CHAPTER ONE

Propositional logic

1.1 SYNTAX OF PROPOSITIONAL LOGIC

A formal system consists of a set of symbols called an alphabet and a set of rules
describing the way in which these symbols may be joined together to form strings
of symbols. Our initial formal system is built from the following alphabet:

Symbols p. ¢. r. s, ... represent an infinite number of atomic statements in the
alphabet and may be seen as the building blocks of propositions. Three rows of
symbols then show logical connectives that bind these atomic elements together
according to the following rules:

a. Symbols L. p. ¢, r, s. ... are themselves propositions.

b. If A is a proposition then —A is also a proposition.

¢. If A and B are both propositions then A AB.Av B, A — B, and A & B are also
propositions.

d. Strings of symbols not built up according to these rules are not propositions.

Unlike the atomic statement symbols p, g, r, ..., symbols A and B represent any

proposition and are not themselves part of the formal system being described.

Symbols of this kind are often called metasymbols. The rules above define the

number of arguments that each logical connective requires to produce a correctly
formed proposition, producing a form of valency called the arity. Statement symbols

3

4 LOGIC AND DECLARATIVE LANGUAGE

P, q, I, ...and the connective L are themselves propositions and thus have an arity
of zero. A zero-arity connective might at this point seem a little fraudulent, but later
we shall see that it does have properties in common with the other connectives.
Only one connective symbol is defined with an arity of one, limiting the form of
propositions that might be constructed from this symbol and atomic statement
symbols. Increasingly large propositions may be constructed by the repeated attach-
ment of this connective to a simple atomic statement as follows:

—(p) AEEp) e EEP)

or to the special connective L, e.g. =L, —(—(1)). All remaining connectives are
defined to be of arity two, giving propositions of the form

pAg rv (—p) —(—(=q)) = —¢q L & (—=p)

with simple or negated atomic statements. Such connectives may take arguments that
are themselves formed from arity-two connectives, creating propositions such as

(=) — v (—p)) (=g) A (r v (=p))

Parentheses are defined as part of the formal system to record the order in which a

proposition is constructed from its atomic symbols. A proposition might be built
from atomic statements p and ¢ as follows:

p —q -p q
(r A (0q) ((=p) A q)
(P AE@)V ((=p)Ag)

but if the same starting propositions are combined in a different order, a different
proposition is obtained:

p —q —p q
p ((=g) v (—p) q
pAl=g) v (=-p) Ag

In order to reduce the number of brackets used in formulas a precedence order for
arity one and two connectives is defined as follows:

low precedence <> — v A — high precedence

Connectives with the highest precedence bind most tightly to the objects that they
connect. Thus —p A g is understood to mean (—p) A ¢ because a — symbol has
greater precedence than a A symbol. Explicit bracketing would have to be included
if the alternative proposition, —(p A g), were intended. Similarly, proposition p A
—g VvV —p A g represents the first of the two examples constructed above and
brackets would have to be retained to represent the second possibility. Symbol A
has a higher precedence than —, so the formula p A ¢ — r is assumed to represent
(p A g@) > r, a formula in which connective A is first applied to statements p and
g then this proposition itself becomes an argument. The alternative proposition,
P ~ (g — r) requires brackets to overide the precedence rule.

PROPOSITIONAL LOGIC 5

Sometimes the legal or allowed propositions are called well-formed propositions
or well-formed formulas, but we shall simply call them propositions or formulas
because we have no interest in constructions that are not well formed. An ill-
formed formula such as p A v g looks odd, even to the inexperienced eye, so no
great analysis is required to remove such problems. In fact, an algorithm that
decides whether or not a given proposition is well formed may be written, and the
proposition property is said to be decidable. All it requires is a procedure that
breaks propositions into symbols and arguments according to the formation rules
until only statement symbols or the constant . remain.

