schemes

7. are suggested by this conjecture. These merge into one derived
8. induction scheme.

9

10. We will induct according to a scheme suggested by (REV A).
11. If we let (:P A) denote *1 above then the induction scheme
12. we’ll use is

13. (AND (IMPLIES (AND (NOT (ENDP A)) (:P (CDR A)))

14. (:P A))

15. (IMPLIES (ENDP A) (:P A))).

16. This induction is justified by the same argument used to

17. admit REV, namely, the measure (ACL2-COUNT A) is decreasing
18. according to the relation E0-ORD-< (which is known to be

19. well-founded on the domain recognized by EO-ORDINALP). When
20. applied to the goal at hand the above induction scheme produces
21. the following three nontautological subgoals.

23. Subgoal *1/3
24. (IMPLIES (AND (NOT (ENDP A))

25. (EQUAL (REV (REV (CDR 4))) (CDR A4))
26. (TRUE-LISTP A))

27. (EQUAL (REV (REV 4)) A)).

28.

29. By the simple :definition ENDP we reduce the conjecture to

31. Subgoal *1/3’
32. (IMPLIES (AND (CONSP &)

33, (EQUAL (REV (REV (CDR A))) (CDR A))
34, (TRUE-LISTP A))

35. (EQUAL (REV (REV A)) A4)).

36.

37. This simplifies, using the :definitions TRUE-LISTP and REV,
38. to

40. Subgoal *1/3’°
41. (IMPLIES (AND (CONSP A)

The Mechanical Theorem Prover 135

42,
43.
44.
45,
46.
47.
48.
49.
50.
51.
62.
53.
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

(EQUAL (REV (REV (CDR A))) (CDR A))
(TRUE-LISTP (CDR A)))
(EQUAL (REV (APP (REV (CDR A)) (LIST (CAR A))))
1)).

The destructor terms (CAR A) and (CDR A) can be eliminated
by using CAR-CDR-ELIM to replace A by (CONS A1 A2),
generalizing (CAR A) to Al and (CDR A) to A2. This produces
the following goal.

Subgoal *1/3°°°
(IMPLIES (AND (CONSP (CONS A1l A2))
(EQUAL (REV (REV A2)) A2)
(TRUE-LISTP A2))
(EQUAL (REV (APP (REV A2) (LIST A1)))
(CONS A1 A2))).

This simplifies, using the :type-prescription rule REV and
primitive type reasoning, to

Subgoal *1/3’4’
(IMPLIES (AND (EQUAL (REV (REV A2)) A2)
(TRUE-LISTP A2))
(EQUAL (REV (APP (REV A2) (LIST A1)))
(CONS A1 A2))).

We now use the first hypothesis by cross-fertilizing
(REV (REV A2)) for A2 and throwing away the hypothesis.
This produces

Subgoal *1/3°5’
(IMPLIES (TRUE-LISTP A2)
(EQUAL (REV (APP (REV A2) (LIST A1)))
(CONS A1 (REV (REV A2))))).

We generalize this conjecture, replacing (REV A2) by RV.
This produces

Subgoal *1/3'6’
(IMPLIES (TRUE-LISTP A2)
(EQUAL (REV (APP RV (LIST A1)))
(CONS A1l (REV RV)))).

We suspect that the term (TRUE-LISTP A2) is irrelevant to
the truth of this conjecture and throw it out. We will thus
try to prove

Subgoal *1/3°7’
(EQUAL (REV (APP RV (LIST A1)))

136

Computer-Aided Reasoning: An Approach

91.

92.

93.

94.

95.

96.

97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

(CONS A1 (REV RV))).
Name the formula above *1.1.

Subgoal *1/2
(IMPLIES (AND (NOT (ENDP A))
(NOT (TRUE-LISTP (CDR A4)))
(TRUE-LISTP A4))
(EQUAL (REV (REV A)) A4)).

But we reduce the conjecture to T, by primitive type reasoning.

Subgoal *1/1
(IMPLIES (AND (ENDP A) (TRUE-LISTP A4))
(EQUAL (REV (REV A4)) A4)).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/1°
(IMPLIES (AND (NOT (CONSP A)) (TRUE-LISTP A))
(EQUAL (REV (REV A)) A)).

But simplification reduces this to T, using the :executable-
counterparts of REV, EQUAL and CONSP, primitive type reasoning
and the :definition TRUE-LISTP.

So we now return to *1.1, which is

(EQUAL (REV (APP RV (LIST A1)))
(CONS A1 (REV RV))).

Perhaps we can prove *1.1 by induction. Two induction schemes
are suggested by this conjecture. Subsumption reduces that
number to one.

We will induct according to a scheme suggested by (REV RV).
If we let (:P Al RV) denote *1.1 above then the induction
scheme we’ll use is
(AND (IMPLIES (AND (NOT (ENDP RV)) (:P A1 (CDR RV)))
(:P A1 RV))

(IMPLIES (ENDP RV) (:P A1 RV))).
This induction is justified by the same argument used to
admit REV, namely, the measure (ACL2-COUNT RV) is decreasing
according to the relation EO-ORD-< (which is known to be
well-founded on the domain recognized by EO-ORDINALP). When
applied to the goal at hand the above induction scheme produces
the following two nontautological subgoals.

Subgoal *1.1/2

The Mechanical Theorem Prover 137

140. (IMPLIES (AND (NOT (ENDP RV))

141. (EQUAL (REV (APP (CDR RV) (LIST 41)))
142. (CONS A1 (REV (CDR RV)))))
143, (EQUAL (REV (APP RV (LIST A1)))

144. (CONS A1 (REV RV)))).

145,

146. By the simple :definition ENDP we reduce the conjecture to
147.

148. Subgoal =*1.1/2’

149. (IMPLIES (AND (CONSP RV)

150. (EQUAL (REV (APP (CDR RV) (LIST 41)))
151. (CONS A1 (REV (CDR RV)))))
152. (EQUAL (REV (APP RV (LIST 41)))

153. (CONS A1 (REV RV)))).

154.

155. But simplification reduces this to T, using the :definitions
156. REV and APP, primitive type reasoning and the :rewrite rules
157. CAR-CONS and CDR-CONS.

158.

159. Subgoal #*1.1/1

160. (IMPLIES (ENDP RV)

161. (EQUAL (REV (APP RV (LIST A1)))
162. (CONS A1 (REV RV)))).
163.

164. By the simple :definition ENDP we reduce the conjecture to
165.

166. Subgoal *1.1/1°

167. (IMPLIES (NOT (CONSP RV))

168. (EQUAL (REV (APP RV (LIST A1)))
169. (CONS A1 (REV RV)))).
170.

171. But simplification reduces this to T, using the :definitions
172. REV and APP, primitive type reasoning, the :rewrite rules
173. CAR-CONS and CDR-CONS and the :executable-counterparts of
174. CONSP and REV.

175.

176. That completes the proofs of *1.1 and *1.

177.

178. Q.E.D.

179.

180. Summary

181. Form: (DEFTHM REV-REV ...)

182. Rules: ((:DEFINITION IMPLIES)

(:
183. (:ELIM CAR-CDR-ELIM)
184. (: TYPE-PRESCRIPTION REV)
185. (:DEFINITION TRUE-LISTP)
186. (:EXECUTABLE-COUNTERPART EQUAL)
187. (:DEFINITION NOT)
(

188. DEFINITION ENDP)

138 Computer-Aided Reasoning: An Approach

189. (:DEFINITION REV)

190. (:EXECUTABLE-COUNTERPART CONSP)
191. (:REWRITE CAR-CONS)

192. (:EXECUTABLE-COUNTERPART REV)
193. (:REWRITE CDR-CONS)

194. (:FAKE-RUNE-FOR-TYPE-SET NIL)
195. (:DEFINITION APP))

196. Warnings: None

197. Time: 0.13 seconds (prove: 0.08, print: 0.03, other: 0.02)
198.

199. Proof succeeded.

200. ACL2 >

As we see from the proof above, the proof of rev-rev is not only in-
ductive but it involves invention of an interesting lemma. The lemma was
produced by simplifying the induction step of rev-rev, using destructor
elimination, equality substitution, generalization, and elimination of irrele-
vance to arrive at:

89. Subgoal *1/3°7’

90. (EQUAL (REV (APP RV (LIST A1)))
91. (CONS A1 (REV RV))).

92.

93. Name the formula above *1.1.

Formula *1.1 is a worthy fact. It says that if you append the singleton
list containing A1 to the right end of an arbitrary list, RV, and reverse the
result, you get the same thing you would get if you consed A1 onto the
front of the reverse of RV. We do not know of a proof of rev-rev that does
not make use of a comparable lemma about rev and app. Formula *1.1 is
proved by a second, automatically selected induction, starting on line 122.

8.3 Simplification Revisited

In this section we expand our description of the simplifier. On page 126 we
described the simplifier as having four steps: decision procedures, estab-
lishing context, rewriting, and normalization and subsumption. Without
doubt, rewriting is the most important aspect: successful use of the theorem
prover requires successful control of the rewriter.

Without loss of generality, we assume the formula to which the simplifier
is applied is of the form (implies (and p; ... p,) ¢). The p; are the
hypotheses and g is the conclusion.

Our presentation is organized as follows. First we discuss equivalence
relations and congruence rules, since these are fundamental to several as-
pects of the simplifier. Then we will discuss each of the four steps (decision
procedures, context, rewriting, and normalization and subsumption) in the
order in which they occur.

The Mechanical Theorem Prover 139

8.3.1 Congruence-Based Reasoning

The most frequently used rule of inference in most proofs is the familiar idea
of substitution of equals for equals. ACL2 supports a general form of sub-
stitution of equals for equals, based on the ideas of user-defined equivalence
relations and congruence rules. The importance of user-defined equivalence
and congruence rules is difficult to appreciate at first. They inherit their
importance, in part, from the fact that ACL2 does not provide abstract
data types. New kinds of objects must be represented in terms of exist-
ing ACL2 primitives, e.g., sets are represented as lists. The operations
on these objects are defined as functions on the existing data types, e.g.,
the set operations are functions on lists that ignore duplication and order.
Because such representations are often not unique, ACL2’s equality pred-
icate, equal, is too strong: it distinguishes objects that all the operations
of the new type treat equivalently. Thus, one must define an equivalence
relation on the new type and prove that the new operations respect this
notion of equivalence. Once that is done, ACL2 can use that equivalence
to substitute into nests of the new operations. Use of equivalence relations
and congruence rules is fundamental to the simplifier as well as other proof
techniques in the waterfall.

The need for generalized equivalence relations is easily seen by consider-
ing the representation of finite sets as linear lists. Thus, we might think of
(1 2 3) and (3 1 2 1) as equivalent representations of the set {1,2,3}.

Suppose we define (un a b) to return (a representation of the) union
of (the sets represented by) a and b. Thus, (un ’(1 2) ’(3 4)) might
be (1 2 3 4). Is un commutative? Depending on how we actually define
it, it may not be commutative. For example, (un ’ (1 2) ’(3 4)) might
be (1 2 3 4) but (un ’(3 4) ’(1 2)) might be (3 4 1 2). These two
objects are not equal. But we could define a relation, (set-equal a b),
that returns t or nil according to whether the set represented by a is the
same as the set represented by b. Then we would have the theorem

(set-equal (un b a) (un a b)).

Suppose we use mem to test for “set membership,” i.e., (mem e x) is t
or nil according to whether e is an element of x. Consider proving

(implies (mem e (un a b))
(mem e (un b a))).

The “natural” proof is “use the commutativity of un to replace (un b a)
by (un a b).” If asked to justify such a move, we might say “substitution
of equals for equals.” But the commutativity result we have for un is not
an equality! What allows us to use it to replace (un b a) by (un a b) in
our conjecture?

One might respond by observing that set-equal is an equivalence re-
lation: it is symmetric, reflexive, and transitive. While true, that is not
enough. For example, we cannot use commutativity to replace (un b a) by

140 Computer-Aided Reasoning: An Approach

(un a b) in (equal (car (un a b)) (car (un b a))) or else we could
prove a non-theorem. It is important that mem respects set-equal in the
sense that (mem e x) returns the same result as (mem e y) whenever x is
set-equal to y. This is a congruence rule and might be phrased as

(implies (set-equal x y)
(equal (mem e x) (mem e y))).

This congruence rule allows us to substitute set-equals for set-equals in
the second argument of a mem expression, without changing the value of the
mem expression. Given the congruence rule, we can use the commutativity
rule—as stated in terms of set-equal—just as though it were an equality.
That is, we can use it as a rewrite rule.

There is one final twist to discuss. The twist has to do with the fact
that the congruence rule uses two difference senses of equality. In the
rule above we see both set-equal and equal. In general, we might see
any two equivalence relations here. For example, in Lisp the membership
“predicate” is named member. But instead of returning t to indicate success,
(member e x) returns the first tail of x that starts with e. This way member
can be used to determine both whether and where e occurs in x. For this
sense of membership, the congruence rule above does not hold. Let x be
’(1 2) and y be " (2 1). Let e be 1. Then (set-equal x y) is true. But
(member e x) returns (1 2) while (member e y) returns (1). These two
objects are not equal. But they are “propositionally equal” in the sense
that they are nil or non-nil in unison. So we have another congruence
rule.

(implies (set-equal x y)
(iff (member e x) (member e y)))

This congruence rule allows the substitution of set-equals for set-
equals, in the second argument of member expressions, while preserving
iff. Put another way, if a member expression occurs in a position in which
only its propositional value is important, then its second argument occurs
in a position in which only its set value is important.

At the top of a conjecture, only the propositional value is important. As
we explore the subterms occurring in the conjecture, we can use congruence
rules to keep us appraised of which equivalence relations we must preserve
to maintain top-level propositional equivalence.

A binary relation is known to be an equivalence relation if it has been
proved Boolean, symmetric, reflexive, and transitive and those four facts
have been marked as an equivalencerule. To prove and store the necessary
rules, use the defequiv command. Some familiar relations that can be
defined in ACL2 and proved to be equivalence relations are

¢ (iff a b), expressing the idea that a and b are both nil or both
non-nil (without requiring that they both be Boolean). For example,
t is equivalent (modulo iff) to ’ (1 2 3).

The Mechanical Theorem Prover 141

¢ (equall a b), expressing the idea that two lists are equal except for
the atom marking the end of the lists. Thus, (1 2 1 3) and *(1 2
1 3 . ABC) are equall.

¢ (perm a b), expressing the idea that lists a and b are permutations
of one another. For example *(a b ¢ a c) is a permutation of ’(a
abcc)

¢ (alist-equal a b), expressing the idea that when a and b are re-
garded as association lists they assign the same value to every key.
For example, 7((A . 1) (B . 2) (A . 3))isalist-equalto ’((B
. 2) (4. 1))

¢ (set-equal a b), expressing the idea that lists a and b contain the
same set of elements. For example, ’(a a b ¢ c) is set-equal to
’(b a c).

We say an occurrence of [hs in a formula is equiv-hittable if congruence
rules are available to establish that the occurrence can be replaced by any
equivalent (modulo equiv) term without changing the propositional value
of the formula.

Congruence rules are derived from theorems of the form

(implies (equiv; x y)
(equivy (f ... x ...)
o ...y ...0N

where equiv; and equivy are known equivalence relations. To prove a con-
gruence rule, use defcong and see also congruence. Such a congruence rule
informs ACL2 that if x and y are equivalent (modulo equiv,) then the result
of replacing one by the other in the indicated argument position of f pro-
duces an equivalent term (modulo equivz). We sometimes characterize such
a congruence by saying that it allows equiv; substitution (in the indicated
argument position) into f while preserving equive. One can thus justify
a deep substitution by chaining together congruence rules, starting from a
congruence rule that preserves iff (propositional equivalence). ACL2 can
do such chaining, provided appropriate congruence rules are available for
every relevant argument position of every relevant function symbol.

Generally speaking when you represent a new type of object (e.g., sets as
lists) you might consider introducing a corresponding equivalence relation.
Then when you define the elementary operations on the “new” objects, e.g.,
mem and un, you should consider proving the appropriate congruence rules.
Here are the rules for mem and un.

(implies (set-equal x y)
(iff (mem e x)
(mem e y)))

142 Computer-Aided Reasoning: An Approach

(implies (set-equal x y)
(set-equal (un x a)
(un y a)))
(implies (set-equal x y)
(set-equal (un a x)
(un a y)))

The first says that propositional equivalence is preserved when set equiv-
alence is preserved in the second argument of mem. The second says that
set equivalence is preserved when set equivalence is preserved in the first
argument of un. The third says that set equivalence is preserved when set
equivalence is preserved in the second argument of un. These three rules
may be conveniently expressed as shown below. The names of the variables
are unimportant.

(defcong set-equal iff (mem e x) 2)
(defcong set-equal set-equal (un x a) 1)
(defcong set-equal set-equal (un a x) 2)

Defcong is defined as a macro that expands into a defthm form. This is a
common use of macros. See defcong.
Now suppose that the rewriter encounters the term

(mem «

(un (un 8) 8))

while it is trying to preserve propositional equivalence. The three congru-
ence rules tell the rewriter that it can replace 3, v, and § (as well as the
un-terms containing them) by set-equal terms. You should think of con-
gruence rules as providing a road-map with which ACL2 can figure out the
equivalence relations to preserve while rewriting given subterm occurrences.

Why bother? The knowledge that it is sufficient to preserve set-equal
while rewriting, say, 3, is only important if you have also proved rules that
allow the rewriter to replace one term by a set-equal term. Here are some
such rules.

(set-equal (un b a) (un a b))
(set-equal (un (un a b) ¢) (un a (un b ¢)))
(set-equal (un b nil) b)

These are just rewrite rules; they direct the system to replace the left-hand
side by the right-hand side in set-equal-hittable contexts.

Congruence rules just permit these rules to be used.

Finally, it is possible that if you have several different equivalence re-
lations, then some will refine others. For example, perm is a refinement of
set-equal in the sense that if (perm a b) holds, then so does (set-equal
a b). Thus, if an occurrence of a term is set-equal-hittable then it is also
perm-hittable. That is, the system can use rules for perm and for set-equal
when in a set-equal-hittable position. It is useful therefore to bring to
the system’s attention the refinement relations between your equivalence

The Mechanical Theorem Prover 143

relations. This is done by proving refinement rules; see defrefinement
and refinement.

Having sketched the role of equivalence relations and congruence rules,
we now return to the details of the simplification process. Recall that sim-
plification proceeds in four steps: use of decision procedures, establishment
of a context, rewriting, and normalization and subsumption.

8.3.2 Decision Procedures

When a formula is given to the simplifier three decision procedures are ap-
plied. The first is propositional calculus. The second is congruence closure,
using equivalence relations. The third is rational linear arithmetic.

Propositional Calculus

The default propositional procedure is based on the normalization of if
expressions: (a) propositional connectives are expanded in terms of if; (b)
the if terms are distributed, so (f (if a b ¢)) becomes (if a (f b) (f
¢)) and (if (if a b ¢) z y) becomes (if a (if b z y) (if ¢ z y));
and (c) the resulting tree is explored to determine whether every reachable
tip is non-nil. The user may direct the system on a particular subgoal to
use ordered binary decision diagrams [11, 32] instead. See bdd. Bdds are
most effective on large propositional problems; we do not recommend using
them until you are familiar with the rest of the system. ACL2 extends
BDDs to cons trees, and involves term rewriting in their construction.

Congruence Closure

The congruence closure procedure uses the context to compute equiva-
lence classes, chooses a canonical representative of every equivalence class
(namely the lexicographically smallest term), and substitutes that represen-
tative for all members of the class into all function applications allowing it.
For example, if (equiv a b) and (equiv b ¢) are known from the present
context, then (equiv a c) is added to the context; and moreover, if a is
lexicographically less than b and ¢, then equiv-hittable occurrences of b and
c are replaced by a. This is done iteratively. See defequiv, defcong, and
defrefinement to introduce an equivalence relation, congruence rule, or
refinement.

Linear Arithmetic

The linear arithmetic procedure is a decision procedure for rational linear
inequalities, 7.e., formulas made up of variables, constants, sums, differ-
ences, products of constants with variables, equalities, and inequalities. In
this discussion we use the word “inequality” loosely to include (equal x
y), since, when x and y are rational, that equality is equivalent to the
conjunction of (<= x y) and (<= y x).

144 Computer-Aided Reasoning: An Approach

The procedure works by trying to derive a contradiction from the nega-
tion of the goal. The procedure organizes the inequalities from the conjec-
ture into a linear data base and then combines them by cross-multiplication
and addition so as to create new inequalities. The linear data base for a
formula contains all the hypothesis inequalities and the negation of the con-
clusion inequality, if any. If a contradiction can be derived from this data
base, the formula is a theorem of linear arithmetic. All function applica-
tions other than sums, differences, and products with constants are treated
as variables.

For example, linear arithmetic can be used to prove the following.

(implies (and (< (* 3 a) (* 2 b))
(<= (* 5b) (+ (* 7 a) ¢)))
(<a(*x2c¢c)))

The formula above would be proved the same way if a, b, and ¢ were
replaced by more complicated expressions.

Sometimes it is necessary to augment the linear data base with inequal-
ities derived from theorems about other function symbols. For example, let
(pos e x) be the position at which e occurs in the list x or the length of
x, (len x), if e does not occur. The following is a theorem but is not a
consequence of linear arithmetic.

(implies (and (< 0 j)
(< (* 2 (len a)) k))
(< (pos e a) (+ k j)))

However if we add the hypothesis that (<= (pos e a) (len a)), the new
formula is a consequence of linear arithmetic. You can bring such inequal-
ities to the theorem prover’s attention by proving linear rules.

A linear rule is a theorem that concludes with an inequality. If an
instance of one of the terms mentioned as an addend in the inequality
arises in the linear data base, the rule is instantiated so as to create that
instance. If the hypotheses of the rule can be established, the instantiated
inequality is added to the linear data base. The hypotheses are established
by rewriting them, as described in the section on rewriting below. See
linear for more details.

8.3.3 Context

If the formula is not proved by one of the foregoing procedures, the simplifier
will rewrite each hypothesis and then the conclusion. Rewriting is done in
a context that specifies what may be assumed true. When rewriting the
conclusion, we assume all of the hypotheses. When rewriting a hypothesis,
we assume the other hypotheses and the negation of the conclusion.

The context actually consists of two kinds of information, each of which
is derived from the assumptions described above. One kind of information

The Mechanical Theorem Prover 145

is arithmetic in nature. The other is type theoretic. The former is derived
from the arithmetic inequalities among the assumptions, and linear rules,
as described above. The type theoretic information is discussed here.

Sometimes the construction of the context proves the theorem. For ex-
ample, type information may establish that two hypotheses are contradic-
tory. In this case, no rewriting is done and success is reported immediately.

Before we descend further into the derivation of this type theoretic in-
formation it should be noted that many successful users have only a vague
idea of how this part of ACL2 works. This section will give you a fairly
good model. But you should not be discouraged by its length: it is possible
to use ACL2 successfully without pulling the levers described here.

A type statement is a claim that a term has a certain type. We might
record the assumption (orderedp a) by making the type statement that
“(orderedp a) has type non-nil.” Similarly, we might record the assump-
tion (rationalp x) with the statement that “x has type rational.” What
then do we mean by “type?” In the next section we explain what a “type”
is and sketch how we deduce type information from assumptions.

However, the type deduction algorithm, called primitive type reasoning
or type set reasoning in the theorem prover output, can be extended by two
kinds of rules.

¢ Type-prescription rules allow you to inform the type algorithm of the
type of the output produced by a function. A type-prescription rule
about orderedp might assert that it is Boolean-valued. Then when
we assume (orderedp a) we deduce that (orderedp a) has type t
rather than the much larger type non-nil. See type-prescription

+ Compound-recognizer rules are applicable to Boolean-valued func-
tions of one argument. These rules allow you to tell the system how
to deduce type information about the argument. For example, a
compound-recognizer rule might tell the type mechanism to deduce
from (orderedp a) that a is a true list. See compound-recognizer.

‘We discuss these two types of rules after discussing types. Then we describe
how we assemble our assumptions into a context for the rewriter.

Types
We partition the ACL2 universe into fourteen primitive types. A type is
any union of these primitive types. The fourteen primitive types are: {0},
the positive integers, the positive ratios (i.e., non-integer rationals), the
negative integers, the negative ratios, the complex rationals, the characters,
the strings, {nil}, {t}, the symbols other than nil and t, the proper conses
(i.e., conses that are true lists), the improper conses, and all others. Note
that three primitive types contain only a single object: {0}, {nil}, and {t}
These primitive types are used to build familiar types. For example,
the naturals are the union of {0} and the positive integers. The rationals

146 Computer-Aided Reasoning: An Approach

are the union of the first five primitive types listed. The ACL2 numbers
are the union of the first six primitive types. The symbols are the union of
{nil}, {t}, and the other symbols. The conses are the union of the proper
and improper conses. The true lists are the union of {nil} and the proper
conses. The type non-nil is the union of all the primitive types except
{nil}.

The ACL2 user refers to the type of a term z by formulas about z
composed from 0, <, integerp, rationalp, complex-rationalp, acl2-
-numberp, characterp, stringp, equal, null, nil, t, symbolp, consp,
atom, listp, and true-listp.> Such terms are called type expressions
about z. In such expressions, « is called the typed term. For example, i is
the typed term in the type expression (and (integerp i) (< 0 i)). A
type expression about z can be turned into a unique statement of the form
“z has type s.” It is because of type expressions that the user does not
necessarily need to understand the type system.

We can compute the intersection, union, and complement of types. The
satisfiability of conjunctions, disjunctions, and negations of type expressions
can be deduced by an obvious computation on the underlying types. For
example, it is impossible for z to be both an integer and a symbol (because
the intersection of the types is empty). But it is possible for z to be both an
integer and a positive rational (indeed, such an « has type positive integer).
Similarly, if z is a true list and a symbol, then z is nil.

When we say the context records type information about the assump-
tions we mean it records the strongest type expressions it can deduce from
the assumptions.

Here is a simple example. Suppose we have the assumptions

1. (integerp i)
(rationalp x)

(< 0 x)

L

(primep j)
5. (equal i x)
6. (equal a ’ABC)
7. (not (consp e))

After processing the first, we know that i is an element of the integers, i.e.,
a negative integer, zero, or a positive integer. After processing the next
two we know that x is either a positive integer or a positive ratio. Upon
processing assumption 4, in the absence of any information about primep,
we know that (primep j) is non-nil. Upon processing assumption 5 we

30f course, the user may use macros such as > that expand to calls of these functions.

The Mechanical Theorem Prover 147

know that (equal i x) has type t. In addition, we now know that i and
x must have the same type, so we can intersect their types to create a
new type for each: both i and x are positive integers. Upon processing
assumption 6 we know that (equal a ’ABC) is t and we also know that a
is a symbol other than nil and t. The type algorithm can make no other
use of the information that a is ABC. After assumption 7 we know that e is
in the union of all the primitive types except the two containing conses.

Type-Prescription Rules
Consider a function application, (f a1 ... anp), and a type expression,
expr, about it. A type-prescription rule for f may be derived from a
theorem of the form (implies (and hyp: ... hyp,) ezpr). When the
type algorithm must deduce the type of a term, (f a} ... a}), that is an
instance of the typed term, it instantiates the rule accordingly and then at-
tempts to determine, by type reasoning alone, that each instantiated hyp;
is true in the current context. If so, it deduces a type statement about
(f a} ... a}) from the instantiated type expression ezpr and conjoins
(intersects) that type statement with the current context.

More than one type-prescription rule may be applicable and all are used
and conjoined. See type-prescription for restrictions and details.

An example type-prescription rule is (true-listp (rev x)). It allows
the type algorithm to deduce that the type of (rev (app a b)) is either
nil or a proper cons. Another type-prescription rule is the following.

(implies (and (integerp i)
(integerp j)
(not (equal j 0)))
(integerp (rem i j)))

It allows the type algorithm to deduce that the type of (rem a b) is the
set of integers, provided, in the current context, the type of a is a subset
of the integers and the type of b is a subset of the non-zero integers.

The theorem prover can deduce type-prescription rules at definition
time. For example, it may be able to deduce that primep returns either t
or nil. In that case the processing of assumption 4 above will tell us that
(primep j) is t rather than merely non-nil.

Compound-Recognizer Rules

We frequently define application-specific “recognizers,” i.e., Boolean-valued
functions of one argument that recognize certain kinds of objects. Examples
are suggested by the terms (primep j) and (btreep a). Sometimes the
truth or falsity of such expressions imply primitive type information about
the argument. Perhaps when (primep j) is true it is known that j is a
positive integer. Perhaps when (btreep a) is false it is known that a is
a cons. (This would be the case, for example, if btreep were defined to
return t on all atoms but put some restriction on conses.)

148 Computer-Aided Reasoning: An Approach

Suppose f is a unary Boolean function symbol, z is a variable symbol,
and expr; is a type expression about z. A compound-recognizer rule may
be derived from a theorem of one of the following forms.

¢ (implies (f z) ezpri)

¢ (implies (not (f z)) expri)

¢ (and (implies (f z) expr;) (implies (not (f z)) expry))
¢ GEf (f z) expry)

¢ (equal (f z) ezxpry)

When (f a) is assumed true (or false) the rule may allow the deduc-
tion of the corresponding type information about a, depending on the
parity of the assumption and available rules, in the obvious way. See
compound-recognizer for restrictions and details.

A particularly useful compound recognizer rule in some applications is
the one that represents the definition of what it is to be booleanp. The
function is defined as follows.

(defun booleanp (x)
(if (equal x t) t (equal x nil)))

Unless booleanp is disabled, the hypothesis (booleanp e) is expanded and
splits the goal formula into two cases. But if booleanp is disabled, the fact
that e is t or nil is hidden. However, by proving

(iff (booleanp x) (or (equal x t) (equal x nil)))

as a compound-recognizer rule and then disabling booleanp, the type in-
formation about e is made available without case splits.

Assembling the Context
To construct a context from some assumptions, we compute a linear data
base from the inequalities among our assumptions, using linear rules as
appropriate. We also compute type information from our assumptions,
using type prescription and compound recognizer rules. We then elaborate
the type information with forward chaining as described below.

A forward chaining rule can be constructed from virtually any theorem.
A typical forward chaining theorem has the form
(implies (and p1 ... pn) q).
We call p; the trigger term. The trigger term can actually be specified by
the user and can be any term whatsoever. If an instance of the trigger
term occurs in the current context and the corresponding instances of the
p; are all true in the current context, then the corresponding instance of g
is represented as a type statement and added to the context. The process
is iterated until no changes occur. Care is taken not to loop forever. See
forward-chaining for restrictions and details.

The Mechanical Theorem Prover 149

8.3.4 Rewriting

Recall that if the simplifier cannot prove the formula with one of the decision
procedures, then it rewrites each hypothesis and the conclusion, under a
context derived for each as described above.

The simplifier sweeps across the formula calling the rewriter on each
hypothesis and the conclusion in turn.* Though it hardly ever matters, the
sweep is left to right and the rewritten hypotheses are used to construct
the contexts for the unrewritten ones and the conclusion.

Here is a user-level description of how the rewriter works. The following
description is not altogether accurate but is relatively simple and predicts
the behavior of the rewriter in nearly all cases you will encounter.

If given a variable or a constant to rewrite, the rewriter returns it.

Otherwise, it is dealing with a function application, (f a; ... a,). In
most cases it simply rewrites each argument, a;, to get some a} and then
“applies rewrite rules” to (f a} ... a}), as described below.

But a few functions are handled specially. If f is if, the test, a;, is
rewritten to ai and then as and/or a3 are rewritten, depending on type
reasoning about whether a} is nil. If f is equal or a recognizer (such
as integerp), type reasoning is tried after rewriting the arguments and
before rewrite rules are applied to the call of f. Finally, if f is a lambda

expression, (lambda (v; ... v,) body), then rewriting is applied to body
after binding each v; to aj.
Now we explain how rewrite rules are applied to (f a} ... a;,). We

call this the target term and are actually interested in a given occurrence
of that term in the formula being rewritten.

Associated with each function symbol f is a list of rewrite rules. The
rules are all derived from axioms, definitions, and theorems, as described
below, and are stored in reverse chronological order — the rule derived from
the most recently proved theorem is the first one in the list. The rules are
tried in turn and the first one that “fires” produces the result.

A rewrite rule for f may be derived from a theorem of the form

(implies (and hyp; ... hypy)
(equiv (f b1 ... by)
rhs))

where equiv is a known equivalence relation. Note that the definition of
f is of this form, where & = 0 and equiv is equal. A theorem concluding
with a term of the form (not (p ...)) is considered, for these purposes,
to conclude with (iff (p ...) nil). A theorem concluding with (p ...),
where p is not a known equivalence relation and not not, is considered to
conclude with (iff (p ...) t).

4Note the distinction between simplification and rewriting as we use the terms here.
The former is a formula-level activity while the latter is a term-level activity. The former
orchestrates the latter.

150 Computer-Aided Reasoning: An Approach

Such a rule causes the rewriter to replace instances of the pattern, (f b;

b,), with the corresponding instance of rhs under certain conditions
as discussed below.

Suppose the target term occurs in an equiv-hittable position in the
formula. Suppose in addition that it is possible to instantiate variables in
the pattern so that the pattern matches the target. We will depict the
instantiated rule as follows.

(implies (and hyp] ... hyp})
(equiv (f af ... a})
rhs'))

To apply the instantiated rule the rewriter must establish its hypotheses. To
do so, rewriting (and propositional calculus) is used recursively to establish
each hypothesis in turn, in the order in which they appear in the rule. This
is called backchaining. If all the hypotheses are established, the rewriter
then recursively rewrites rhs’ to get rhs”’. Certain heuristic checks are done
during the rewriting to prevent some loops. Finally, if certain heuristics
approve of Ths', we say the rule fires and the result is rhs'’. This result
replaces the target term.

Special Hypotheses
A few interesting special cases arise in the process of trying to establish the
hypotheses.

The first special case is that hyp; is an arithmetic inequality, e.g., (< u
v). In this case, the two arguments are rewritten, to u’ and v', and then the
linear arithmetic decision procedure is applied to (< u’ v') using the linear
data base in the context. During this process, new linear lemmas may be
added temporarily to the data base, in support of the terms introduced in
u' and v'. Rewrite rules are not applied to the hypothesis itself, (< u' v'),
unless the linear procedure cannot decide it.

The second special case arises when the instantiated hypothesis hyp)
contains free variables, that is, variables that do not occur in the pattern
or in any previous hypothesis. A theorem illustrating this problem is

(implies (and (divides p q)
(not (equal p 1))
(not (equal p q)))

(not (primep q))).

Interpreted as a rule, this means that we can rewrite (primep q) to nil,
provided we can rewrite (divides p q) to t, (equal p 1) to nil, and
(equal p q) to nil. When we apply this rule to the target (primep a),
we substitute a for q to make the pattern of the rule match the target. But
note that we have not substituted anything for p. In this rule, p is a free
variable. The partially instantiated hyp; is (divides p a). Chances are
this will not rewrite to true unless we substitute for p some term related to
the formula we are trying to prove! So the system must guess a choice for

The Mechanical Theorem Prover 151

the free variables. It does this in a very weak way. It simply searches the
type information in the current context, looking for a term that matches the
partially instantiated hypothesis. That is, it tries to find terms that, when
substituted for the free variables in hyp] produce a term that is explicitly
assumed true in the current context. A hypothesis containing a free variable
is not rewritten at all! If the system finds a way to instantiate the free
variables of hyp], it instantiates subsequent hypotheses accordingly, and
tries to establish them. It never backs up to consider other choices for the
free variables.

The third special case is that the hypothesis is of one of three forms
(syntaxp hyp), (force hyp), or (case-split hyp). Hypotheses of the
first form are not logical restrictions at all but pragmatic metatheoretic
restrictions on when to use the rule. Syntaxp always returns t. But when
the rewriter encounters such a hypothesis it evaluates the form inside the
syntaxp to decide whether the rule should fire. See syntaxp for details.
Hypotheses of the other two forms are logically restrictive. Both force and
case-split are defined as the identity function, so, for example, (force
hyp) is true if and only if hyp is true. But when the rewriter encounters
a hypothesis marked with force or case~split it tries to establish it as
above and if that fails it assumes hyp and goes on. It returns to prove hyp
later. See force and case-split for details.

Heuristic Checks
Recall that the rewriter makes a few final checks before firing the rule.
Two deserve mention here. If the rule is a function definition then firing is
tantamount to “opening up” or “expanding” a call of the function. If the
definition is recursive, care must be taken not to expand indefinitely. For
example, something must prevent (app a b) from opening to introduce
(app (cdr a) b) and that in turn opening to introduce (app (cdr (cdr
a)) b), and so on. The final heuristic check prevents that. The rewriter
does not fire the rule if the rule is a recursive definition and the rewritten
rhs, rhs", fails certain tests. One test permitting firing is that the argu-
ments to the rewritten recursive call already appear in the formula being
proved by the simplifier. Another test permitting the firing is that the argu-
ments be symbolically simpler. Occasionally these heuristics will disallow
an expansion that is important to your proof. You must then explicitly
direct the system to expand the function call. See expand.

The second noteworthy final check concerns rules like (equal (f x y)
(f y x)) that commute, or more generally permute, the arguments to a
function. Care must be taken not to indefinitely permute the arguments
using such a rule. The rewriter will not fire such a rule unless the rewritten
right hand side occurs before the target term in a total ordering on ACL2
terms based on lexicographic comparisons. You may think of the system
as using permutative rules only to swap arguments into alphabetical order.
See loop-stopper.

152 Computer-Aided Reasoning: An Approach

Before we leave the rewriter a supremely important point must be made:
Basically, it just does what you tell it to do with your rewrite rules. If you
tell it to loop forever, by rewriting a to b, b to ¢, and c to a, then it will
loop forever, or as long as the resources of time and memory allow.

8.3.5 Normalization and Subsumption

‘We now leave the rewriter and return to the level of simplification. The sim-
plifier is working on some goal formula, (implies (and hyp; ... hypy)
concl), by rewriting the parts, in turn. Let us assume it has just rewritten
hypy.® Suppose the result is a term that involves some if-expressions. For
simplicity, suppose the result is (p (if a b ¢)).

You might expect the simplifier to move on to concl, rewriting it in a
context in which hypi, ..., (p (if a b c)) are assumed true. But that is
not what it does.

Instead it first lifts the if-expressions out of the rewritten term and
splits the problem into as many cases as there are paths through the if-
expressions. In our simple case above there are two paths: a is true and
(p b) is true, or a is false and (p ¢) is true. The simplifier then proceeds
to rewrite concl under each such extension of the hypotheses. Thus, in the
simple case above, concl is rewritten in two different contexts. In the first
case, the context contains hyp;, ..., a, and (p b). In the second case,
it contains hypi, ..., (not a), and (p ¢). The process of simplifying a
formula thus yields a set of formulas whose conjunction is equivalent to the
original.

The simplifier tries to clean up the set of formulas by throwing out or
combining certain of them. For example, if one formula is (implies p
¢) and another is (implies (and p r) @), then clearly we might as well
just prove the former. Moreover, if one formula is (implies (and p r) ¢)
and another is (implies (and p (not 7)) ¢), then we might as well just
prove (implies p ¢). This is called subsumption/replacement.

If the result of subsumption/replacement is a set containing a single
formula that is identical to the input formula, then the simplifier does not
apply and passes the formula on to destructor elimination.

If the result is the empty set of formulas, then the simplifier proved the
input formula.

Otherwise, the simplifier deposits each of the formulas into the pool.

5The analogous processing is applied after the conclusion is rewritten, just as though
the conclusion were negated and appeared as hypothesis & + 1 and nil was inserted as
the new concl.

The Mechanical Theorem Prover 153

8.4 Comments

This completes our sketch of how the theorem prover works. Recall the
remark made at the beginning of this chapter.

As you read this chapter you may begin to get the idea
that the machine does everything for you. This is not true.
A more accurate view is that the machine is a proof assistant
that fills in the gaps in your “proofs.” These gaps can be huge.
When the system fails to follow your reasoning, you can use your
knowledge of the mechanization to figure out what the system
is missing.