At this point we should be careful not to attribute a meaning to any of the
symbols or propositions: all that is defined is an alphabet of symbols and some
rules that specify the ways in which these symbols can be grouped together. In
addition to the rules of construction, we might also have rules of deduction that
allow further propositions to be derived from an existing set. The simplest and best-
known rule may be written as

A A-> BB

and is known as modus ponens. Here a syntactic turnstile symbol () shows that
proposition B follows from propositions with the forms A and A — B in which A
and B are metasymbols representing any proposition. Thus, from p and p — ¢q we
may deduce ¢ and from (» A s) and (r A 5) = (p A ¢) we may deduce p A g by
making appropriate substitutions in modus ponens. Multiple applications of modus
ponens have a chaining effect as in the following derivation:

p.poqg.q—orkr

in which ¢ is deduced from the first two propositions then used with the third to
produce the final proof. Derivations of this kind may be shown as follows:

p assumption
. p — ¢ assumption
q 1, 2 modus ponens

¢ — r assumption
r 3, 4 modus ponens

o e —

Propositions on the left of the syntactic turnstile are assumed, then the proposition
on the right is proven from these assumptions. Each line of the derivation follows
from earlier proven or assumed propositions in the proof and is in itself a proof.
Reasoning of this kind is described as proof theoretic because it depends only on
the application of a rule, making no appeal to any meaning that might be given to
the symbols. Later in this chapter the Hilbert proof system using modus ponens and
three axioms is described. In contrast a Gentzen proof system that has eight rules of
deduction but only one axiom schema is also described. Chapter 3 includes a proof
system called resolution that also has just one deduction rule, but this might be
considered a special case of the Gentzen system.

6 LOGIC AND DECLARATIVE LANGUAGE

1.2 SEMANTICS OF PROPOSITIONAL LOGIC

A formal system with the alphabet and proposition building rules described in the
previous section may be used to construct propositions or to decide if a given string
of symbols is a proposition. However, even when correctly formed, a proposition is
no more than a string of symbols because it is defined by its syntactic form. the
arrangement of its symbols. None of the symbols represents anything more than
itself and we should avoid reading any meaning into the symbols themselves at this
stage. One possible meaning for the symbols is provided by the semantic functions
below, and this particular interpretation of the symbols has such widespread use
that the symbols and this particular interpretation are easily confused. A meaning
(a semantics) is provided for each of the symbols by defining semantic functions
with arities corresponding to the syntactic forms as follows:

Syntactic form Semantic function Name

1 false false

- not negation

A and conjunction

v or disjunction

- implies implication

<—> iff mutual implication

First of all, a constant interpretation false is provided for the arity-zero symbol 1

then an interpretation nort is provided for the arity-one symbol — in the form of a
table as follows:

A not(A)
false not(false)
not(false) false

Thus proposition — L has the interpretation not(falsey whereas proposition —(— L)
has the interpretation not(not(false)) defined in the table as equivalent to the con-
stant false. This interpretation represents the principle of the excluded middle be-
cause it forces a proposition to be either false or not(false), excluding any other
possibility. Later we outline an alternative semantics that is not so restrictive and
proves to have useful properties, but for the moment we remain with two-valued
logic. Our interpretation of false is the familiar one: something is false if it does not
accord with our reasoning, if we would consider it wrong. In two-valued logic a
statement is true if it is not false, so a new symbol frue may be introduced into the

semantic domain as an abbreviation for not(false). This allows a more compact
semantic function definition:

PROPOSITIONAL LOGIC 7
A not(A)

false true

trite false

It would have been possible to include a symbol in the alphabet of the formal sys-
tem which would then have been interpreted as the constant true. An interpretation
of the — symbol could then operate directly on the interpretations true and false.
Instead we use the word true simply as an abbreviation for not(false). This might
seem an unecessary distinction, but later we shall see that there are sometimes
advantages in using a minimum number of symbols in an alphabet. More import-
ant, it will become clear that the alphabet described above already contains many
more connective symbols than are strictly necessary.

Each of the statement symbols p, ¢, r, s, ... is mapped to a truth value in a
valuation which may be shown as a number of valuation functions such as val(p) =
true. Statements like “grass is red” or “the earth is spherical” are mapped to truth
values in valuations, but the choice of truth value involves extralogical considera-
tions connected to colour perception and physics. In electronics these statement
symbols might simply represent transistor switches that may be either on or off and
an allocation of truth is straightforward. At this point we are not concerned with the
philosophical problems of assigning truth values to statements. Instead we just
describe the consequences of different assignments to statement symbols p, g. r,
... A set of n statement symbols permits 2" combinations of possible truth values
that are conveniently displayed in the form of a truth table.