It is perhaps impressive that the theorem prover can prove rev-rev
completely automatically. But the validity of the rev-rev formula is obvi-
ous to most programmers. Unfortunately, so is the “validity” of the same
formula without the crucial true-listp hypothesis. The latter fact justi-
fies the use of a mechanical theorem prover: you will probably find that you
frequently believe in the validity of formulas that are not theorems! The
former fact, that validity is often obvious to you, justifies the use of a theo-
rem prover that tries to fill in the gaps in your arguments. In constructing
complicated arguments in support of practical applications, you will toss
off observations like rev-rev without giving them a second thought and
sometimes the theorem prover, using all of its power, will be able to prove
them.

How to Use the Theorem Prover

It is one thing to understand how a tool works. It is another to know how
to use it to get a particular job done. This chapter begins to explain how
to use the tool just described. Here are some key ideas to keep in mind.

¢ The theorem prover is automatic only in the sense that you cannot
steer it once it begins a proof attempt. You can only interrupt it and
abort.

¢ You are responsible for guiding it, usually by getting it to prove the
necessary lemmas. Get used to thinking that it rarely proves anything
substantial by itself.

¢ Never prove a lemma without also thinking of what kind of rules
should be made from it. You always specify the kind of rules to pro-
duce from a lemma, even when you say nothing about rules. The com-
mand (defthm name p) means “prove formula p, give it the name
name, and make it a rewrite rule.” If you do not want a theorem to
be turned into a rule use (defthm name p :rule-classes nil).

Bear in mind that this chapter provides only some basic information for
getting started. In particular, it does not describe a way to monitor the
application of rewrite rules (see break-rewrite). However, the last section
of this chapter does suggest an approach to finer-grained interaction with
the system. Further assistance in using ACL2 may be found later in this
part. We also recommend the tutorial [27], which shows the use of ACL2’s
predecessor (Pc-)Nqthm ([4]) on a non-trivial example in considerable de-
tail.

9.1 The Method

There are many different styles among ACL2 users. Some users tend to
exercise every feature of the system while others exercise as few as possible.
We recommend and will teach a single high-level proof style in this book.
As you become a more sophisticated user, you will discover and possibly
adopt other features of ACL2.

M. Kaufmann et al., Compurer-Aided Reasoning
© Kluwer Academic Publishers 2000

156 Computer-Aided Reasoning: An Approach

MAIN
e
A B c
D NVARRVAN
AL A2 A3 B1 B2 C1 C2
/\
A2a A2b

Figure 9.1: A Proof Tree

Prerequisite: To lead ACL2 to a proof you must know where the proof is.
More generally, you must be able to prove theorems in this logic. Some
find it helpful to practice hand proofs of simple ACL2 theorems. See the
exercises in Chapters 6 and 7.1 and throughout the case studies in the
companion book ([22]).

Imagine a full proof tree of some goal named MAIN, as depicted in Fig-
ure 9.1. MAIN is proved using the lemmas named A, B, and C, which them-
selves are proved with the lemmas indicated. To lead ACL2 to a proof of
MAIN, you must ultimately prove every lemma in this tree. As a practical
matter, you may not have worked out the proof of every lemma before you
start to use ACL2. In fact, most users discover the structure of the proof
tree by interacting with ACL2. Merely keeping track of the evolving tree,
what has been proved and what remains to be proved is often daunting. We
will describe one procedure, which will help you discover proofs that can
be checked with ACL2. The goal of the procedure is to produce a sequence
of defthm commands that lead ACL2 to a proof of the main theorem. The
procedure will produce a postorder traversal of the tree. That is, using the
procedure you will prove the lemmas of Figure 9.1 in the order: A1, A2a,
A2b, A2, A3, A, B1, B2, B, C1, C2, C, MAIN. We note this only to make it
obvious that there are many other styles one might follow. Furthermore,
ACL2 contains proof structuring devices that allow you to structure the
commands into the very tree shown, should you decide that is how you
wish to present them. These devices are exploited, for example, in the
top-down methodology presented by Kaufmann in his case study in the
companion volume, [22]. But the fundamental problem is discovering the
tree in the first place. ACL2 and this procedure can help you.

How to Use the Theorem Prover 157

We use ACL2 in conjunction with a text editor. We prefer Emacs
because we can run ACL2 as a process under Emacs and have the output
piped into a buffer, called the *shell#* buffer, that we can explore with
Lisp-specific search and move commands. We generally prepare our input
commands in a second buffer, called the script buffer.

When we are done, the script buffer will contain the postorder traversal
of the proof tree for the main theorem. But during the project, the script
is logically divided into two parts by an imaginary line we call the barrier.
The part above the barrier consists of commands that have been carried
out successfully by ACL2 in the *shell#* buffer. The part below the barrier
consists of commands that we intend to carry out. We sometimes refer to
the first part as the done list and the second part as the to-do list.

Initially, the script buffer should contain the main theorem, p, written
as a defthm command, e.g., (defthm main p). The barrier is at the top of
the buffer, i.e., the done list is empty and the to-do list contains just the
main theorem.

Here is “The Method” often used to tackle a proof project.

1. Think about the proof of the first theorem in the to-do list. Structure
the proof either as an induction followed by simplification or just
simplification. Have the necessary lemmas been proved? That is,
are the necessary lemmas in the done list already? If so, proceed to
Step 2. Otherwise, add the necessary lemmas at the front of the to-do
list and repeat Step 1.

2. Call the theorem prover on the first theorem in the to-do list and let
the output stream into the *shell#* buffer. Abort the proof if it runs
more than a few seconds.

3. If the theorem prover succeeded, advance the barrier past the suc-
cessful command and go to Step 1.

4. Otherwise, inspect the output of the failed proof attempt in the
shell# buffer, starting from the beginning, not the end. Basically
you should look for the first place the proof attempt deviates from
your imagined proof. Modify the script appropriately. We discuss
this at length below. It usually means adding lemmas to the to-do
list, just in front of the theorem just tried. It could mean adding
hints to the current theorem. In any case, after the modifications go
to Step 1. (We discuss a variant of Step 4 in Section 9.4.)

The most important part of The Method is the first word of Step 1. We
use the term “The Method” partly in jest to poke gentle fun at the very
idea that there is an algorithm for discovering proofs of deep and beautiful
theorems. But The Method is a good starting point.

One might ask why we do not provide a user interface that supports
The Method. No design we have ever contemplated was sufficiently flexible

158 Computer-Aided Reasoning: An Approach

to allow what really goes on in a major proof effort. We often evaluate
small expressions typed directly into the *shell* to query the current
world or test the behavior of defined functions. We often use Emacs to
grab expressions from theorem prover output to help us create such tests
or create appropriate lemmas for insertion into the script buffer. Failed
proofs often reveal that some key goal is not a theorem. Modifications may
then be necessary on both sides of the barrier and in the *shell*. Such
considerations argue for an unrestricted interface used with discipline.

One might also criticize The Method as being too flat. A tree is being
built but it is being encoded in a linear traversal. There is a good reason
for this. Consider the proof tree of Figure 9.1. Often, lemmas A, B, and
C involve the same collection of concepts. The lemmas necessary to prove
A, i.e.,, A1, A2, and A3, are often used in the proofs of A’s peers. The flat
structure is often good because it allows sharing: all the lemmas necessary
to prove a goal are available during the proof of that goal’s subsequent peers.
But there is a bad effect and you must look out for it: in large proofs the
logical world gets so complicated you cannot control the simplifier.

For example, the strategy you adopt to prove one goal, e.g., A, may
conflict with the strategy you adopt for a subsequent one, e.g., B. The
most dramatic example of such a conflict is perhaps when the combined
strategies simply loop indefinitely or cause catastrophic expansion. Perhaps
your proof of A calls for app-nests to be right-associated but your proof of B
calls for these nests to be left-associated. In successfully carrying out your
plan for A you would introduce a rewrite rule, say A1, to right-associate app.
Upon focusing your attention on B, you might prove Bl to left-associate
app. When the rewriter next encounters an app nest it will go into an
infinite loop. Such loops will show up in The Method when rewriting fails
to terminate. This often manifests itself by a stack overflow in the host
Common Lisp. In some Lisps, such as GCL, a rewrite loop can manifest
itself in a segmentation error (in which the Lisp process is aborted). A less
dramatic example of conflicting strategies is when the rules for A simply
transform the subgoals of B into forms that you find hard to recognize or
reconcile with your intended proof.

The moral is: if you adopt conflicting strategies, it is best to be aware
of it when you do it and localize the strategies to their intended goals. In
small proofs (e.g., those involving only dozens of rules) or in proofs whose
structure you can keep clearly in mind, the simplest way to address this
problem is to disable conflicting rules from prior goals before starting a new
goal; this leaves those rules available should you ever need them again. See
in-theory.

But in large proofs it is best, eventually, to use books (or encapsulation)
to structure the proof, layering it appropriately, and isolating the proofs of
independent peers. You might find, for example, that the lemmas at a given
level in the tree, e.g., lemmas A1, ..., C2, constitute a useful simplification
strategy about a certain collection of concepts. You may choose to develop

How to Use the Theorem Prover 159

a book containing all of those and then use the book to prove A, B, and C.
You may also find that the proof of A requires additional “tactical” lemmas
that conflict with those of B and so wish to isolate the two peers. There-
fore, you might prove A in one book and B in another, importing the basic
lemmas into each book and then augmenting the two worlds appropriately
for their separate goals. The two books would then export only their main
results, A and B, hiding the details of their proofs. C might be handled
analogously. Then your proof of MAIN might end up as a very short script:
three include-book commands bring in A, B, and C, and then the defthm
for MAIN. See books for details. Encapsulation is an alternative to books
that allows you to hide the proof of a given theorem without producing a
corresponding file. See encapsulate.

We say “eventually” above because you should not be too rigid about
introducing layers in a proof or else you may get lost in the layers! You
must simply use good sense to structure your proofs.

A final criticism of The Method is that it is bottom-up. You find yourself
proving the low-level lemmas for some sub-subgoal, like A2a, before you have
seen A, B, and C mechanically assembled into MAIN. There is a reason for this.
Very often—much more so than you might think—your formalization of the
problem will be wrong, either in the sense that the defined concepts do not
have properties you think they do or they are defined in an intractable way.
By encouraging you to get your hands dirty and actually start using the
definitions you have a chance to assess the whole plan in the back of your
mind. It is possible to experiment in a top-down way, assuming formulas
(and thus adding their rules to the world) and then using them to prove
the main results. Sometimes this is useful. It often brings your attention to
additional key lemmas omitted from your initial proof sketch. It more often
highlights the need for many routine lemmas that will be discovered and
proved in the natural course of events by The Method. See skip-proofs
for details of how to assume that which must, ultimately, be proved, and
remember that until it is proved you cannot be sure it is even valid! See also
the case study by Kaufmann in the companion volume, [22], for a top-down
methodology along these lines that has tool support, as well as Moore’s case
study in that volume for the use of a top-down macro.

When you are comfortable with ACL2 you will not use The Method as
rigidly as it is described above, largely because it only produces flat proofs.
You will probably use it by default to explore the problem, possibly adding
unproved rules so the theorem prover can accompany you in your explo-
rations. You will identify key layers or theories that need to be developed.
You will recognize when it is important to do proofs in isolation. You will
then use The Method, or your modification of it, to develop the appropriate
scripts for each of the books you envision.

But ultimately you must learn how to build scripts that lead ACL2 to
a given realistic goal from a reasonable but not quite perfect initial world.
The Method is a good way to approach that problem.

160 Computer-Aided Reasoning: An Approach

9.2 Inspecting Failed Proofs

You will spend most of your time looking at ACL2 output, trying to figure
out why ACL2 did not prove something that (a) you think is a theorem
and (b) you think is now completely obvious given all the work ACL2 and
you have already done. This section is intended to help you take advantage
of that output.

In a nutshell, the most common activity is to focus on the first subgoal
that ACL2 cannot simplify which does not ultimately get proved using
other techniques. ACL2 provides a tool that automatically selects parts of
the output on which you should probably focus; see proof-tree. However,
in this section we focus directly on the linear output, in particular from a
failed proof of the following theorem.

Theorem. Main
(equal (app (app a a) a)

(app a (app a a)))
Note that the main theorem does not state that app is associative but states
a weaker property. We try to prove this theorem in ACL2’s initial world,
right after defining app. In that world, the theorem that app is associative
has not been proved.

The user who submits the following theorem is not following The Meth-
od because he or she could not have a proof in mind! Nevertheless, it is
tempting to expect the theorem prover to do your thinking for you and this
example should quickly disabuse you of that expectation!

1. ACL2 >(defthm main

2. (equal (app (app a a) a)

3. (app a (app a a)))

4. :rule-classes nil)

5.

6. Name the formula above *1.

7.

8. Perhaps we can prove *1 by induction. Three induction schemes
9. are suggested by this conjecture. Subsumption reduces that

10. number to one.

11.

12. We will induct according to a scheme suggested by

13. (APP A (APP A A)). 1If we let (:P A) denote *1 above then
14. the induction scheme we’ll use is

15. (AND (IMPLIES (AND (NOT (ENDP A4)) (:P (CDR A)))

16. (:P A))

17. (IMPLIES (ENDP 4) (:P A))).

18. This induction is justified by the same argument used to
19. admit APP, namely, the measure (ACL2-COUNT A) is decreasing
20. according to the relation EO-ORD-< (which is known to be
21. well-founded on the domain recognized by EO-ORDINALP). When

How to Use the Theorem Prover 161

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

applied to the goal at hand the above induction scheme produces
the following two nontautological subgoals.

Subgoal *1/2
(IMPLIES (AND (NOT (ENDP A))
(EQUAL (APP (APP (CDR A) (CDR A)) (CDR A))
(APP (CDR A) (APP (CDR &) (CDR A4)))))
(EQUAL (APP (APP A A) 1)
(APP A (APP A A)))).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/2’
(IMPLIES (AND (CONSP A)
(EQUAL (APP (APP (CDR A) (CDR A)) (CDR A))
(APP (CDR A) (APP (CDR A) (CDR MA)))))
(EQUAL (APP (APP A A) A)
(APP A (APP A A)))).

This simplifies, using the :definition APP, primitive type
reasoning and the :rewrite rules CDR-CONS and CAR-CONS, to

Subgoal *1/2’’
(IMPLIES (AND (CONSP A4)
(EQUAL (APP (APP (CDR A) (CDR A)) (CDR 4))
(APP (CDR A) (APP (CDR A) (CDR 4)))))
(EQUAL (CONS (CAR A) (APP (APP (CDR A) 1) A))
(APP A (CONS (CAR A) (APP (CDR A) A4))))).

This simplifies, using the :definition APP, primitive type
reasoning and the :rewrite rule CONS-EQUAL, to

Subgoal *1/2'’°
(IMPLIES (AND (CONSP A)
(EQUAL (APP (APP (CDR A) (CDR A)) (CDR &))
(APP (CDR A) (APP (CDR A) (CDR A)))))
(EQUAL (APP (APP (CDR A) A) &)
(APP (CDR 4A)
(CONS (CAR A) (APP (CDR &) A))))).

The destructor terms (CAR A) and (CDR A) can be eliminated
by using CAR-CDR-ELIM to replace A by (CONS Al A2),
generalizing (CAR A) to Al and (CDR A) to A2. This produces
the following goal.

Subgoal *1/2°4’
(IMPLIES (AND (CONSP (CONS A1 A2))
(EQUAL (APP (APP A2 A2) A2)
(APP A2 (APP A2 A2))))

162 Computer-Aided Reasoning: An Approach
71. (EQUAL (APP (APP A2 (CONS A1 A2)) (CONS Al A2))

72. (APP A2 (CONS A1 (APP A2 (CONS A1l A2)))))).
73.

74. This simplifies, using primitive type reasoning, to

75.

76. Subgoal *1/2°5’

77. (IMPLIES (EQUAL (APP (APP A2 A2) A2)

78. (APP A2 (APP A2 A2)))

79. (EQUAL (APP (APP A2 (CONS A1 A2)) (CONS A1 A2))

80. (APP A2 (CONS A1 (APP A2 (CONS A1 A2)))))).
81.

82. We generalize this conjecture, replacing (APP A2 (CONS A1 A2))

83.
84.
85.

86.

87.

88.

89.
90.
91.
92.

93.

94.
95.
96.
97.
98.
99.

100.

101.
102.
103.
104.

105.

106.

107.
108.

109.

110.

111.
112.

113.

114.
115.
116.
117.
118.

by L and (APP A2 A2) by AP and restricting the type of the new
variable L to be that of the term it replaces, as established
by primitive type reasoning and APP. This produces

Subgoal *1/2°6°
(IMPLIES (AND (CONSP L)
(EQUAL (APP AP A2) (APP A2 AP)))
(EQUAL (APP L (CONS A1 A2))
(APP A2 (CONS A1 L)))).

Name the formula above *1.1.

Subgoal *1/1
(IMPLIES (ENDP A)
(EQUAL (APP (APP A A) A)
(APP A (APP A M)))).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/1°
(IMPLIES (NOT (CONSP A4))
(EQUAL (APP (APP A A) A)
(APP A (APP A A)))).

But simplification reduces this to T, using the :definition
APP and primitive type reasoning.

So we now return to *1.1, which is

(IMPLIES (AND (CONSP L)
(EQUAL (APP AP A2) (APP A2 AP)))
(EQUAL (APP L (CONS A1l A2))
(APP A2 (CONS A1 L)))).

Perhaps we can prove *1.1 by induction. Four induction schemes
are suggested by this conjecture. Subsumption reduces that

How to Use the Theorem Prover 163

<. { 497 lines deleted)

616. Subgoal *1.1.2.5/1’"°

617. (CONSP A2).

618.

619. We suspect that this conjecture is not a theorem. We might
620. as well be trying to prove

621.

622. Subgoal *1.1.2.5/1’4’

623. NIL.

624.

625. Obviously, the proof attempt has failed.
626.

627. Summary

628. Form: (DEFTHM MAIN ...)

629. Rules: TYPE-PRESCRIPTION APP)
630. :ELIM CAR-CDR-ELIM)
631. :REWRITE CONS-EQUAL)

633. :REWRITE CAR-CONS)

634. : FAKE-RUNE-FOR-TYPE~SET NIL)

635. :DEFINITION NOT)

636. :DEFINITION ENDP)

637. :DEFINITION APP))

638. Warnings: Nomne

639. Time: 0.65 seconds (prove: 0.43, print: 0.21, other: 0.01)
640.

641. #x*k¥x FATLED #***x* See :DOC failure kkskkx FATLED #xkkkkk

(C:
(
(
632. (:REWRITE CDR-CONS)
(
(
(
(
(

On lines 1-4 we issue the defthm command to prove our main theorem.
Lines 5-641 contain the theorem prover’s response. The proof attempt
fails and we have deleted much of it for brevity. But many points about
the theorem prover can be made from this unsuccessful attempt to prove a
simple theorem.

¢ It is not “smart enough” to prove even this simple theorem without
help from the user!

¢ The output is produced in real time. It describes an ongoing proof
attempt, not a proof.

¢ At 60 lines per page this failed attempt produced more than 10 pages
of output.

¢ Unless you are piping the output into a scrollable window, text editor,
or file, most of it is lost.

¢ From the summary at the bottom (line 639) we see that it takes
only 0.65 seconds to produce this output, a rate of about 15 pages a

164 Computer-Aided Reasoning: An Approach

second. During this time the system does four successive inductions.
You cannot read it fast enough to steer it.

¢ Do not spend much time reading the theorem prover’s output unless
it fails or runs for a “long time.”

¢ A “long time” in this setting is several seconds.
¢ Ridiculously long subgoal names indicate an unsuccessful strategy.

¢ Subgoal *1.1.2.5/1’4’ (line 622) is nil and the proof attempt
stops. This does not mean the original formula was not a theorem!
In fact, we know the original formula is a theorem. Failure simply
means the system could not prove it. Sometimes the system’s search
strategy will lead it to try to prove subgoals that are manifestly false.
When that happens, it fails.