Interpretations for the symbols A and v are provided by the conjunction and
disjunction semantic functions defined as follows:

A B Aand B AorB
true true true true
true false false true
false true false true
false false false false

A conjunction of two argument propositions is true only when both arguments
evaluate to rrue, whereas a disjunction is false only when both arguments are false.

A valuation provided for each individual atomic statement in a proposition de-
cides the value of the proposition itself because the interpretation of the connectives
is fixed by the semantic function definitions. For example, valuations val(p) = true
and val(g) = false decide the value of proposition —(—p v —¢) as follows:

l. val(—(—=p v —q))
2. not(val(=p v —q))
3. not(val(—p) or val(—q))

8 LOGIC AND DECLARATIVE LANGUAGE

. not(not val(p) or not val(q))
. not(not true or not false)

. not(false or true)

. not(true)

8. false

~N N A

Valuation val(—proposition) is replaced by the equivalent expression not(val proposi-
tion) when the outer — symbol is replaced by its meaning. Gradually the valuation
moves inwards until all the connective symbols are replaced by their meanings.
In practice this is simply a matter of replacing syntactic symbols with their inter-
pretations to give a result like that in line 4. Once this result is obtained, the state-
ment valuations are inserted and the expression evaluated according to the truth
table definitions. All of this work produces a result for just one valuation, the valu-
ation for which val(p) is true and val(q) is false. In order to economise on effort, all
four possible valuations could be deduced in a single truth table with an intermediate
valuation:

true true false true
true false true false
false true true false
false false true false

When a particular set of atomic valuations makes a proposition frue that valuation
is said to “satisfy” the formula or the valuation is said to be a “model” for the for-
mula. But if a valuation makes the proposition false, it is said to falsify the formula
and is not a model.

The final column in the truth table for proposition —(—p v —gq) is exactly the
same as that shown in the table defining the interpretation of the A symbol, i.e.
corresponding atomic valuations produce the same truth values. These two proposi-

tions are said to be logically equivalent and this property is shown by the logical
equivalence symbol (=)

A/\BEﬂ(ﬂAV—\B)

Logical equivalences allow one proposition to be substituted for another without
changing the meaning of an overall expression. This allows propositions to be
simplified while retaining their meaning, or perhaps manipulated into special forms

that have useful properties. The equivalence noted above is one form of De Morgan’s
relation, the other form being

AVBE—|(—|A/\—|B)

Logical equivalence means that two syntactically different formulas evaluate to
the same truth value for all valuations. The equivalence symbol used is another

PROPOSITIONAL LOGIC 9

metasymbol because it is not part of the formal system under discussion. Like the

natural language used for writing this text, it provides a method of describing the
formal system without being part of it.

1.2.1 Tautology and contradiction

Propositions that evaluate to true in all valuations are called tautologies whereas
those that evaluate to false in every valuation are said to be contradictory or un-
satisfiable. Propositions that evaluate to frue in some valuations and false in others
are said to be satisfiable or contingent. A simple example of a tautology is provided
by the disjunction of a proposition and its negation in an expression A v —A that
evaluates as follows:

val(A v —A)
val(A) or val(—A)
val(A) or val(not A)

When proposition A evaluates to true the first part of this disjunct is rue and when
A evaluates to false the second part evaluates to true. Since A has to evaluate to
either true or false, the expression above always evaluates to true, regardless of the
nature of proposition A. In a similar way, the conjunction of a proposition and its
negation, A A —A, always leads to a contradiction because it is unsatisfiable in this
interpretation:

val(A A =A)
val(A) and val(—=A)
val(A) and not val(A)

Clearly this valuation must always produce a false result. Both val(A) and not
val(A) must be true for the conjunction to be true, but this can never occur. Taut-
ology and contradiction statements of this kind may be placed in an equivalence
relation with the constants rrue and false as follows:

AV SA = ue
A A A = false

Since a propositional tautology is equivalent to the constant frue, a negated tautol-
ogy such as —(A v —A) is equivalent to the constant false and vice versa. This is
in fact a very important relationship because we shall later see that a standard
approach to proving tautology is to prove the negated formula to be a contradiction.