¢ The system stops automatically in this example. But it does not
always stop: it can “run forever” or exhaust physical resources on
your machine. That is why the output is produced in real time and
you should pay cursory attention to it. We often let it scroll by at
full speed and abort when the subgoal numbering gets deep.

Suppose you were confronted with this failed proof attempt. Given The
Method, the appropriate response is to begin to read the output from the
top. Do not start reading the output at Subgoal *1.1.2.5/174°.

On line 6 the system gives the formula the temporary name *1 and
at line 8 begins an inductive proof. Recall the waterfall (page 123). The
system only tries induction when all else fails. Is this a theorem to be
proved by induction?

The induction message (lines 8-23) is one of two main checkpoints in
the output and it should always raise a red flag when you see it. It is crucial
that you not read past an induction argument until you are convinced that
induction is the appropriate mathematical technique for the goal at hand.
Perhaps the goal can be proved by appeal to other lemmas.

If you decide induction is plausible—most likely because you have an
informal proof in mind—you must next determine whether the particular
scheme chosen is an appropriate one. Read lines 15-17.

The system is inducting on the structure of A. The base case is line 17,
when A is not a cons. The induction step is on lines 15-16. Assuming A is
a cons and the formula holds for (CDR A), the system will attempt to prove
the formula.

A little experience with induction will teach you that this is proba-
bly not going to work. By “experience” we do not mean experience with
the mechanization of induction in ACL2. We mean experience with the
mathematical technique. The mathematically experienced user would stop
reading upon seeing that the system was trying to prove this theorem by

How to Use the Theorem Prover 165

induction. That is simply the wrong attack and everything else that follows
is pointless. We will see why soon.

However, let us assume that we do not see anything wrong with this
inductive attack and just continue reading the output.

Subgoal *1/2 (lines 25-30) is the inductive step, printed with our par-
ticular formula rather than in schematic form. Following that are three
successive simplifications, Subgoal *1/2’, Subgoal *1/2’’, and Subgoal
*1/2°7 each obtained from the former by opening up function definitions
and applying a few axioms. The last is just a simplification of the first.

+ Simplification is good. Skip past it, for now.

¢ The first message that mentions destructor elimination, use of equal-
ities, cross-fertilization, generalization, irrelevant terms, or induction
should raise a red flag. Simplification has done all it can. The for-
mula just above that message is the most important checkpoint in
the output. We call it the simplification checkpoint. The important
thing about the formula at the simplification checkpoint is that it is
stable under simplification.

The crucial message appears at line 62, when the system reports that
it will try to eliminate destructors. The formula just before that, Subgoal
*1/27° 7 is as simple as the goal is going to get with simplification alone.
You know that destructor elimination and whatever else the system will try
will ultimately fail: you are reading a failed proof! So you must figure out
how to prove Subgoal *1/2’’’ (lines 55-60).

Study the conjecture at the checkpoint. Ask yourself

¢ Is the formula even valid? Perhaps your “theorem” is not a theorem.
¢ If it is valid, why? Sketch a little proof.

¢ Which theorems are used in that little proof that are not in the logical
world?

¢ If all the theorems you need are in the world, why were they not
applied? There are three common answers:

¢ The pattern of a key rule does not match what is in the formula
being proved. Perhaps another rule fired, messing up the pattern
you expected.

¢ Some hypothesis of the rule cannot be established.

¢ The rule is disabled.
¢ If there is a missing theorem, is it suspiciously like the one you are

trying to prove? If so, perhaps the wrong induction was done or the
formula you are trying to prove is too weak.

166 Computer-Aided Reasoning: An Approach

¢ On the other hand, if there is a missing theorem and it is different from
the one you are trying to prove, then you have probably identified a
key lemma. Most often, such lemmas are about new combinations of
functions from the original theorem and the functions introduced by
rewriting.

¢ Can you phrase the missing theorem as a rewrite rule so that the
checkpoint goal simplifies further, ideally to true?

If answers come to you, repair the script accordingly and proceed with
Step 1 of The Method.

In the example being discussed, no proof of Subgoal *1/2’’’ comes to
mind. The only missing lemma that might come to mind is the associativity
of app. But suppose we do not think of it. What else should we do? Since
we know we are in an induction, we ought to figure out how to use the
induction hypothesis (lines 56-57) to prove the induction conclusion (lines
58-60).

But there is no way to use the hypothesis in the conclusion. They do
not match up. For instance, look at the left-hand side of each.

hypothesis: (APP (APP (CDR A) (CDR A)) (CDR A))

conclusion: (APP (APP (CDR A) A) 4)
The first (CDR A) in the one matches the corresponding (CDR A) in the
other. But the next two (CDR A)’s are mismatched with A’s. Things are
even more mismatched on the right-hand side. In this situation you should

¢ contemplate whether there are rewrite rules that would allow the
rewriter to transform the conclusion into (something involving) the
hypothesis.

Again, none come to mind.

The offending (CDR A)’s came into the hypothesis from our choice of
inductive instance. This suggests we should choose a different induction
hypothesis.

Evidently, an appropriate induction hypothesis could be obtained if we
could substitute (CDR A) for the first A in the conjecture and leave the other
two A’s alone. That is, the left-hand side of the “induction hypothesis”
we wish we had is (APP (APP (CDR A) A) A).

But that is not legal! Induction must uniformly replace the induction
variable by something smaller. To get the instance we need, we must dis-
tinguish the first A from the other A’s on the left-hand side.

Therefore, we are proving the wrong theorem! We should be proving a
theorem in which some of the A’s here are replaced by some other variable
or variables.

The experienced user of the theorem prover would not read past the
induction checkpoint in this example. Even the novice should not read
past the simplification checkpoint. In fact, most of the time, the problem
will be evident at the simplification checkpoint.

How to Use the Theorem Prover 167

However, returning to our example, we briefly explain what the system
does after the simplification checkpoint. In this case, it is not very enlight-
ening. At line 62 it begins to eliminate the CARs and CDRs by renaming A to
be a cons of two other variables. After a little simplification, it generalizes
(line 82), producing Subgoal *1/2°6’. Nothing more can be done for that
goal, so the system gives it the temporary name *1.1 and will ultimately
try to prove it by induction. Unfortunately, inspection of *1.1 will reveal
that it is not a theorem. None of this should be surprising since we know
we are proving the wrong theorem! In fact, generalization often produces
goals that are not theorems.

Meanwhile, the system had another top-level subgoal to prove: the base
case of the induction, Subgoal *1/1 (lines 95-98). The proof of the base
case proceeds without difficulty and finishes by line 108.

So on line 110 the system attempts to prove the doomed *1.1. It tries
induction. We have deleted almost 500 lines of output. The system tried
two more inductions before finally producing a subgoal that was manifestly
false.

Many readers are swamped by the output of ACL2. They feel obliged
to read it all. That is a waste of your time. Read it until you understand
why the proof attempt failed; better yet, read it until you understand why
the system deviated from your intended proof. There was a remote chance
when main was submitted that the system would somehow hit upon a gen-
eralization that it could prove. The whole exercise only costs 0.65 seconds
so we see no harm in letting it run; cycles are free and it is virtually im-
possible, given human reaction time, to stop it more quickly. But do not
read more than you need!

Now, recall what we have learned: we are trying to prove the wrong
theorem. We need a formula like

(equal (app (app a a) a)
(app a (app a a)))

except with the first a of the left-hand side distinguished from the next two.
A candidate formula is

(equal (app (app a b) b)
(app a (app a a)))

but of course that is not a theorem (it is easy to construct a counterexample
exploiting the fact that b occurs on only one side). We need some b’s on
the right and the “obvious” modification is

(equal (app (app a b) b)
(app a (app b b)))
We cannot be more specific in our guidance or justification of these ideas.

They are the result of mathematical insight gained simply by doing proofs
and understanding what the function app does.

168 Computer-Aided Reasoning: An Approach

The formula above is provable by induction. The proof is enlightening
because the problems raised in the last attempt are so completely solved
by this strange little formula. However, you probably recognize that the
associativity of app is a still more general formula that would do the job.

¢ It is almost always best to prove the most general theorems you can
state conveniently.

Therefore, if we were following The Method we would type

(defthm associativity-of-app
(equal (app (app a b) c)
(app a (app b ¢))))

into the script buffer just in front of main. We would be cognizant of the
fact that the rule generated from this theorem will right-associate all app
nests as long as it is enabled.

Virtually every time we type a theorem that will become a rewrite rule
we give thought to the termination of the rewriting scheme we are evolving.

¢ This is most often done by selecting a normal form for all the terms
that arise in the problem and “orienting” every rule to drive the
pattern (left-hand side of the conclusion) closer to the normal form.

¢ Furthermore, every subexpression in the pattern should be written
in the selected normal form because the pattern is matched after the
arguments of the target have been rewritten. If you are rewriting (g
x) to (h x) then a rewrite rule with a pattern (left-hand side) of (£
(g %)) will never be used: the pattern will not be seen because the
g in a potential target term will be rewritten to h!

¢ Sometimes no single normal form is adequate. In that case we choose
an arbitrary normal form and stick to it. We do not just orient the
rules randomly.

¢ When we need a lemma that relates terms not in normal form or
that, when used as a rewrite rule, would drive a term out of normal
form, we either specify :rule-classes nil or immediately disable
it, so as not to introduce a loop in the rewriter. Such lemmas must be
specified explicitly in subsequent :use hints (see hints) or enabled
with attention paid to the conflicting rules.

This kind of thinking in connection with your rewrite rules is absolutely
crucial to using The Method successfully. Time and time again the answer
to vexing questions about why ACL2 failed to find a proof can be traced
back to the failure to follow the four items of advice above.

Recall that ACL2 supports congruence-based reasoning, as described in
Section 8.3.1.

How to Use the Theorem Prover 169

¢ Most rewrite rules conclude with an equal, but do not forget that
you can use iff and your own equivalence relations.

¢ If you intend to rewrite with equivalence relations, be sure to prove
the necessary congruence rules.

Having added associativity-of-app to the script, it becomes the first
theorem in the to-do list. We go to Step 1 of The Method: Think. The
proof of the associativity of app is just a standard induction down the cdr
of a followed by simplification using the definition and axioms. We admit
that in simple cases like this it is reasonable to skip Step 1 and just throw
the proposed theorem at the theorem prover. But if such a proof attempt
does not succeed quickly then we revert to Step 1.

So we are ready for Step 2: command ACL2 to try. It produces a proof
{not shown here) in 0.05 seconds.

¢ Skim successful proofs cursorily looking for the highlights: induction
and simplification, or just simplification, as you expected.

Why read successful proofs? It can happen that the system finds a different
proof than the one you are expecting. This could be a sign that something
is seriously wrong, e.g., a hypothesis is false because it was entered incor-
rectly. It could also be a sign that your model of the logical world is not
accurate. You cannot afford not to understand the proof strategy you are
constructing!

¢ If the system’s proof involves an unexpected induction, it is a sign that
a crucial lemma may be missing or inapplicable. While the system
could fill in the gap this time, you might really need that lemma for
some other theorem.

¢ If you expected an induction and there was none, then there are
already sufficient lemmas in the world to prove this theorem. Their
use is reported in the proof. Study them.

¢ If the system’s proof was entirely by rewriting, you might not need
this lemma as a rewrite rule. Earlier rules may always do the rewriting
for you.

¢ Ifrewriting participated in the proof before the first induction or other
techniques were used, you might want to contemplate whether there
is a conflict between the rewrite rules used and the rewrite rule (if
any) introduced by this lemma. Evidently, existing rules transform
this one. Will its pattern ever match anything if those existing rules
fire? Perhaps now that you have proved this lemma you can disable
the earlier rules.

170 Computer-Aided Reasoning: An Approach

Having proved associativity-of-app we follow The Method by ad-
vancing the barrier and repeating Step 1: we submit the next command,
which is main again. We expect it to succeed by simplification. This time
we get:

1. ACL2 >(defthm main

2. (equal (app (app a a) a)
3. (app a (app a a)))
4. :rule-classes nil)

5.

6. By the simple :rewrite rule ASSOCIATIVITY-OF-APP we reduce
7. the conjecture to

8.

9. Goal’

10. (EQUAL (APP A (APP A 14))

11. (APP A (APP A A))).

12.

13. But we reduce the conjecture to T, by primitive type reasoning.
14.

16. Q.E.D.

16.

17. Summary

18. Form: (DEFTHM MAIN ...)

19. Rules: ((:REWRITE ASSOCIATIVITY-OF-APP)

20. (:FAKE-RUNE-FOR-TYPE-SET NIL))

21. Warnings: Nomne

22. Time: 0.02 seconds (prove: 0.00, print: 0.00, other: 0.02)
23. MAIN

9.3 Another Example

Here is another illustration of The Method, with more focus on inspecting
output to find missing theorems. Suppose we have added the definitions of
app and rev and have proved

(defthm rev-rev
(implies (true-listp a)
(equal (rev (rev a)) a))).
Note that rev-rev is a conditional rewrite rule. Our goal is to prove

(defthm main
(equal (rev x)
(if (endp x)
nil
(if (endp (cdr x))
(list (car x))

How to Use the Theorem Prover 171

(cons (car (rev (cdr x)))
(rev
(cons (car x)
(rev (cdr (rev (cdr x))))))))))

:rule-classes nil).

This is an ugly-looking theorem! But it expresses a surprising fact about
rev. Indeed, as first observed to one of us by Rod Burstall, you could
use this equality as a definition of reverse: it is a way to define how to
reverse a list without using the auxiliary function append. Here we will
not try to admit this as a definition or add it as an alternative definition
(see definition) but just focus on proving it as a theorem about the rev
we have already defined. We make the theorem have :rule-classes nil
because we do not want (rev x) to be rewritten this way.!

Step 1 is to sketch a proof. If either of the two conditions tested in the
if-nest is true, the formula is easy to prove. Otherwise, we have to look at
the messy (cons (car (rev (cdr x))) (rev (cons ...))) expression.
We know that the theorem prover will simplify the (rev (cons ...)) by
expanding the definition of rev. Rather than work out the expansion by
hand, we just call the theorem prover on the goal above, expecting (cor-
rectly) that the system will fail to prove the theorem. This is an important
and common use of the system and its verbose output: submit formulas
merely to see how your current rules simplify them. Just do not be misled
into letting the system dictate your strategy.

When this formula is submitted, the system runs for three seconds.
We ignore all but the first few lines of output. The first simplification
checkpoint is:

Subgoal 3’
(IMPLIES (AND (CONSP X)
(CONSP (REV (CDR X)))
(CONSP (CDR X)))
(EQUAL (APP (CDR (REV (CDR X))) (LIST (CAR X)))
(APP (REV (REV (CDR (REV (CDR X)))))
(LIST (CAR X))))).

Two things should catch your eye. The first is (CONSP (REV ...)). The
system does not know that rev returns a cons precisely when its argument is
a cons. In the goal above, it helps little to know this, since it just removes a
true hypothesis. But we can anticipate that the negation of this hypothesis
will be considered later (indeed, it characterizes Subgoal 2). So we might
as well “teach” the theorem prover how to simplify this question. We add
to our to-do list the following theorem.

1Readers interested in logic might consider whether it is even possible to admit such
a function under the ACL2 principle of definition. See the case study by Moore in [22].

172 Computer-Aided Reasoning: An Approach

(defthm consp-rev
(equal (consp (rev x))
(consp x)))

This is a rewrite rule that replaces any instance of (consp (rev x)) by
the corresponding instance of (consp x). This lemma will be proved by
induction followed by simplification. If we consider its proof, then we antic-
ipate needing a lemma about (consp (app ...)), but expect the system
will generate it. We return to this point below.

Meanwhile, the second thing that should catch your attention in the
subgoal above is the (REV (REV (CDR (REV ...)))) term. How did this
term escape being hit by rev-rev? The only possible answer is that the the-
orem prover could not establish the hypothesis, in this case, (true-listp
(CDR (REV ...))). We could prove that directly, but a better strategy is
to break it up into two observations, which we expect the system to chain
together to get the needed conclusion.

(defthm true-listp-rev
(true-listp (rev x)))
(defthm true-listp-cdr
(implies (true-listp x)
(true-listp (cdr x))))
The first will be proved by induction followed by simplification (with a
lemma about true-listp and app) and the second by simplification.

It is not a good idea to add too many rewrite rules at once, without
studying their interaction, so we now proceed with Step 1 again, for the
three new lemmas. We have already considered their proofs—or perhaps
we have not, but our intuition is that the proofs are likely to be easy for
the theorem prover to find—and so take Step 2 and submit the commands.
All three succeed, as expected.

So now we submit main again, simply to see the effect of our new rules on
our checkpoint. In fact, the system proves main by simplification. Looking
more closely at Subgoal 3’’, above, we might note that once rev-rev is
applied, the concluding equality is an identity. The other two subgoals deal
with the special cases when x is empty or a singleton.

More can be said of the three lemmas we added. First, we anticipated
needing some lemmas above but expected ACL2 to bridge the gap. That
can be a frustrating strategy. It is better to be disciplined about adding
the rules you think the system will need. To prove consp-rev, a disciplined
user might first prove

(defthm consp-app
(iff (consp (app a b))
(or (consp a) (consp b))))

The question (consp (app ...)) will come up in a proof about (consp
(rev ...)) because rev expands to app. The theorem prover happens

How to Use the Theorem Prover 173

to generates a sufficient lemma about app to prove consp-rev. But that
lemma is not added to the data base—only you add things to the data base.
The next time (consp (app ...)) comes up, you might not be so lucky!
It is better to arrange for it to simplify away.

The form of both consp-app and consp-rev is surprising to many new
users. Weaker theorems that come to mind (for the app case) are as follows.

(implies (consp a) (consp (app a b)))
(implies (consp b) (consp (app a b)))
(implies (not (consp (app a b))) (not (consp a)))
(implies (not (consp (app a b))) (not (comnsp b)))

No single one of these four rules captures the logical content of consp-app.
Even then, consp-app is pragmatically stronger because it eliminates the
term (consp (app a b)) and introduces a case split. The four rules above
allow ACL2 to settle certain consp questions, but only if they are raised
by other rules. In addition, having all four rules would be very inefficient
because they all cause backchaining.

¢ Use unconditional rewrite rules when possible.

The true-listp-rev theorem is another example where the disciplined
user would have first proved a lemma about true-listp and app before
expecting to prove something about true-listp and rev. The lemma we
would choose is

(defthm true-listp-app
(equal (true-listp (app a b))
(true-listp b)))

to simply eliminate the question without backchaining.
Finally, consider true-listp-cdr. It too causes back chaining. Logi-
cally speaking, we could strengthen it to an unconditional rewrite rule.

(defthm true-listp-cdr
(equal (true-listp (cdr x))
(or (atom x) (true-listp x))))

But pragmatically, we do not want this rule because it rewrites in the op-
posite direction of the definition of true-listp. That is, the definition
replaces (true-listp x) by something involving (true-1listp (cdr x));
the strengthened rule above “undoes” that expansion. Introducing the
strengthened rule above would cause the rewriter to loop indefinitely. We
could have, alternatively, used the strengthened rule and disabled the defi-
nition of true-listp. But we tend to leave recursive functions enabled so
that they unwind properly in inductive proofs.

174 Computer-Aided Reasoning: An Approach

9.4 Finer-Grained Interaction: The “Proof-Checker”

We have seen that using The Method may involve the inspection of ACL2
output from a failed proof attempt. Such inspection often leads the user to
discover useful rewrite rules to prove, problems with the theorem prover’s
choice of induction scheme, or even modifications to make in the statement
of the alleged theorem.

In this section we introduce an interactive utility, the proof-checker.
This tool can help you discover why a proof attempt failed, by providing
a number of ways to guide a new proof attempt interactively. We illus-
trate the proof-checker by using the example of the preceding section. See
proof-checker for details. An important aspect of the proof-checker is
that it can free you from much of the need to inspect the theorem prover’s
output stream. In fact we elide some prover output in the example pre-
sented below.

First we make a critical point. Although the proof-checker can free you
from the need to anticipate necessary lemmas, the downside is that you can
be lulled into the false notion that you no longer need to pay attention to
Step 1 of The Method: Think. Experience can provide a sense for when
the conjecture is somehow sufficiently simple that one can rely on guidance
provided by a proof-checker session. We say more on this issue in remarks
at the end of this section.