Equivalence relations might permit a reduction in the number of brackets re-
quired for a proposition. For example, the propositions

AABYAC=AABAC)
AvByvCzAvBv()

make it clear that the order of evaluation is unimportant when two conjunctions or
two disjunctions are applied within a single proposition. The semantic functions

10 LOGIC AND DECLARATIVE LANGUAGE

defining these connectives are said to be associative, allowing these expressions to
be written without brackets as AAB ACand Av B v C.
Two logical equivalences called the distribution rules have the following form:

AVvBACZAVBYAAV(D)
AABVCO)YZz=(AABYVAAC)

The first case distributes a disjunction over a conjunction; the second case distributes
a conjunction over a disjunction. These rules are used to manipulate propositions into
the normal forms described later and to simplify propositions by extracting com-
mon propositional fragments. For example, proposition p is common to both parts of
the following disjunction and may be withdrawn to simplify the formula as follows:

PARYV(PA=TYEp ATV T
=p Atrue
Ep
One part of the resulting proposition is a tautology and may be replaced by the
constant frue, but in conjunction with this constant, the proposition simply repro-
duces itself.
A generalised form of De Morgan’s relation proves to be very useful in later
sections and is justified as an extension of the above equivalence definitions. Con-
junctions of three propositions may be substituted by equivalences as follows:

(AAB)AC=z=—(—(AAB)v () De Morgan
—=((—=A v =B) v =(C) De Morgan
—(—A v B v () distribution

m m

and it is clear that this equivalence holds for repeated conjunctions with any number
of arguments. Thus

AABACADA...=2==(wAVv=aBv-aCv-Dv..)
and a similar equivalence holds for repeated disjunctions:
AVvBvCvDv...=2-(-AA-BA-CA=-DA...)

Interpretations for the symbols — and < are provided by the arity-two semantic
functions imp and iff, standing for implies and “if and only if:

A B A imp B AiffB
true true true true
true false false false
false true true false
false false true true

An implication A — B has left- and right-hand subformulas, A and B, called the
antecedent and the consequent. A false antecedent makes the implication true

PROPOSITIONAL LOGIC 11

because anything can be implied from a false premiss. On the other hand, a true
antecedent must lead to a true consequent: it would not be correct to deduce a
wrong conclusion from the true facts. As a result, an implication is only false when
it 1s claimed that a true antecedent implies a false consequent. Truth tables may be
used to justify the following equivalences involving implication:

A—->B=-AvVvB
—(A A =B) De Morgan

o

Mutual implication is logically equivalent to the conjunction of two implications:

AOSB=A->B)AB - A

and, since the implications have to be true in both directions, this only occurs when
both arguments are true or both are false. The following alternative logical equival-
ence follows from this simple observation:

Ao B=(AAB)Vv(=AA=B)

A mutual implication between two logically equivalent propositions always pro-
duces a tautology. For example, a tautology based on De Morgan's relation simply
joins two equivalent formulas by a mutual implication:

—~(—Av-=B)Y>AAB

In noting this relationship, we should also note that symbol «> is part of the formal
system being described whereas = is a metasymbol used to describe the formal
system.

An arity-two function requires a truth table of four rows to describe its seman-
tics. Since the outcome of each row may be either true or false, there are two pos-
sible outcomes for each row and a total of 2 x 2 x 2 x 2 = 16 possible functions that
might be defined. These functions may be divided into two groups of eight, the first
of which includes the four connectives already described (and,or,imp.iff) together
with a further group of four defined as follows:

A B A rimp B Js{A.B) snd(A.B) tconst(A.B)
true true true true true true
true false true true false true
false true false false true true
false false true false false true

The first of these functions is a reverse implication that might have been given
the symbol « in the formal system. But since this is just an ordinary implication
written in reverse, it is not usually included. Nevertheless, this form of implication
is particularly useful in logic programming because program statements are more
naturally written in the reversed form. Functions fs¢t and snd are projection oper-
ators that project their first or second arguments out as the value of the function.