We begin the interactive proof session by using verify, which gives us
the prompt “->:”. All user input to the proof-checker is shown below on
lines starting with this prompt.

ACL2 !>(verify
(equal (rev x)
(if (endp x)
nil
(if (endp (cdr x))
(1ist (car x))
(cons (car (rev (cdr x)))
(rev
(cons (car x)
(rev (cdr (rev (cdr x)))))))))))
=->:

Although our goal is to let the proof-checker be an active assistant, we
think just a little about how to proceed. Do we want to start the proof with
induction, or should we simplify first? The prover starts with simplification,
of course, but often it seems clear that the argument is fundamentally an
inductive one and one issues the proof-checker induct command first. See
acl2-pc::induct.? We are welcome to follow Step 1 of The Method and

2In some documentation, in particular the Emacs Info version, the proof-checker
commands are prefixed by “acl2-pcl|” rather than “acl2-pc::”. All proof-checker
commands are documented in the section proof-checker-commands.

How to Use the Theorem Prover 175

work out the proof outline before we start, which tells us whether to start
with induction or simplification. In this case, however, we use our intuition
and start with simplification, expecting it to bring to light some missing
rewrite rules that may be useful.

Hence, we begin by issuing the command bash, which calls the simplifier.
All goals that would normally be put into the pool (see Section 8.2) are
instead presented to the user as new goals to be proved.

->: bash
***xx*% Now entering the theorem prover *x**x

[[[theorem prover output omitted here]]]
Creating two new goals: (MAIN . 1) and (MAIN . 2).

The proof of the current goal, MAIN, has been completed.

However, the following subgoals remain to be proved:
(MAIN . 1) and (MAIN . 2).

Now proving (MAIN . 1).

=>:

What has happened? The proof-checker maintains a stack of named
goals. This stack initially contains a single goal called MAIN which is the
formula to be proved, t.e., the argument of verify. The message above
indicates that MAIN has been removed from the stack but new goals (MAIN

1) and (MAIN . 2) have been pushed onto the stack. The top goal on
the stack is the one being proved, in this case, the goal named (MAIN . 1).

We can inspect all the goals (see acl2-pc::print-all-goals), but
instead we start by looking at the current goal using the command th (which
is mnemonic for “theorem”). Notice that a goal consists of hypotheses and
a conclusion.

->: th
*** Top-level hypotheses:
1. (CONSP X)

2. (CONSP (REV (CDR X)))
3. (CONSP (CDR X))

The current subterm is:
(EQUAL (APP (CDR (REV (CDR X))) (LIST (CAR X)))
(APP (REV (REV (CDR (REV (CDR X)))))
(LIST (CAR X))))
->:

We now inspect this goal as we might have inspected a checkpoint from a
failed proof in the preceding section. We notice a term in the conclusion of
the form (REV (REV ...)). Of course, we are surprised to see such a term,
since we vaguely recall having already proved a rule for it.

176 Computer-Aided Reasoning: An Approach

Before finding that rule, we first “move” to the subterm in question.
The astute reader may have noticed the labeling of the conclusion above:
“The current subterm.” In fact the proof-checker maintains a pointer to
a subterm of each goal’s conclusion, which points initially to the entire
conclusion (as above). But the proof-checker command dv (“dive”) allows
us to move that pointer. The command (dv 2 1) moves the pointer from
the top of the conclusion to the second argument of the EQUAL and then to
the first argument of that (second) APP.

->: (dv 2 1) ;; or, type 2 and then 1
->: p ;; print the current subterm
(REV (REV (CDR (REV (CDR X)))))
->: p-top ;; show entire conclusion, highlighting current subterm
(EQUAL (APP (CDR (REV (CDR X))) (LIST (CAR X)))
(APP (**x (REV (REV (CDR (REV (CDR X)))))
*kk)

(LIST (CAR X))))

Now that we are pointing to the (REV (REV ...)) term, we can explore
the issue of rewriting this term.

->: sr ;; or, show-rewrites
1. REV-REV

New term: (CDR (REV (CDR X)))

Hypotheses: ((TRUE-LISTP (CDR (REV (CDR X)))))
=->:

Evidently the rule REV-REV does apply, as we might expect. Let us direct
the proof-checker to apply this rewrite rule.

->:p

(REV (REV (CDR (REV (CDR X)))))

->: r ; or, rewrite; or, (rewrite 1); or, (rewrite rev-rev)
Rewriting with REV-REV.

Creating one new goal: ((MAIN . 1) . 1).
=>:p

(CDR (REV (CDR X)))

->:

Aha! The rewrite succeeded in simplifying the (REV (REV ...)) term, but
it created a new goal.

->: goals ;; display the names on the goal stack
(MAIN . 1)

((MAIN . 1) . 1)

(MAIN . 2)

->:

How to Use the Theorem Prover 177

Let us see if the current goal can be simplified, preferably to t. Note
that we move the pointer to the top of the conclusion before calling bash
once again.

->: top ;; move to the top of the conclusion
->: bash
xx* Now entering the theorem prover *xx

[Note: A hint was supplied for our processing of the goal
above. Thanks!']

But we reduce the conjecture to T, by primitive type reasoning.

Q.E.D.

The proof of the current goal, (MAIN . 1), has been completed.
However, the following subgoals remain to be proved:
((MAIN . 1) . 1).
Now proving ((MAIN . 1) . 1).
->:

So far, so good; but we have not yet discovered any useful rewrite rules
to prove. The new goal, obtained from the hypothesis of the rule rev-rev
applied above, is about to suggest such a rule.

=>: th
x Top-level hypotheses:
1. (CONSP X)

2. (CONSP (REV (CDR X)))
3. (CONSP (CDR X))

The current subterm is:
(TRUE-LISTP (CDR (REV (CDR X))))
->:

If we attempt to use the bash command to simplify (or prove) this goal,
the prover is stumped.

We have been led somewhat more directly than in the preceding section
to the need for rules true-listp-rev and true-listp-cdr. We temporar-
ily exit the proof-checker in order to prove these rules (which are shown on
page 172).

->: exit ;; return to ACL2 top-level
Exiting....

NIL

ACL2 !>

178 Computer-Aided Reasoning: An Approach

After proving the two rewrite rules mentioned above, we re-enter the
proof-checker session and attempt to prove the goal above. Notice that
with no arguments, verify re-enters the previous proof-checker session.

ACL2 !'>(verify)
->: bash
+**x** Now entering the theorem prover *x*+x

[Note: A hint was supplied for our processing of the
goal above. Thanks!]

But simplification reduces this to T, using the :rewrite
rules TRUE-LISTP-CDR and TRUE-LISTP-REV.

Q.E.D.
The proof of the current goal, ((MAIN . 1) . 1), has

been completed, as have all of its subgoals.
Now proving (MAIN . 2).

->: goals
(MAIN . 2)
=>:

There is one goal remaining.

=>: th
*** Top-level hypotheses:
1. (CONSP X)

2. (NOT (CONSP (REV (CDR X))))

The current subterm is:
(NOT (CONSP (CDR X)))
=->:

The second hypothesis contains a term that could be simplified with an
appropriate rewrite rule. We have thus been led by the proof-checker to
discovery of the rule consp-rev, which was discovered with somewhat less
guidance in the preceding section (see page 172). Again we exit the proof-
checker in order to prove this rule and subsequently re-enter the proof-
checker using (verify). Then we may issue the bash command as before.
This time we rather arbitrarily use prove, which invokes the full power of
the prover and either proves the goal completely or causes no change to the
proof-checker state.

->: prove
+++ Now entering the theorem prover **#*xx*

How to Use the Theorem Prover 179

But we reduce the conjecture to T, by the simple :rewrite
rule CONSP-REV.

Q.E.D.

*1xlx!xlx!1x!x Al]l goals have been proved! *!*!*!+1x!%!x
You may wish to exit.
=->:

The proof has succeeded! We have the option of creating a defthm
event at this point, which will have associated :instructions recording
the commands we gave in the interactive session. However, we prefer to
avoid these low-level : instructions in order to increase the likelihood that
a proof will replay if modifications are made to our proof script. We exit
the proof-checker loop and the proof now succeeds automatically.

->: exit
Exiting....
NIL
ACL2 !>(defthm main
(equal (rev x)
(if (endp x)
nil
(if (endp (cdr x))
(list (car x))
(cons (car (rev (ecdr x)))
(rev
(cons (car x)
(rev (cdr (rev (cdr x))))))))))

:rule-classes nil)

But simplification reduces this to T, using the :definitions
APP, ENDP and REV, primitive type reasoning and the :rewrite
rules CAR-CONS, CDR-CONS, CONSP-REV, REV-REV, TRUE-LISTP-
CDR and TRUE-LISTP-REV.

Q.E.D.

Summary

Form: (DEFTHM MAIN ...)
Rules: ((:DEFINITION APP)
(:DEFINITION ENDP)
(:DEFINITION REV)
(:FAKE-RUNE-FOR-TYPE-SET NIL)
(:REWRITE CAR-CONS)

(:REWRITE CDR-CONS)

(:REWRITE CONSP-REV)
(:REWRITE REV-REV)

(:REWRITE TRUE-LISTP-CDR)

180 Computer-Aided Reasoning: An Approach

(:REWRITE TRUE-LISTP-REV))
Warnings: None
Time: 0.06 seconds (prove: 0.02, print: 0.03, other: 0.01)
MAIN
ACL2 !>

The proof-checker provides many other commands; see proof-check-
er-commands. The advanced user has the option of extending the proof-
checker’s power by defining compound commands, called macro commands,
that can use non-trivial control structures. More importantly, among the
basic capabilities not illustrated above are:

¢ undo (undo and restore);
¢ choose the goal to consider next (cg, change-goal);

¢ substitute equals for equals (=), or more generally, using equivalence
relations (equiv);

¢ use induction (induct) to replace the current goal by goals for base
and induction steps;

¢ consider cases (casesplit, claim, split);

¢ use binary decision diagrams for (primarily) propositional reasoning
(bdd);

¢ manipulate the hypotheses (contradict, demote, promote, drop);
¢ invoke steps of the waterfall (elim, generalize; see also use);

¢ set the current theory (in-theory);

¢ expand function calls (expand, x, x-dumb);

¢ simplify the current subterm (s, s~prop, sl);

¢ use forward chaining (forwardchain); and

¢ save sessions (ex, save; see also retrieve).

As was done here, the proof checker is often used to find rules that will
ultimately be used in an “automatic” proof. This mixing of the two proof
engines can be extremely helpful: use the proof checker to explore proofs
but record your strategies as general rules for the theorem prover. We often
use the proof checker on unproved subgoals extracted from failed proofs.
No sign of this appears in the final list of theorems.

Notice that the worked example in this section did not lead us to create
the lemma consp-app of the preceding section (see page 172). The preced-
ing section emphasized thinking about proof strategies, which for example
could lead one to discover the lemma consp-app. The assistance given by

How to Use the Theorem Prover 181

the proof-checker frees the user from some of that thinking, but as a re-
sult we did not find the lemma consp-app, a lemma that might turn out
to be useful in later proofs even though it was not needed for this one.
There is clearly a trade-off here between thinking and letting the system
do some of the work. Individual style and experience will govern the extent
to which one uses the proof-checker (or theorem prover, for that matter) to
avoid some thinking, or uses thinking to avoid some potential interaction
entirely. Experience suggests that new users tend to err on the side of doing
insufficient thinking, which is why we have stressed Step 1 of The Method
throughout most of this chapter. However, proof-checker interaction can
provide a balance in the trade-off as one gains experience with ACL2.

10

Theorem Prover Examples

This chapter contains several examples and their solutions. Each section
will start with an English description of a problem or will contain phrases
such as “Why?” and “Prove the following.” When you reach such a phrase,
we recommend that you stop and work out a solution before reading fur-
ther. Usually this will require that you define functions, translate informal
correctness criteria into ACL2, and perhaps prove (on paper) the main
theorem. Once you have a pencil and paper proof, think about how to
decompose the proof into ACL2 rules and use the theorem prover to check
your proof; you can then compare your results with ours.

We will take the “brain-dead” approach to using ACL2, i.e., we will not
think about how to structure our proofs, but rather, we will blindly try to
prove theorems and will then react to ACL2’s responses. This approach
works fine for small examples and gives us the opportunity to stumble onto
(and discuss) important issues.

Each section contains a set of related problems whose solutions are
developed independently of the other sections in a new ACL?2 session, i.e.,
in a ground-zero theory (see theories). You are encouraged to evaluate
the functions we define and to experiment with other approaches to solving
the exercises. The examples will consist of proving two versions of the
factorial function equivalent, proving a theorem about *, proving insertion
sort correct, proving some theorems about functions that manipulate trees,
proving an adder and multiplier correct, and proving a compiler for a stack-
based machine correct. As a point of reference, an ACL2 expert can solve
all of the problems in this chapter in about half a day.

To make the presentation more concise, we will present only the rele-
vant parts of the output produced by ACL2 (prefaced by a line number).
Therefore, it may help to run ACL2 while going through our solutions.

10.1 Factorial

Define the factorial function; define a tail recursive version; prove the two
are “equivalent.”

Since functions in ACL2 are total, we have to define the factorial func-
tion on any possible input. The standard way of dealing with this is to

M. Kaufmann et al., Compurer-Aided Reasoning
© Kluwer Academic Publishers 2000

184 Computer-Aided Reasoning: An Approach

coerce any value outside the intended domain to a base element, which in
this case is 0. Notice the use of zp to test for 0 (and non-naturals); see zp
and zero-test-idioms.

(defun fact (x)
(if (zp x)
1
(* x (fact (- x 1)))))

For the tail recursive version, we introduce a variable that contains a
partial product.

(defun tfact (x p)
(if (zp x)
P
(tfact (- x 1) (*» x p))))
We can test the functions to see if they seem to be the same (tfact is
given an initial partial product of 1).

ACL2 >(fact 10)
3628800

ACL2 >(tfact 10 1)
3628800

If we try to evaluate fact on large numbers, we will get an error (which
can look as follows in GCL).

Error: Invocation history stack overflow.

This occurs because the underlying Common Lisp places limits on the
sizes of its stacks. One way to alleviate this problem is to compile the
functions (see comp), which we can do as follows.

:comp (fact tfact)

Because tfact is tail-recursive, the recursion is replaced by iteration.
This greatly eases the restriction on computation imposed by the size of
the invocation stack and makes it possible to execute the function on large
numbers.

;; Note: Tail-recursive call of TFACT was replaced by iteration.

To prove that fact and tfact are “equivalent,” we will prove the fol-
lowing theorem.

(defthm fact=tfact
(equal (tfact x 1) (fact x)))

Submitting fact=tfact to ACL2 produces the following. We only show
the simplification checkpoint (see 165).

Theorem Prover Examples 185

42. Subgoal *1/2’’
43. (IMPLIES (AND (INTEGERP X)

44, (< 0X)

45, (EQUAL (TFACT (+ -1 X) 1)
46. (FACT (+ -1 X))))
47. (EQUAL (TFACT (+ -1 X) X)

48. (* X (FACT (+ -1 X))))).

The same goal may be obtained without perusing ACL2 output by in-
stead entering the proof-checker with

(verify
(equal (tfact x 1) (fact x)))

and issuing the command (then induct bash). See page 174. We use
ACL2 without the proof-checker in the present chapter.

That the proof attempt failed will come as no surprise to readers expe-
rienced in constructing proofs by induction because they will notice that
the above theorem needs to be strengthened: opening tfact will change
the second argument from a constant to x, and no induction hypothesis will
match this new term (one cannot substitute for a constant). This is what
happens on Subgoal *1/2’’, above.

We strengthen the theorem so that instead of a 1 in fact=tfact, we
have a variable.

(defthm fact=tfact-lemma
(equal (tfact x p)
(x p (fact x))))

ACL2 fails to prove fact=tfact-lemma. If we look at the simplification
checkpoint, we see:

67. Subgoal *1/2’4’

68. (IMPLIES (AND (INTEGERP X) (< 0 X))

69. (EQUAL (+ X P (FACT (+ -1 X)))
70. (* P X (FACT (+ -1 X0)))).

What lemma is suggested by the failed proof attempt? Notice that the
conclusion of Subgoal *1/2’4’ has the form (equal (» A B C) (* B A
C)); this is a “simple” theorem about multiplication, i.e., it is a theorem
we expect elementary school students to know. Since such theorems are
very useful to have around, ACL2 experts have written several arithmetic
books. Some of these books, e.g., top-with-meta, are part of the ACL2
source code distribution, but are not loaded into the initial data base. If
we load top-with-meta, then ACL2 “knows” the above theorem. We use
include-book to load top-with-meta (which probably resides in a different
directory in your filesystem).

(include-book "/local/acl2/books/arithmetic/top-with-meta")

186 Computer-Aided Reasoning: An Approach

We will discuss how to prove the above theorem without the use of
books in the next section.
If we then submit fact=tfact-lemma to ACL2, we get:

60. Subgoal *1/1.2°

61. (IMPLIES (NOT (INTEGERP X))

62. (ACL2-NUMBERP P)).

63.

64. We suspect that this conjecture is not a theorem. We might
65. as well be trying to prove

66.

67. Subgoal *1/1.27°

68. NIL.

69.

70. Obviously, the proof attempt has failed.

This output tells us exactly why fact=tfact-lemma is not a theorem.
Subgoal *1/1.2’ suggests that fact=tfact-lemma is false if x is not an
integer and p is not a number. In fact, if x is not an integer, then tfact
will return p, which can be anything, but (* p (fact x)) is always an
ACL2 number (i.e., (acl2-numberp (* x y)) is a theorem). We have
made the classic mistake of strengthening the theorem to the point where
the resulting term is not true. Our advice on using induction is: simplify
and strengthen as much as possible, but no more. We try the following.

(defthm fact=tfact-lemma-for-acl2-numberp
(implies (acl2-numberp p)
(equal (tfact x p)
(x p (fact x)))))

ACL2 proves this lemma, which is stronger than fact=tfact, hence,
ACL2 can easily prove the main result.

(defthm fact=tfact
(equal (tfact x 1) (fact x)))

1
2
3
4. But simplification reduces this to T, using the :type-prescription
5. rule FACT, the :definition FIX, the :rewrite rules FACT=TFACT-

6. LEMMA-FOR-ACL2-NUMBERP and UNICITY-OF-1 and primitive type
7. reasoning.
8
9

. Q.E.D.

There are other ways of defining a tail recursive version of fact, e.g.,

(defun tfact2 (x p)
(if (zp x)
(fix p)
(tfact2 (- x 1) (* x p)))).

Theorem Prover Examples 187

With this definition, we can prove the following theorem, which does
not have a hypothesis:

(thm (equal (tfact2 x p)
(x p (fact x)))).

10.2 Associative and Commutative Functions

In the previous section we were confronted with the following failed proof
attempt:

67. Subgoal *1/2’4’

68. (IMPLIES (AND (INTEGERP X) (< 0 X))

69. (EQUAL (* X P (FACT (+ -1 X)))
70. (x P X (FACT (+ -1 X))))).

We used the top-with-meta book to bypass the problem; in this section
we will prove the required theorem without the use of books. It turns out
that what we do is applicable to any associative and commutative function.

You might think that * is a function symbol, but if you type :pe * (see
pe and history), you see that * is really a macro. Since macros are just syn-
tactic sugar, i.e., they are expanded into expressions, you may wonder why
ACL2 insists on printing (BINARY-* X (BINARY-* P (FACT (+ -1 X))))
as (* X P (FACT (+ -1 X))). The answer is that internally, ACL2 ma-
nipulates the translated version of the term, but as a service to the user of
the theorem prover, it “pretty prints” the term. Certain other macros are
also treated this way, e.g., + and append. See also macro-aliases-table.

Why does ACL2 get stuck on Subgoal *1/2°4°? This situation is one
that you may encounter with any associative and commutative function.
We start by asking: what rewrite rules do I need in order to put a function
that is commutative and associative into canonical form?