12 LOGIC AND DECLARATIVE LANGUAGE

Notice that these functions are written in prefix notation as opposed to the infix
notation used for all other expressions. This notation is standard in functional pro-
gramming, an area in which the two functions are of fundamental importance. The
remaining function maps every argument combination onto the constant true and is
of little interest in practice.

A second set of eight semantic functions is obtained by negating the results of
the first eight described above. Negations of the original four (and,or,imp, iff) pro-
duce the following functions:

A B A nand B A nor B A nimp B A niff B
true true false false false false
true false true false true true
false true true false false true
false false true true false false

This table may be seen as an interpretation of the propositions —(A A B), =(4 v B),
—(A — B) and ~(A <> B) using the semantic functions already provided for the
connectives within these expressions. In fact, it has to be seen in these terms
because the formal system defined above contains no symbols that these semantic
functions might interpret. It would be possible to add more symbols to the original
alphabet and then interpret these symbols with the semantic functions. Three of the
functions have accepted syntactic forms: the semantic functions nand, nor and niff
are often given syntactic forms |, { and @ and these symbols could be included in
a formal system. The vertical bar of the nand syntax is called a Sheffer stroke and
the niff function symbol is more often described as the exclusive-or (exor) symbol.

We have shown that interpretations for the symbols {—, <, <>, A} may all be
expressed in terms of negation and disjunction interpretations. Semantic functions

for the remaining three cases of the first group of eight may be written without any
other connectives as

fst(A.B)=A
snd(A,B) = B
tconst(A,B) = true

Since the second group of eight semantic functions is formed by prefixing nega-
tions to the earlier eight, we conclude that all sixteen may be expressed in terms of
negation and disjunction alone. Thus the set of symbols {—, v} interpreted as above
1s adequate to generate all sixteen possible semantic functions. There are other
adequate sets of symbols containing the connective — with an arity-two connective,
notably the sets {—, A} and {—, —}. Perhaps more surprising, the nand and nor
semantic functions interpreting symbols | and | are individually adequate sets,
so that either one alone could represent all sixteen semantic functions. Integrated
circuit devices that implement either nand or nor logic are relatively easy to pro-
duce because these functions reflect the physical behaviour of transistors. Since any

PROPOSITIONAL LOGIC 13

circuit can be implemented from collections of these elements, they are widely used
as building blocks in electronics.

EXERCISES 1.2

1. Produce truth tables representing each of the following propositions and state whe-
ther each proposition is a tautology, a contradiction or a contingent proposition.
a (pA—q) V=P Ag
b. (pv—g)A(=pVyg)
c. (prqg) > (pvy
d (pve->Pprg
e. (prqg)—r

.. (pv@am>pvgalpvi)

g ((p=>gAl@am)a=(p—>r)

2. Consider the following propositions:
pPo>q>Ugo>NA(p—or)
pPo@-oM->Wp-29>(p—on)

a. Express them in terms of negations and disjunctions alone.
b. Express them in terms of negations and conjunctions alone.

3. Produce truth tables to evaluate the following propositions for all possible inter-
pretations of their atomic symbols:

p®qg—o>pvy
plagliplg

1.3 SEMANTIC TABLEAUX

A semantic tableau is a graphical method of showing the conditions under which a
proposition evaluates to true. For example, according to the interpretations given
earlier, the formula

PANDGN P AG

evaluates to frue when either subformula p A —q or subformula —p A g evaluates to
true. The fact that there are two ways of making the formula rue is shown in the
semantic tableau of Figure 1.1 as a splitting between lines 1 and 2. Next we nee.d to
know when subformula p A —g evaluates to rrue and from the interpretation given
earlier it is clear that this occurs only when both p and —q both evaluate to rrue.
Thus p and —g appear along a single path below the subformula in the tableau. A

14 LOGIC AND DECLARATIVE LANGUAGE

1. (P A=g) vV (=p Ag)