What about (equal (* x y) (* y x))7? Strictly speaking this is a bad
rewrite rule because if applicable, it will keep on rewriting a term forever.
However, since such rules are often useful, ACL2 has heuristics that prevent
such rules from looping. See loop-stopper. Roughly, the heuristics allow
such a rule to fire only if the resulting term is lexicographically “smaller”
than the original term, e.g., (* a b) is smaller than (* b a), but not the
other way around.

To deal with associativity we use (equal (* (* x y) z) (* x (* y
z))), which pushes parentheses to the right. Are these two rules enough
to put terms into canonical form? It depends on what we mean by canon-
ical form, but what will happen if ACL2 is given the above two theorems
and asked to prove (equal (* y (* x 2)) (* x (x y 2)))7 Notice that
neither of the two rules apply, hence the two rules are not enough to prove

188 Computer-Aided Reasoning: An Approach

this example. Let us prove the above theorem on paper.

Proof
(xy (x x 2))
= { Associativity of * }
(* (* y x) 2)
= { Commutativity of * }
(*x (* xy) 2)
= { Associativity of * }
(*x (xy 2)0O
The proof only requires the associativity and commutativity of *, but
the rewrite rules we get from commutativity and associativity do not by
themselves put terms into a canonical form. We also need the following
theorem.
(defthm commutativity-of-#*-2
(equal (* y (* x z))
(*x x (xy 2))))

Are these three rules enough? Prove commutativity-of-*-2.

ACL2 cannot prove commutativity-of-*-2 without assistance. This
should not be surprising since it was not able to prove Subgoal *1/2’4’.
Does ACL2 “know” that * is associative and commutative? One way to de-
termine what ACL2 knows is to scan its source file axioms.1isp, a file that
describes the theory of ACL2 by enumerating the axioms and definitions.
Another way is to use the history command :pl by typing the following.

:pl binary-*

ACL2 will print out all of the rules whose top function symbol is binary-*;
this includes associativity-of-* and commutativity-of-x*.

62. Rune: (:REWRITE COMMUTATIVITY-OF-%)
63. Status: Enabled

64. Lhs: *XY)

65. Rhs: (* Y X)

66. Hyps: T

67. Equiv: EQUAL

68. Dutside-in: NIL
69. Subclass: BACKCHAIN
70. Loop-stopper: ((X Y BINARY-*))

71.

72. Rune: (:REWRITE ASSOCIATIVITY-OF~%)
73. Status: Enabled

74. Lhs: (* (xXY) 2)

75. Rhs: (x XY 2

76. Hyps: T

Theorem Prover Examples 189

77. Equiv: EQUAL
78. Outside-in: NIL
79. Subclass: ABBREVIATION

While our hand proof of commutativity-of-*-2 only requires the as-
sociativity and commutativity of *, the theorem prover does not prove
commutativity-of-*-2 even with the rewrite rules associativity-of-x*
and commutativity-of—* present, because the rewrite rules are applied in
one direction. We have to force ACL2 to reproduce our hand proof. We do
this below by using a hint to force ACL2 to take the first and last steps of
our hand proof.

(defthm commutativity-of-*-2
(equal (* y (* x z))
(x x (xy 2)))
:hints (("Goal"
:use ((:instance associativity-of-* (y x) (x y))
(:instance associativity-of-*))
:in~theory (disable associativity-of-*))))

The :hints argument to defthm allows us to give hints to the theorem
prover. Each hint is attached to the name of some goal, with "Goal" being
the name of the top-level conjecture. For more details, see hints.

The :use hint instantiates the named theorems and adds each as a
hypothesis to the goal in question. This is a simple but subtle way to use
previously proved theorems. Write down the goal produced and find a proof
of it.

The :in-theory hint allows us to change the status of rules. Notice
that we disable associativity-of-*. If we keep it enabled, it removes the
instantiated hypotheses just added, by rewriting them away (to t).

We can mimic the above proof to get a set of rewrite rules that produce
canonical terms for any associative and commutative function. We start in
a ground-zero theory by using encapsulate to define ac-fun, a constrained
function about which we know only that it is associative and commutative.

(encapsulate
((ac-fun (x y) t))
(local (defun ac-fun (x y) (declare (ignore x y))
nil))
(defthm associativity-of-ac-fun
(equal (ac-fun (ac-fun x y) z)
(ac-fun x (ac-fun y z))))
(defthm commutativity-of-ac-fun
(equal (ac-fun x y)
(ac-fun y x))))

190 Computer-Aided Reasoning: An Approach

We have the same problems with ac-fun that we had with *, namely
that ac-fun terms are not rewritten into a canonical form. For example,
the following theorem is not proved.

(thm

(equal
(ac-fun (ac-fun f (ac-fun c d)) (ac-fun (ac-fun c b) a))
(ac-fun (ac-fun (ac-fun a c) b) (ac-fun ¢ (ac-fun d £)))))

Therefore, we prove commutativity-2-of-ac-fun as follows.

(defthm commutativity-2-of-ac-fun
(equal (ac-fun y (ac-fun x z))
(ac-fun x (ac-fun y z)))
thints (("Goal"
:in-theory (disable associativity-of-ac-fun)
:use ((:instance associativity-of-ac~fun)
(:instance associativity-of-ac-fun

xy))

Ac-fun terms are now rewritten into a canonical form, hence, ACL2 can
easily prove the previous thm. Note that it is not the case that equivalent
terms containing only ac-fun (and equal) are rewritten to t (that is a
complicated issue), as the following example shows.

(thm
(implies (equal (ac-fun a d) (ac-fun a e))
(equal (ac-fun a (ac-fun c d))
(ac-fun a (ac-fun c e)))))

We can use functional instantiation (see lemma-instance) to show that
any associative and commutative function also satisfies commutativity-2-
-of-ac-fun, as follows.

(defthm commutativity-2-of-*
(equal (* y (* x z))
(* x (x y 2)))
:hints (("Goal"
:by (:functional-instance
commutativity-2-of-ac-fun
(ac-fun binary-*)))))
ACL2 generates and establishes the constraints required, namely, that * is
associative and commutative.

Notice that for the :functional-instance hint, we had to associate
ac—fun with binary-» (instead of *, which is a macro). Another way to
prove the above theorem, which bypasses this problem and highlights a
very powerful feature of ACL2, is to use a pseudo-lambda expression (see
lemma-instance) as follows.

Theorem Prover Examples 191

(defthm commutativity-2-of-*
(equal (x y (* x z))
(x x (xy 2)))
thints (("Goal"
:by (:functional-instance
commutativity-2-of-ac-fun
(ac-fun (lambda (x y) (* x ¥)))))))

Since there are many functions that are associative and commutative, it
may help to have a macro that automates this process. The macro will have
one argument, the name of a function, and will generate the appropriate
defthm form, using functional instantiation. Write this macro.

We must name the defthm produced by the macro. If the name of func-
tion is op, then the name of our defthm will be commutativity-2-of-op.
We define make-name to make it convenient to create symbols. See the doc-
umentation for intern-in-package-of-symbol, concatenate, and other
unfamiliar functions that appear below.

(defun make-name (prefix name)
(intern-in-package-of-symbol
(concatenate ’string
(symbol-name prefix)
(symbol-name name))
prefix))
The macro can now be defined as follows.
(defmacro commutativity-2 (op)
‘(defthm , (make-name ’commutativity-2-of op)
(equal (,op y (,op x 2))
(Gop x (op y 2)))
thints (("Goal"
:by (:functional-instance
commutativity-2-of-ac-fun
(ac-fun (lambda (x y) (,op x ¥))))))))

We can use the above macro on * as follows.
(commutativity-2 *)

Another solution to this problem, which we recommend you look at,
can be found in the file cowles/acl2-asg.lisp in the book/ directory of
the ACL2 distribution.

10.3 Insertion Sort

Define an insertion sort on integers and prove it correct.

192 Computer-Aided Reasoning: An Approach

We define insert, a function that inserts a number into a list, and we
use it to define insertion-sort.

(defun insert (a x)
(cond ((atom x) (list a))
((<= a (car x)) (cons a x))
(t (cons (car x) (insert a (cdr x))))))

(defun insertion-sort (x)
(cond ((atom x) nil)
(t (insert (car x) (insertion-sort (cdr x))))))

What does it mean for this function to be correct? At the least, the
function must return an ordered list. We define a predicate to recognize
ordered lists.

(defun orderedp (x)
(cond ((atom (cdr x)) t)
(t (and (<= (car x) (cadr x))
(orderedp (cdr x))))))

We use orderedp to state a correctness condition.

(defthm insertion-sort-is-ordered
(orderedp (insertion-sort x)))

The first simplification checkpoint in the proof attempt is

36. Subgoal *1/2’°
37. (IMPLIES (AND (CONSP X)

38. (ORDEREDP (INSERTION-SORT (CDR X))))
39. (ORDEREDP (INSERT (CAR X)
40. (INSERTION-SORT (CDR X))))).

Not surprisingly we need to know that insert preserves orderedp. We
therefore prove the following (which ACL2 guesses if we let it).

(defthm insert-ordered
(implies (orderedp x)
(orderedp (insert a x))))

ACL2 now proves insertion-sort-is-sorted.

But this is not enough. For example, if insertion-sort always re-
turned nil, then we would be able to prove the above theorem even though
we would not consider the function correct. We have to show that inser-
tion-sort returns a permutation of its input. First, we define the notion
of a permutation.

(defun in (a b)
(cond ((atom b) nil)
((equal a (car b)) t)
(t (in a (edr b)))))

Theorem Prover Examples 193

(defun del (a x)
(cond ((atom x) nil)
((equal a (car x)) (cdr x))
(t (cons (car x) (del a (cdr x))))))

(defun perm (x y)
(cond ((atom x) (atom y))
(t (and (in (car x) y)
(perm (cdr x) (del (car x) y))))))

We now prove that insertion-sort returns a permutation of its input.

(defthm insertion-sort-is-perm
(perm (insertion-sort x) x))

The first simplification checkpoint is:

36. Subgoal *1/2’’
37. (IMPLIES (AND (CONSP X)

38. (PERM (INSERTION-SORT (CDR X)) (CDR X)))
39. (PERM (INSERT (CAR X)

40, (INSERTION-SORT (CDR X)))

41, X)).

Although ACL2 completes the proof on its own, we take it as a challenge
to save ACL2 from attempting subsidiary induction arguments. The goal
above suggests the need to show that insert preserves perm. If we formu-
late a rewrite rule that looks like this goal, then it is not clear that ACL2
will be able to prove it—the car and cdr may somehow get in the way of
induction—and more seriously, we wonder a bit if the rule may somehow
loop when it is used later. An example of such a looping rule is discussed
below (page 197). We can let the prover’s next goal guide us in finding a
suitable rule.

43. The destructor terms (CAR X) and (CDR X) can be eliminated

44. by using CAR-CDR-ELIM to replace X by (CONS X1 X2), generalizing
45. (CAR X) to X1 and (CDR X) to X2. This produces the following
46. goal.

47.

48. Subgoal *1/2’°’

49. (IMPLIES (AND (CONSP (CONS X1 X2))

50. (PERM (INSERTION-SORT X2) X2))
51. (PERM (INSERT X1 (INSERTION-SORT X2))
52. (CONS X1 X2))).

We can derive the following theorem by generalizing the goal above. In
fact ACL2 comes up with this exact generalization (using different variable
names), but it is rare that ACL2’s generalization heuristics are so on-target.

194 Computer-Aided Reasoning: An Approach

(defthm insert-perm-cons
(implies (perm x y)
(perm (insert a x) (cons a y))))
ACL2 can now prove insertion-sort-is-perm without any induction
other than the one at the top level.

10.4 Tree Manipulation

The function flatten (page 49) returns a list of the tips of a tree.

(defun flatten (x)
(cond ((atom x) (list x))
(t (append (flatten (car x)) (flatten (cdr x))))))

In Exercise 7.9, the following, more efficient, function (why is it more
efficient?) is introduced.

(defun mc-flatten (x a)
(cond ((atom x) (cons x a))
(t (mc-flatten (car x)
(mc-flatten (cdr x) a)))))

We will give a solution to Exercise 7.9, by proving that the above func-
tions are equivalent.

(defthm flatten-mc-flatten
(equal (mc-flatten x nil)
(flatten x)))

As we saw with the factorial example, this theorem should raise some
flags: do we need to prove a stronger theorem? Since opening the definition
of mc-flatten will replace the above nil with a term involving the variable
x, the answer is yes. We therefore attempt to come up with a rule for
rewriting the term (mc-flatten x y) in terms of flatten. After a little
thought, we try:

(defthm flatten-mc-flatten-lemma
(equal (mc-flatten x a)
(append (flatten x) a))).

ACL2 proves the flatten-mc-flatten-1lemma, but has to prove the as-
sociativity of append as a separate induction. Since this is a useful theorem
to have around, we prove it.

(defthm associativity-of-append
(equal (append (append x y) z)
(append x (append y z)))).

Theorem Prover Examples 195

ACL2 can now prove flatten-mc-flatten, but it uses induction. Why?
What other fact is required so that the theorem prover can prove flatten-
-mc-flatten entirely by simplification? We leave you to contemplate this
and move on to another tree processing function.

Admit the following function.

(defun gopher (x)
(if (or (atom x)
(atom (car x)))
x
(gopher (cons (caar x) (cons (cdar x) (cdr x))))))

ACL2 does not admit gopher because acl2-count does not decrease
on the recursive call. Note that gopher recurs exactly the way flat does
on one of its recursive calls (see page 108), hence, we use the acl2-count
of the car as the measure.

(defun gopher (x)
(declare (xargs :measure (acl2-count (car x))))
(if (or (atom x)
(atom (car x)))
x
(gopher (cons (caar x) (cons (cdar x) (cdr x))))))

The following function uses gopher to determine if two trees have the
same fringe; admit it.

(defun samefringe (x y)
(if (or (atom x)
(atom y))
(equal x y)
(and (equal (car (gopher x))
(car (gopher y)))
(samefringe (cdr (gopher x))
(cdr (gopher ¥))))))

If we look at the first simplification checkpoint during admission, we
see:

26. Goal’

27. (IMPLIES (AND (CONSP X)

28. (CONSP Y)

29. (EQUAL (CAR (GOPHER X))

30. (CAR (GOPHER Y))))
31. (< (ACL2-COUNT (CDR (GOPHER X)))
32. (ACL2-COUNT X))).

33.

34. Name the formula above *1.

196 Computer-Aided Reasoning: An Approach

The suggested rewrite rule is shown below.

(defthm gopher-acl2-count-cdr
(implies (consp x)
(< (acl2-count (cdr (gopher x)))
(acl2-count x))))

ACL2 can prove the above and can subsequently admit samefringe.

Many experienced users would make the rule above a linear rule. As such
it would cause the linear arithmetic procedure to add the indicated inequal-
ity to the linear data base whenever some inequality mentioned (an instance
of) (acl2-count (cdr (gopher x))) and the hypothesis (consp x) can
be proved. If stored as a rewrite rule, as above, the rule is quite restricted
in its applicability: it conditionally rewrites the indicated <-expression to
t. This is all we need in the current situation.

Prove that samefringe is correct.

We choose the following theorem.

(defthm correctness-of-samefringe
(equal (samefringe x y)
(equal (flatten x)
(flatten y))))

ACL2 cannot prove this theorem with its current rules. Looking at the
first simplification checkpoint, we see:

70. Subgoal #1/3’
71. (IMPLIES (AND (CONSP X)

72. (CONSP Y)

73. (NOT (EQUAL (CAR (GOPHER X))

74. (CAR (GOPHER Y)))))
75. (NOT (EQUAL (FLATTEN X) (FLATTEN Y)))).
76.

77. Name the formula above *1.1.

This suggests the following rewrite rule.

(defthm car-gopher-car-flatten
(implies (consp x)
(equal (car (gopher x))
(car (flatten x)))))

It turns out that, for this simple example, it does not make a difference
which way we orient the rewrite rule. In general, you should rewrite more
complicated terms into simpler onesand you should design rewrite rules
that massage terms into canonical forms.

We try proving correctness-of-samefringe again. Once again, ACL2
cannot prove the theorem and once again, we check the first simplification
checkpoint:

Theorem Prover Examples 197

102. Subgoal *1/2.2’
103. (IMPLIES (AND (CONSP X)

104. (CONSP Y)

105. (EQUAL (CAR (FLATTEN X))

106. (CAR (FLATTEN Y)))

107. (EQUAL (FLATTEN (CDR (GOPHER X)))
108. (FLATTEN (CDR (GOPHER Y))))
109. (SAMEFRINGE (CDR (GOPHER X))

110. (CDR (GOPHER Y))))
111. (EQUAL (FLATTEN X) (FLATTEN Y))}).

We decide to try moving the cdr to the left (outside) of the flattenin
lines 107 and 108; this suggests that we prove the following theorem.

(defthm cdr-flatten-gopher
(implies (consp x)
(equal (flatten (cdr (gopher x)))
(cdr (flatten (gopher x))))))

ACL2 proves the above theorem, but when we try to prove the theorem
correctness-of-samefringe, we get the following peculiar error. (This
is a GCL error; if you are using a different Common Lisp, you may get a
different error message.)

90. Error: Value stack overflow.

91. Fast links are on: do (si::use-fast-links nil) for debugging
92. Error signalled by ACL2 *1%_ACL2::DEFTHM-FN.

93. Broken at COND. Type :H for Help.

94. ACL2>>

In GCL it is even possible to get a segmentation error that aborts the
Lisp process.

What is going on? This is something that happens to everyone (although
it happens much more frequently to beginners): the rewriter has entered
an infinite loop. Often, by inspection one can figure out what combination
of rewrite rules is leading to an infinite loop, but if not, one can use brr to
examine the rewriter. See break-rewrite for the details, but briefly, with
brr one can monitor rewrite rules: when a monitored rule is tried, the
rewriter will enter an interactive break, where you can inspect the context
(there are many things you can do, see brr-commands). In many situations,
the following trick is all that is needed. After a stack overflow, reenter the
top-level ACL2 loop!, type :brr t and try proving the theorem again.
This will lead to another stack overflow, but now, enter raw Lisp and type
(cu-gstack *deep-gstack* state). This will print out the rewrite stack,
which usually makes it clear why the rewriter is looping. After doing this,
we observe the following loop.

'In GCL it is best to enter raw Lisp first and execute (si::use-fast-links nil) to
prevent a stack overflow from manifesting itself as a segmentation error.

198 Computer-Aided Reasoning: An Approach

31. 9. Attempting to apply (:REWRITE CDR-FLATTEN-GOPHER) to

32. (FLATTEN (CDR (GOPHER X)))

33. 10. Rewriting (to simplify) the rhs of the conclusion,
34. (CDR (FLATTEN (GOPHER X))),

35. under the substitution

36. X : X

37. 11. Rewriting (to simplify) the first argument,

38. (FLATTEN (GOPHER X)),

39. under the substitution

40. X : X

41. 12. Attempting to apply (:DEFINITION FLATTEN) to

42. (FLATTEN (GOPHER X))

43. 13. Rewriting (to simplify) the rewritten body,

44, (BINARY-APPEND (FLATTEN (CAR #))

45. (FLATTEN (CDR #))),

46. 14. Rewriting (to simplify) the second argument,

47. (FLATTEN (CDR (GOPHER X))),

48. 15. Attempting to apply (:REWRITE CDR-FLATTEN-GOPHER) to
49. (FLATTEN (CDR (GOPHER X)))

What is the rewriter really doing here?
Given the term

1. (flatten (cdr (gopher x))),
ACL2 uses the rewrite rule cdr-flatten-gopher to rewrite it to

2. (cdr (flatten (gopher x))).

ACL2 then applies the definition of flatten to get

3. (cdr (append (flatten (car (gopher x)))
(flatten (cdr (gopher x))))).

ACL2 then tries to simplify the second argument to append, but this
is the same term we started with, so we managed to pump 1, our original
term, to 3, a bigger term that contains 1 as a subterm.

Having identified the loop, we can introduce a new rewrite rule that
prevents the loop from occurring or we can throw away the offending rewrite
rule. Let us try the first approach. The following rule comes to mind.

(defthm flatten-gopher
(equal (flatten (gopher x))
(flatten x)))

Notice that since this rule was added to the theorem prover’s rules after
the definition of flatten, it will be used before the definition of flatten
and will therefore keep the above loop from occurring.

ACL2 proves correctness-of-samefringe, the main theorem (by per-
forming seven inductions, but since this is the last theorem we want to
prove in this section, we do not investigate further).

Theorem Prover Examples 199

It is instructive to try the second approach to stopping the loop. We
have to replace cdr-flatten-gopher by a rewrite rule that does not loop.
We can combine the above two rewrite rules into the following rewrite rule.

(defthm cdr-flatten-gopher
(implies (consp x)
(equal (flatten (cdr (gopher x)))
(cdr (flatten x)))))

The observant reader may have thought of this rewrite rule previously,
when we chose cdr-flatten-gopher instead. ACL2 can now prove the
main theorem, correctness-of-samefringe.

10.5 Binary Adder and Multiplier

In this section we will define and prove correct a binary adder and multi-
plier.

10.5.1 Binary Adder

Define a binary adder and prove that it adds.

We use t and nil to represent 1 and 0, respectively, and will represent
binary numbers as lists of t’s and nil’s. Our plan is to define a serial
adder. A serial adder works by adding two binary numbers bit by bit.
Hence, it can be built out of a full adder using recursion, with an algorithm
very similar to the one taught to children for adding base-10 numbers. (If
you are not familiar with computer arithmetic, consult a book on computer
architecture, e.g., [18].)

In order to define a full adder, we define the following Boolean-valued
functions.

(defun band (p q) (if p (if q t nil) nil))
(defun bor (p q) (if p t (if q t nil)))
(defun bxor (p q) (if p (if q nil t) (if g t nil)))
(defun bmaj (p q c)
(bor (band p q)
(bor (band p c)
(band q ¢))))

A full adder has three inputs (bits) and returns the sum of its inputs as
two bits: a sum and a carry. We define a full adder as follows.

(defun full-adder (p q c)
(mv (bxor p (bxor q c))
(bmaj p q <)))

200 Computer-Aided Reasoning: An Approach

Recall that the serial adder will take as input two lists of Booleans and
a carry-in bit. If we were designing hardware, we would probably know
something about the binary numbers given as input to the adder, e.g.,
their length, or that they have the same length. However, ACL2 functions
have to be total, hence, we have to decide what to do even with inputs that
are not of the same length. We decide to design an adder that correctly
adds any pair of binary numbers, even if they are not the same length (we
are thinking ahead here, because when we define a multiplier, it will be
useful to have such an adder). We have to decide if the first bit of a list is
the high-order bit or the low-order bit. It is more convenient to make the
first bit the low-order bit: otherwise, we would have to align the numbers
before adding them. Our definition is as follows.

(defun serial-adder (x y c)
(if (and (endp x) (endp y))
(list ¢)
(mv-let (sum cout)
(full-adder (car x) (car y) c)
(cons sum (serial-adder (cdr x) (cdr y) cout)))))

ACL2 does not admit the above function because it cannot prove ter-
mination. If we scan through the output produced, we see:

8. For the admission of SERIAL-ADDER we will use the relation
9. EO0-ORD-< (which is known to be well-founded on the domain
10. recognized by EO-ORDINALP) and the measure (ACL2-COUNT X).

If we think about why serial-adder terminates, we realize that termi-
nation also depends on y, e.g., if the length of y is greater than the length
of x, then serial-adder may take more than (acl2-count x) steps. In
this case, the heuristics used by ACL2 to guess a measure do not work and
we are forced to give ACL2 a measure explicitly.

(defun serial-adder (x y c)
(declare (xargs :measure (+ (len x) (len y))))

L)

There are many other measures that work. Two examples are (max (len
x) (len y)) and (+ (acl2-count x) (acl2-count y)).

Execute the adder on a few examples. What does it mean for the adder
to be correct? Well, it means that it adds! More specifically, the binary
number returned is the sum of the binary numbers given as input plus the
initial carry-in. In order to write this formally, we have to define a function
that transforms a binary number into a number.

(defun n (v)
(cond ((endp v) 0)
((car v) (+ 1 (* 2 (n (cdr v)))))
(t (* 2 (n (edr v))))))

Theorem Prover Examples 201

We state correctness as follows.

(defthm serial-adder-correct
(equal (n (serial-adder x y c))
(+ (nx) (ny) (if ¢ 1 0))))

ACL2 does not prove this theorem. Scanning through the output pro-
duced by ACL2 until we reach the simplification checkpoint, we see the
following:

1310. Subgoal *1/1.4°'5’

1311. (EQUAL (* 2 (N (SERIAL-ADDER X2 NIL T)))
1312. (+ 11 (2 (N X2))).

1313.

1314. Name the formula above *1.1.

If we scan ahead to the next checkpoint, we see:

1378. Subgoal *1/1.3’6’

1379. (EQUAL (+ 1 (* 2 (N (SERIAL-ADDER X2 NIL NIL))))
1380. (+1 (2 (NX20)).

1381.

1382. Name the formula above *1.2.

*1.3 is the same as *1.2; finally we have:

1490. Subgoal *1/1.1°5’

1491. (EQUAL (* 2 (N (SERIAL-ADDER X2 NIL NIL)))
1492. (* 2 (N X2))).

1493.

1494. Name the formula above *1.4.

The appropriate thing to do now is to determine which lemmas are
suggested by *1.1, *1.2, and *1.4. Notice that *1.4 has the form (equal
(x 2 a) (*x 2 b)); this suggests that the multiplication is not important
and that the appropriate lemma is the simpler (equal a b). Notice that
the suggested lemma will allow ACL2 to discharge *1.2 and *1.3. (As
an aside, we point out that sometimes, on very large problems or with
rules that match too often or take too much time?, it is wiser to prove an
unsimplified lemma because it is less applicable and therefore the theorem
prover is faster.) After a similar analysis of *1.1, we decide to prove the
following two lemmas.

(defthm serial-adder-correct-nil-nil
(equal (n (serial-adder x nil nil))

(n x)))

2Statistics supplied by accumulated-persistence can be used to identify rules that
blow up ACL2’s search space.

202 Computer-Aided Reasoning: An Approach

(defthm serial-adder-correct-nil-t
(equal (n (serial-adder x nil t))

(+ 1 (n x))))

We really need to prove the above lemmas in the order indicated because
ACL2 cannot directly prove serial-adder-correct-nil-t. Why? ACL2
can now prove serial-adder-correct.

10.5.2 Binary Multiplier

Define a binary multiplier and prove that it multiplies.

Multiplication can be performed by repeatedly shifting and adding.
That is, to multiply y by z, we initialize p, a partial sum, to 0 and it-
erate over z, one bit at a time from the low-order bit to the high order bit.
If the current bit is 0, we multiply y by 2, otherwise we add y to p and
multiply y by 2. Note that multiplying a binary number by 2 is the same as
inserting a 0 low order bit (i.e., shifting). A multiplier in ACL2 is defined
as follows.

(defun multiplier (x y p)
(if (endp x)
P
(multiplier (cdr x)
(cons nil y)
(if (car x)
(serial-adder y p nil)
»)))

The multiplier is correct if it multiplies. More specifically, the binary
number returned is the product of the binary numbers given as input plus
the initial partial sum. Here is a formal statement.

(defthm multiplier~-correct
(equal (n (multiplier x y p))
+ (x nx) (ny)) (@p))))

ACL2 tries to prove this theorem, but after a second or so, it is clear
from the output streaming by that many inductions will be necessary for
this proof attempt to succeed (ACL2 actually runs for a long time and
eventually runs out of memory). We therefore interrupt ACL2 and scan
through the output until we reach the first simplification checkpoint, where
we see the following:

77. Subgoal *1/3’’

78. (IMPLIES (AND (CONSP X)

79. (NOT (CAR X))

80. (EQUAL (N (MULTIPLIER (CDR X) (CONS NIL Y) P))
81. (+ (NP) (x (N (CDR X)) 2 (N Y)))))

Theorem Prover Examples 203

82. (EQUAL (+ (N P) (x (N (CDR X)) 2 (N Y)))
83. (+ WP) (+ (WY) 2 (N (CDR X)))N)).

Notice that the conclusion of Subgoal *1/3’’ has the form (equal (+
a (* 2y z)) (+ a (* z y z))); this suggests that the addition is not
important and that we need a lemma that allows us to conclude (equal
(* y z) (*» z y z)). But, we have already seen such a lemma, namely
commutativity-of-*-2. Once we get ACL2 to prove commutativity-of-
-*-2 multiplier-correct follows.

10.5.3 Miscellaneous

We can generate a gate-level design of an adder and multiplier for fixed
length binary numbers by unrolling the recursive definitions the appropriate
number of times. This idea was used to generate a netlist description of a
formally verified chip [19]. Note that if we unroll the serial adder, we get
a ripple carry adder. A formal netlist description language, similar to that
described in Hunt’s case study in the companion volume [22], has been used
to describe and verify a chip which was then fabricated [20].

If one is interested in proving more complicated fixed-length hardware
modules correct, then BDDs can be useful. BDDs [12, 32] are data struc-
tures used for the simplification of Boolean expressions. They have been
found to work well in practice, especially with hardware. In ACL2, BDDs
are generalized: they can represent not only Boolean values, but arbitrary
ACL2 terms, and they are integrated with rewriting. The ACL2 distribu-
tion contains, in the directory books/bdd, examples highlighting the use
of BDDs, e.g., there are specifications of a simple ripple-carry ALU and
a tree-structured propagate-generate ALU, as well as proofs—employing
BDDs—of their equivalence.

10.6 Compiler for Stack Machine

We will define a simple stack-based machine and a compiler that given an
expression generates code for the machine. Of course we will prove that
our compiler is correct.

‘We want the stack machine to have instructions with names such as
push and pop. Since we cannot define functions with such names in the
ACL2 package (these symbols are pre-defined in Common Lisp), we will
define a new package as follows.

(defpkg "compile"
(set-difference-eq
(union-eq *acl2-exportsx
(union-eq ’ (acl2-numberp len)

204 Computer-Aided Reasoning: An Approach

common-lisp-symbols-from-main-lisp-package))
’ (pop push top compile step eval)))

The constant *acl2-exports* is a list of symbols that is convenient to
import into other packages. It includes many commonly used symbols—
such as defun, defthm, iff, and so on—that you would otherwise have
to prefix by "ACL2::". Union-eq is a function that returns the set union
of two lists; set-difference-eq is a function that takes the set difference
of two lists. The above defpkg defines the new symbol package compile
and imports exactly the symbols we want. We select this as the current
package.

(in-package "compile'")

10.6.1 Expressions

Our expressions are built out of symbols, numbers, and the functions inc,
sq, +, and *. Notice that binary functions in expressions are written in
infix notation.

(defun exprp (exp)
(cond
((atom exp)
(or (symbolp exp) (acl2-numberp exp)))
((equal (len exp) 2)
(and (or (equal (car exp) ’inc)
(equal (car exp) ’sq))
(exprp (cadr exp))))
(t
(and (equal (len exp) 3)
(or (equal (cadr exp) ’+)
(equal (cadr exp) ’*))
(exprp (car exp))
(exprp (caddr exp))))))

Define the semantics of expressions: inc increments by one, sq squares,
+ adds, and * multiplies.

Since expressions can contain symbols, they have a value in the context
of an environment, an alist (see page 31) that relates symbols to numbers.
Here is the function to look up the value of a symbol in an environment.

(defun lookup (var alist)
(cond ((endp alist)
0) ; default
((equal var (car (car alist)))
(cdr (car alist)))
(t (lookup var (cdr alist)))))

Theorem Prover Examples 205

Alists are often used for representing environments, memories, func-
tions, and related concepts. Note that you can update the value of a
variable by consing a cons to the beginning of the alist, because lookup
finds the first cons matching a variable. Another nice property of the alist
representation is that the alist only has to contain the variables you are
interested in; all other variables have a default value (in our case, 0). This
can be very useful, e.g., suppose you want to model a memory assigning
values to 64-bit wide addresses.

The following function evaluates an expression in an environment.

(defun eval (exp alist)
(cond
((atom exp)
(cond ((symbolp exp) (lookup exp alist))
(t exp)))
((equal (len exp) 2)
(cond ((equal (car exp) ’inc)
(+ 1 (eval (cadr exp) alist)))
(t ;'sq
(* (eval (cadr exp) alist)
(eval (cadr exp) alist)))))
(t ; (equal (len exp) 3)
(cond ((equal (cadr exp) ’+)
(+ (eval (car exp) alist)
(eval (caddr exp) alist)))
(t ;*
(* (eval (car exp) alist)
(eval (caddr exp) alist)))))))

Evaluate eval on several examples.

10.6.2 Stack Machine

The stack machine will have six instructions: pushv pushes the value of a
variable on the stack, pushc pushes a constant on the stack, dup duplicates
the top of the stack, add adds the top two elements of the stack, mul
multiplies the top two elements of the stack, and anything else acts as a
skip. Define a function that given an instruction, an environment, and a
stack, steps the machine for a single step and returns the new stack.

We start by defining some simple stack manipulation functions.

(defun pop (stk) (cdr stk))

(defun top (stk) (if (consp stk) (car stk) 0))
(defun push (val stk) (cons val stk))

206 Computer-Aided Reasoning: An Approach

We define step, the function that steps the machine for a single step as
follows.

(defun step (ins alist stk)
(let ((op (car ins)))
(case op

(pushv (push (lookup (cadr ins) alist) stk))

(pushc (push (cadr ins) stk))

(dup (push (top stk) stk))

(add (push (+ (top (pop stk)) (top stk))
(pop (pop stk))))

(mul (push (* (top (pop stk)) (top stk))
(pop (pop stk))))

(t stk))))

Define a function that given a program (a list of instructions), an envi-
ronment, and a stack runs the program to completion. The function should
return the final stack.

(defun run (program alist stk)
(cond ((endp program) stk)
((run (cdr program)
alist
(step (car program) alist stk)))))

The machine that we are defining does not allow any looping, but in
general—if we were defining a more complicated machine—we cannot admit
a function such as run, because there are programs that never terminate.
In such a situation, we would instead define a similar function that takes
an extra argument indicating how many times to step the machine.

For an example of a more complex state machine in ACL2, see the article
by Greve, Wilding and Hardin in [22]. In addition, for a comprehensive
description of how to define such machines in ACL2 and how to configure
the rewriter to facilitate proofs about their programs, see [6].

10.6.3 Compiler

Write a compiler that takes expressions and returns programs (for the stack
machine) that evaluate the expressions.

(defun compile (exp)
(cond
((atom exp)
(cond ((symbolp exp)
(list (list ’pushv exp)))
(t (list (list ’pushc exp)))))
((equal (len exp) 2)

Theorem Prover Examples 207

(cond ((equal (car exp) ’inc)
(append (compile (cadr exp)) ’((pushc 1) (add)))})
(t (append (compile (cadr exp)) ’((dup) (mul))))))
(t (cond ((equal (cadr exp) ’+)
(append (compile (car exp))
(compile (caddr exp))
' ((add))))
(t (append (compile (car exp))
(compile (caddr exp))
»((mul))))))))

Prove that compile compiles.
Our notion of correctness is the following.

(defthm compile-is-correct
(implies (exprp exp)
(equal (top (run (compile exp) alist stk))
(eval exp alist))))

Compile-is-correct says that the value of expression exp in environ-
ment alist is equivalent to the top of the stack of a machine running the
program produced by compiling exp, in environment alist. Notice that
the initial value of the stack seems to play no important role in the above
condition; all we care about is the top of the final stack.

Following our “brain-dead” approach to proving theorems, we try to
prove this theorem and look at the first simplification checkpoint, where we
see:

107. Subgoal *1/6.7
108. (IMPLIES (AND (CONSP EXP)

109. (CONSP (CDR EXP))

110. (NOT (CONSP (RUN (COMPILE (CAR EXP)) ALIST STK)))
111. (EQUAL O (EVAL (CAR EXP) ALIST))

112. (NOT (CONSP (RUN (COMPILE (CADDR EXP))
113. ALIST STK)))

114. (EQUAL O (EVAL (CADDR EXP) ALIST))

115. (EQUAL (+ 1 1 (LEN (CDDR EXP))) 3)

116. (EQUAL (CADR EXP) '%)

117. (EXPRP (CAR EXP))

118. (EXPRP (CADDR EXP))

119. (CONSP (RUN (APPEND (COMPILE (CAR EXP))
120. (COMPILE (CADDR EXP))
121. > ((MUL)))

122. ALIST STK)))

123. (EQUAL (CAR (RUN (APPEND (COMPILE (CAR EXP))
124. (COMPILE (CADDR EXP))
125. ' ((MUL)))

126. ALIST STK))

127. o).

208 Computer-Aided Reasoning: An Approach

There are a few terms of the form (run (append z y) a s) present
above. It is almost always the case when proving machines correct that we
need a theorem about the composition of programs which says you can run
a program composed of two parts by first running the first and then the
second. We prove the following.

(defthm composition
(equal (run (append prgl prg2) alist stk)
(run prg2 alist (run prgl alist stk))))

We try to prove the main result again. Looking at the output produced
by ACL2 induces panic and we instead decide to a step back and look at
the big picture. What approach is ACL2 taking to this problem?

32. Perhaps we can prove *1 by induction. Three induction schemes
33. are suggested by this conjecture. Subsumption reduces that
34. number to two. These merge into one derived induction scheme.
35.

36. We will induct according to a scheme suggested by

37. (EVAL EXP ALIST). If we let (:P ALIST EXP STK) denote *1

38. above then the induction scheme we’ll use is

39. (AND (IMPLIES (AND (NOT (ATOM EXP))

40. (NOT (EQUAL (LEN EXP) 2))
41. (NOT (EQUAL (CADR EXP) ’+))
42. (:P ALIST (CAR EXP) STK)
43. (:P ALIST (CADDR EXP) STK))
44. (:P ALIST EXP STK))

If we look at the first conjunct (lines 39-44) of the induction scheme,
we notice that ACL2 is trying to prove (:P ALIST EXP STK)) from (:P
ALIST (CAR EXP) STK) and (:P ALIST (CADDR EXP) STK)) (in the case
where we are multiplying). Is this reasonable? What happens when we run
a compiled program? Try an example.

We will manipulate a term that matches the first conjunct of the in-
duction scheme and will try to rewrite it until the appropriate induction is
apparent. Below, we abbreviate compile, append, and stk by ¢, app, and
s, respectively (this allows us to focus on the structure of the term).

(top (run (c ’(x * y)) a s))
= { Definition of com }

(top (run (app (¢ ’x) (¢ ’y) ’((mul))) a s))
= { Composition }

(top (run (app (¢ ’y) ’((mul))) a (run (c ’x) a s)))
= { Composition }

(top (run ’((mul)) a (run (¢ ’y) a (run (c ’x) a s))))

Theorem Prover Examples 209

We have rewritten the term we started with above in terms of x and
y, the subexpressions of (x * y). We did this because induction allows
us to assume what we want to prove for smaller instances of the problem,
e.g., we can assume that (top (run (¢ ’x) a s)) is (eval ’x a) and
that (top (run (c ’y) a (run (c ’x) a s))) is (eval ’y a). At this
point, it should clear that our induction hypotheses are too weak because
in order to prove that the machine multiplies on the above example, not
only do we need to know what is on top of the stack after we run the code
produced by the compiler for y, but we also need to know that right below
that is (eval ’x a). We are now in the familiar situation where we have
to strengthen a theorem in order to apply induction. As we saw, we want
our theorem to tell us not only what happens to the top of the stack, but
what happens to the rest of the stack. The following comes to mind.

(defthm compile-is-correct-general
(implies (exprp exp)
(equal (run (compile exp) alist stk)
(cons (eval exp alist) stk))))

Will this work? Let us rework the above example.
(run (c ’(x * y)) a s)
= { Definition of com }
(run (app (¢ ’x) (¢ 'y) ’({mul))) a s)
= { Composition }
(run (app (¢ ’y) ’((mul))) a (run (c ’x) a s))
= { Composition }

(run ’((mul)) a (run (c ’y) a (run (c ’x) a 8)))

We can assume the following inductive hypotheses.
1. (run (c ’x) a s) is (cons (eval ’x a) s) and

2. (run (c ’y) a (run (c ’x) a s))is
(cons (eval ’y a) (cons (eval ’x a) s)).

We can symbolically run the program to see that the mul instruction will
pop the values of x and y off the stack and will push their product, therefore
it seems that we can prove this theorem by induction. ACL2, however, does
not prove the theorem.

12. We will induct according to a scheme suggested by

13. (EVAL EXP ALIST). If we let (:P ALIST EXP STK) denote *1
14. above then the induction scheme we’ll use is

15. (AND (IMPLIES (AND (NOT (ATOM EXP))

16. (NOT (EQUAL (LEN EXP) 2))

17. (NOT (EQUAL (CADR EXP) ’+))

210 Computer-Aided Reasoning: An Approach

18. (:P ALIST (CAR EXP) STK)
19. (:P ALIST (CADDR EXP) STK))
20. (:P ALIST EXP STK))

Inspection of the first conjunct of the induction scheme shows why the
proof attempt fails. Above, when we considered this part of the induction,
we assumed induction hypothesis 2, whose stack ((cons (eval ’x a) s))
differs from s, the stack of the induction conclusion. The first conjunct
of the induction scheme generated by ACL2, however, mentions the stack
of the induction conclusion. Before continuing, let us make sure that the
substitution we are suggesting does not violate the induction principle.
The measure used to justify this induction, (acl2-count exp) (which is
the measure used to admit eval), does not mention stk, therefore, we can
substitute anything for stk (as long as we substitute something smaller for
exp). We have to tell ACL2 what the right induction scheme is. This is
done by defining a function that recurs according to the scheme and giving
ACL2 a hint (see hints) to use the induction scheme suggested by this
function. Define such a function.

(defun compiler-induct (exp alist stk)
(cond
((atom exp) stk)
((equal (len exp) 2)
(compiler-induct (cadr exp) alist stk))
(t ; Any binary function may be used in place of append below
(append (compiler-induct (car exp) alist stk)
(compiler-induct (caddr exp)
alist
(cons (eval (car exp) alist)

stk))))))
We give ACL2 the appropriate hint as follows.

(defthm compile-is-correct-general
(implies (exprp exp)
(equal (run (compile exp) alist stk)
(cons (eval exp alist) stk)))
:hints (("Goal"
:induct (compiler-induct exp alist stk))))

ACL2 can prove this theorem and then compile-is-correct follows.

11

Theorem Prover Exercises

This chapter contains exercises of varying degrees of difficulty. The exer-
cises will allow you to gain experience in using the theorem prover. We
cannot over-stress the importance of doing the exercises. It is one thing to
understand how the theorem prover works and another to be a competent
user. We remind you that solutions to all of the exercises are on the Web
(see the link to this book’s page on the ACL2 home page). We suggest that
you do the exercises without consulting our solutions, but that once you
are done, we recommend that you compare your solutions to ours.

Please do not be discouraged if some of these exercises take considerable
thought and time. After all, we did warn that you will be hard pressed to
find a more challenging game. With practice you will win the game with
increasing frequency.

11.1 Starters

The exercises in this first section are generally simpler than those in the
sections that follow. We suggest that you use them to get acquainted with
the ACL2 theorem prover.

Exercise 11.1 Are the following functions admissible? If not, why not? If
so, admit them.

(defun f (x)
(if (endp x)
0
(1+ (£ (ecdr x)))))
(defun £ (x)
(if (null x)
0
(1+ (£ (cdr x))))

Exercise 11.2 Recall the definitions of £latten and swap-tree (pages 49
and 115).

M. Kaufmann et al., Compurer-Aided Reasoning
© Kluwer Academic Publishers 2000

212 Computer-Aided Reasoning: An Approach

¢ Use ACL2 to prove the following theorem, or an appropriately-fized
theorem, from page 115:

(equal (flatten (swap-tree x)) (rev (flatten x)))

¢ Admit the function flat defined on page 108. Prove that (flat x)
is equal to (flatten x) (a fact proved by hand on page 109).

Exercise 11.3 Prove the following. (Hint: You may find it helpful to use
:pe to view the definitions of append and its supporting functions.)

(defthm reverse-reverse
(implies (true-listp x)
(equal (reverse (reverse x))

x)))

Exercise 11.4 Prove that (rev x) (see page 124) is equal to (reverse
x) if x is not a string.

11.2 Sorting

In this section, you will be asked to prove several sorting algorithms correct.
What does it mean for a sorting algorithm to be correct? Correctness is
captured by the following two conditions.

1. The output is ordered.

2. The output is a permutation of the input.

In Chapter 10, we proved the correctness of insertion sort and in the
process defined both the notion of a permutation, perm, and of an ordered
list, orderedp (on pages 193 and 192, respectively). That proof was rela-
tively easy; however, the proofs in this section are going to require more
work. We start by proving that perm is an equivalence relation. Recall that
in the discussion of congruence-based reasoning (page 139), we saw that the
theorem prover can use equivalence relations the way it uses equal, in the
right contexts. The macro defequiv can be used to prove that a relation
is an equivalence relation.

Exercise 11.5 Create a certified book (see certify-book) that starts with
definitions including the definition of perm, concludes with (defequiv
perm), and has any number of local events in between. We suggest pro-
ceeding as follows.

¢ Prove (perm x x).

Theorem Prover Exercises 213

¢ Prove (implies (perm x y) (perm y x)).
¢ Prove (implies (and (perm x y) (perm y z)) (perm x z))).

¢ Use :transl to print out the immediate expansion (see page 37 of
(defequiv perm).

¢ Prove (defequiv perm).

We will use the fact that perm is an equivalence relation by proving
some congruence rules. We use the macro defcong to prove congruence
rules.

Exercise 11.6 Use :transl to print out the immediate expansion of the
following.
(defcong perm perm (append x y) 1)

Exercise 11.7 Open a new book in which to put your solutions to the fol-
lowing.

¢ Prove (defcong perm perm (append x y) 1).

¢ Prove (defcong perm perm (append x y) 2).

An interesting sorting algorithm is quicksort. The idea is to break a list
in two, where the elements of the first list are those that are less than some
pivot element and the second list contains the remaining elements. These
two lists are then dealt with recursively. Our treatment of this problem
ignores the important fact that this processing can be done in situ.

Exercise 11.8 Define the function less that takes two arguments, x and
1st, and returns the elements of 1st that are less than x (in the sense of

<).

Exercise 11.9 Define the function notless that takes two arguments, x
and 1st, and returns the elements of 1st that are not less than x (in the
sense of <).

Given the above definitions, we define the function qsort as follows.

(defun gsort (x)
(cond ((atom x) nil)
(t (append (gsort (less (car x) (cdr x)))
(list (car x))
(gsort (notless (car x) (cdr x)))))))

Exercise 11.10 Prove (perm (gsort x) x).

214 Computer-Aided Reasoning: An Approach

Exercise 11.11 Define the Boolean valued function lessp that takes two
arguments, x and 1st, and returns t iff every element of 1st is less than
x (in the sense of <).

Exercise 11.12 Define the Boolean valued function notlessp that takes
two arguments, x and lst, and returns t iff every element of 1st is not
less than x (in the sense of <).

Exercise 11.13

¢ Prove (defcong perm equal (lessp x 1lst) 2).

¢ Prove (defcong perm equal (notlessp x 1lst) 2).
Exercise 11.14 Prove (orderedp (gsort 1lst)).

Exercise 4.15, on page 62, asked that you define the function mergesort.
Before continuing, make sure that you have done the exercise.

Exercise 11.15 Prove (orderedp (mergesort 1lst)).

Exercise 11.16 Prove (perm (mergesort lst) lst).

11.3 Compressed Lists

In this section, you will be asked to prove theorems about a function that
compresses lists, i.e., a function that removes adjacent duplicates.

Exercise 11.17 Define a function to compress a list. Given a list of ele-
ments, compress returns the list with all adjacent duplicates removed, e.g.,
(compress ’(x x x yzyxyy)) isequalto’(xy zy x y).

Exercise 11.18 Prove the following.
(equal (compress (compress x)) (compress x))

Exercise 11.19 Prove the following.

(equal (compress (append (compress x) y))
(compress (append x y))

Exercise 11.20 Recall the recognizer orderedp for ordered lists, defined
on page 192. An ezxercise on page 58 asked for the definition of a recognizer
no-dupls-p for duplicate-free lists. Formulate and prove a theorem stating
that the application of compress to an ordered list is duplicate-free. You
may need an additional hypothesis.

Theorem Prover Exercises 215

Exercise 11.21 Define same-compress, a Boolean function of two argu-
ments that returns t iff compress applied to one of the arguments is equal
to compress applied to the other.

Exercise 11.22 Prove (defequiv same-compress).

Exercise 11.23 Prove the following.
(defcong same-compress same-compress (append x y) 2).

Exercise 11.24 Prove the following.
(defcong same-compress same-compress (append x y) 1).

Exercise 11.25 Prove the following.

(equal (rev (compress x))
(compress (rev x)))

The function rev reverses a list and was defined on page 124.

11.4 Summations

In this section, we present a sequence of equations containing summations
and ask that you formalize the summations in ACL2 and determine whether
or not they hold. Note that Y., f(i) = f(1)+---+ f(n). Try doing
these exercises in the ground-zero theory, i.c., in a new ACL2 session.
Afterwards, do the exercises once more, but use one of the arithmetic books
that comes with the ACL2 distribution; top-with-meta is one such book.
Exercise 11.26 Formalize the following in ACL2.

n

. n{n+1
ZZ: (2'1‘)

=1
Is it a theorem? If so, prove it; if not, give a counterezample.

Exercise 11.27 Formalize the following in ACL2.

n

D (37 -3i+1) = n°

i=1
Is it a theorem? If so, prove it; if not, give a counterexample.

Exercise 11.28 Formalize the following in ACL2.

oy _ nn+1)(2n+1)
LT e

Is it a theorem? If so, prove it; if not, give a counterexample.

216 Computer-Aided Reasoning: An Approach

Exercise 11.29 Formalize the following in ACL2.

2(21')2 _ 2n(n+ 1?2(211 +1)

Is it a theorem? If so, prove it; if not, give a counterezample.

Exercise 11.30 Formalize the following in ACL2.

izﬁ _ n2(n + 1)2
i=1 - 4

Is it a theorem? If so, prove it; if not, give a counterezample.

Exercise 11.31 Formalize the following in ACL2.
(i +1) n+1
Is it a theorem? If so, prove it; if not, give a counterexample.

Exercise 11.32 Formalize the following in ACL2.

i(zli—l) = n(2n+1)

=1
Is it a theorem? If so, prove it; if not, give a counterexample.

Exercise 11.33 Formalize the following in ACL2.
n 2 n

(i) - x#

i=1 i=1

Is it a theorem? If so, prove it; if not, give a counterexample.

11.5 Tautology Checking

In this section, we define a notion of if-expressionand prove the correctness
of a simple tautology checker for such expressions.
The following function recognizes expressions whose top function symbol
is if.
(defun ifp (x)
(and (consp x)
(equal (car x) ’if)))

Theorem Prover Exercises 217

The following functions extract the test, the true branch, and the false
branch of an if.

(defun test (x)
(second x))

(defun tb (x)
(third x))

(defun fb (x)
(fourth x))

An expression whose only function symbol is if is called an if-expres-
sion. For example, (if (if a b ¢) d e) is an if-expression, but (if
(foo (if a b ¢)) d e) is not.

Exercise 11.34 Define the function if-exprp to recognize if-expressions.

An if-expression is normalized if no if subexpression contains an if
in its test. Here is a naive attempt at normalizing such expressions.

(defun if-n (x)
(if (ifp x)
(let ((test (test x))
(tb (tb x))
(fb (fb x)))
(if (ifp test)

(if-n (list ’if (test test)
(1ist ’if (tb test) tb £fb)
(list ’if (fb test) tb £fb)))

(list ’if test (if-n tb) (if-n fb))))
x))

Exercise 11.35 Add the above definttion in :program mode and execute it

on several examples, e.g., try (if-n ’(if (if (if a b c) d e) e b)).
Notice that

(if-n *(if Gf o B 7) 6 €)

expands to

(Af-n’@Gf a WE B d) (GAf v 48 €))).

Hence, the termination argument requires some thought.
Exercise 11.36 Admit if-n in :logic mode.

Exercise 11.37 Admit if-n with a natural-number-valued measure func-
tion. (We suspect that the measure function you used for the previous ex-
ercise returned ordinals past the naturals.)

218 Computer-Aided Reasoning: An Approach

Exercise 11.38 Define (peval x a) to determine the value of an if-ez-
pression under the alist a. For example, if x is (if (if t ¢ b) c b)
and a is ((c . t) (b . nil)), then (peval x a) is t. Notice that t
and nil retain their status Boolean constants.

Exercise 11.39 Define (tautp x) to recognize tautologies: if-ezpres-
sions that evaluate to t under all alists. (Hint: Consider normalizing the
if-expressionand then exploring all paths through it.)

Exercise 11.40 Prove that tautp is sound: when tautp returns t, its
argument evaluates to non-nil under every alist.

Exercise 11.41 Prove that tautp is complete: when tautp returns nil,
there is some alist under which the if-expression evaluates to nil.

11.6 Encapsulation

In this section, we will use encapsulation and functional instantiation to
prove the equivalence of two functions that apply an associative and com-
mutative function to a list of objects. We will use similar techniques to
prove an important theorem about permutations.

Exercise 11.42 Use encapsulate to introduce the function ac which is
constrained to be associative and commutative. (See also Section 10.2,
page 187.)

The following function applies ac to a list of elements.

(defun map-ac (1lst)
(cond ((endp 1lst) nil)
((endp (cdr 1st)) (car 1lst))
(t (ac (car 1st) (map-ac (cdr 1st))))))

Map-act, defined below, is similar to map-ac, but it is tail recursive.

(defun map-act-aux (1st a)
(cond ((endp 1lst) a)
(t (map-act-aux (cdr lst) (ac (car lst) a)))))

(defun map-act (1st)
(cond ((endp 1st) nil)
(t (map-act-aux (cdr 1st) (car 1st)))))

Notice that we used a helper function to define map-act.

Exercise 11.43 Prove (equal (map-act lst) (map-ac 1lst)). (Hint:
You may find the macro commutativity-2, defined on page 191, useful.)

Theorem Prover Exercises 219

Consider the following function that returns the maximum of two num-
bers.

(defun maxm (a b)
(if (< a b)
(fix b)
(fix a)))

Exercise 11.44 Prove that maxm is associative and commutative.

Exercise 11.45 Define the functions map-maxm and map-maxmt to ap-
ply maxm te a list. Map-maxm and map-maxmt correspond to map-ac and
map-act, respectively.

Exercise 11.46 Use functional instantiation (see lemma-instance) in or-
der to prove the following.
(equal (map-maxmt 1st) (map-maxm 1lst))

Notice that we can use the above approach to prove that the tail-
recursive version of any function applying an associative and commutative
function to a list is equal to the simpler version of the function. Rewrit-
ing complicated functions into simpler functions and reasoning about the
simpler functions is an example of compositional reasoning. Such decom-
position replaces problems with manageable pieces.

11.7 Permutation Revisited

Recall the function of mergesort (page 62). In this section we revisit the
proof that mergesort returns a permutation of its input, which you were
asked to prove in Exercise 11.16. But this time we are less interested in
mergesort per se than in developing a “new” way to prove theorems about
perm.

Exercise 11.47 Define the function how-many so that (how-many e x)
determines how many times e occurs as an element of the list x.

Exercise 11.48 Prove the following.

(equal (how-many e (mergesort lst))
(how-many e 1lst))

Many people would consider the theorem in Exercise 11.48 to be equiv-
alent to (perm (mergesort 1st) 1st). Indeed, in a suitable logic permit-
ting ACL2 terms and quantification,

220 Computer-Aided Reasoning: An Approach

(perm (mergesort 1lst) 1lst)
L nd
(V e [(how-many e (mergesort 1lst)) = (how-many e 1st)])

is a theorem.

Exercise 11.49 The universal quantifier in the theorem above is crucial.
The similar-looking formula

(iff (perm (mergesort 1lst) lst)
(equal (how-many e (mergesort 1lst))
(how-many e 1lst)))

is not a theorem. Construct a counterezample.

Exercise 11.50 Find a general way to use the theorem proved in Exer-
cise 11.48 to prove (perm (mergesort 1lst) 1lst). If you wish, you may
add true-listp hypotheses to make the problem easier.

You may not want to do Exercise 11.50 now. But you may someday
find yourself struggling to prove theorems about perm and you should re-
member this: it is possible to convert permutation problems into how-many
problems, which are often easier to solve. Contrast your solutions of Exer-
cises 11.16 and 11.48.

We offer several solutions to Exercise 11.50 on the Web page. In one,
we constrain two constants, (alpha) and (beta), to have the property
(equal (how-many e (alpha)) (how-many e (beta))) and then prove
(perm (alpha) (beta)). In our proof, we define (bounded-quantifierp
x a b) to check, for each element e in x, that (how-many e a) is equal to
(how-many e b). We then relate bounded-quantifierp to perm.

The next exercise is valuable even if you do not tackle Exercise 11.50
now. It will teach you something very important about functional instan-
tiation.

Exercise 11.51 How can the theorem (perm (alpha) (beta)), above, be
used to prove (perm (mergesort lst) 1lst)? To work on this problem,
first constrain (alpha) and (beta) as described above. Then pretend you
proved the perm theorem by executing the following.

(skip-proofs
(defthm perm-alpha-beta
(perm (alpha) (beta))))
Now prove the theorem (perm (mergesort 1lst) 1lst) by functional in-
stantiation. (Hint: This is easy once you see the power of functional in-
stantiation.)

In another solution to Exercise 11.50 we use a common “trick” in dealing
with quantification in this setting: we define a function that exhibits a “bad
guy,” i.e., a function that finds an e that occurs a different number of times
in a than in b when (perm a b) is false.

Theorem Prover Exercises 221

11.8 The Extractor Problem

The following function builds a list containing the first n natural numbers,
in reverse order.

(defun nats (n)
(if (zp n)
nil
(cons (- n 1) (nats (- n 1)))))
The following function builds a list by recurring on map and consing the
nth element of 1st to the result, where n is the car of map.

(defun xtr (map lst)
(if (endp map)
nil
(cons (nth (car map) lst)
(xtr (cdr map) 1st))))

Exercise 11.52 Prove (equal (xtr (nats (len x)) x) (rev x)).

11.9 Finite Set Theory

We have seen that ACL2 has built-in functions to manipulate sets. Exam-
ples of such functions are member and subsetp. These functions assume
a flat representation of sets. For example, (subsetp *(1 2) ’(2 1)) is
t, but (subsetp ’((1 2)) °((2 1))) is nil. The first expression cor-
responds to {1,2} C {2,1}, which in set theory is true, but the second
expression can be viewed as corresponding to {{1,2}} C {{2,1}}, which in
set theory is also true. Below, you will be asked to define general finite set
theory functions, i.e., ACL2 functions that do not assume sets are flat; for
example, they consider ({1 2)) to be a subset of ((2 1)). This exercise
may be harder than it seems. Part of the problem is getting the definitions
right and we are intentionally leaving some ambiguity in the next exercise
so that you can explore various possibilities.

Exercise 11.53 Define the functions in, =<, and == that correspond to set
membership, subset, and set equality, respectively. These functions should
be general set theory functions, as discussed above. (Hint: You may find it
useful to use mutual-recursion.)

Exercise 11.54 Test your functions above on the following examples.
(1 2)) (2 D)
2. (=< 7((21) (1. 2)) °((21))»

1. (=

222 Computer-Aided Reasoning: An Approach

3. (in 7 ((1)) (2 (1)) (1 2)))

4. (=00 121) 21 x°’°(12)yx O
5 (== "x 1)
6. (=< ’x 1)

Exercise 11.55 Prove (=< X X).

Exercise 11.56 Prove the following.
(implies (and (=< X Y) (=< Y Z)) (=< X Z))

Exercise 11.57 Prove (defequiv ==).