2. pA—g —-pAq leftvonl
I I

3. P —p left Aon 2
I I

4. —q q as above

Figure 1.1 Tableau for (p A —=q) v (—p A q)

AAB —(AAB)
| / \
A
B
AvB |
—\A
/ \ |
/ \ |
A
ﬁB
Left Right

Figure 1.2 Semantic tableau rules

similar argument applies to the subformula on the right-hand side of the tableau.
ane a rule has been applied, the formula to which it is applied is of no further
interest and might be marked with a tick as having been discharged. Only the
subformulas it produces are of further interest. Eventually a situation is reached
where no further rule can be applied, and at this point the tableau is complete.

. The arguments used here can be generalised into two of the rules shown in
Figure 1.2. Formulas with v symbols as a principal connective are decomposed by
the. “left v” rule whereas an A symbol is decomposed by the “left A” rule. At this
point, left and right rules are simply those on the left and right of Figure.l 2, but
later the left and right tags acquire greater significance. Earlier it was shovx;n.that

PROPOSITIONAL LOGIC 15

formula A — B is logically equivalent to formula —A v B and is rue when either
—A or Bis true. As aresult, the “left —” rule looks like the “left v’ rule except that
one of its subformulas is negated.

Each rule on the right-hand side of Figure 1.2 relates to the same connective as
the left, but the whole proposition lies within the scope of a — symbol. A justifica-

tion for the “right A” rule is provided by one of the De Morgan equivalences given
earlier:

—l(A/\B)E—\AVﬂB

A proposition of form —(A A B) is true when either —A or —B is true (or both are
true) and therefore causes branching in the tableau. Justification for the “right v”
rule is also provided by a De Morgan rule, this time in the form

ﬁ(AVB)EﬁA/\ﬁB

A proposition subject to a “right v” rule is true only if both —A and —B are true, so
its structure resembles the “left A” rule but with negated subformulas. Finally the

truth of a negated implication proposition follows from the “right —” rule because
of the following equivalences:

A A B

A negated formula with an implication principal connective is only true when both
A and —B are true, so its structure is that of a “left A” with one negated subformula.
These inference rules are sometimes divided into two classes: a class of non-
branching rules called the alpha or conjunctive set and a class of branching rules
called the beta or disjunctive set.

A Hintikka set S is a set of propositions with the following properties:

a. If P is a conjunctive (alpha type) formula in S then both of its subformulas are
also in set S.

b. If P is a disjunctive (beta type) formula then one of its subformulas is in set S.

c. An atom and its negation must not both occur in set S.

Looking back at the tableau in Figure 1.1, we see that a Hintikka set may be ob-
tained by collecting propositions along a path from the root to a leaf of a semantic
tableau. Since the tree in this figure has two branches, there are two Hintikka sets:

Sl={pAr=qgVv—pnArqg.pnr—qgp —q}
S2={pA—-gVv-pArqg pArg P g}

Every formula in a Hintikka set must evaluate to true in order to make the root
proposition frue. Consequently, the subset of atoms and negated atoms in a Hintikka
set provides a valuation that is a model for the proposition. Every proposition in
Hintikka set S1 evaluates to rrue for valuations val(p) = true and val(q) = false, and

16 LOGIC AND DECLARATIVE LANGUAGE

1. (pv—=g) A(mpvyg)
I

2. PV -—q left Aon 1
I

3. —pVvgq as above

PN

4. p —q left v on 2
5. —p q —p q leftvon3
X X

Figure 1.3 Tableau for (p v —q) A (=p v @)

this set of valuations is a model for the proposition. Similarly, every proposition in
set S2 is true for the pair of valuations val(p) = false and val(g) = true, providing a
further model for the proposition. In this simple example the tableau did not tell us
anything that could not have been seen in the original formula, but as formulas
become larger and more complex the tableau becomes more useful.

The same two rules can be applied to formula (p v —q) A (—p Vv g), giving the
tableau of Figure 1.3, but here the result is less obvious than before. A single
application of the “left A” rule is followed by two applications of the “left v rule,
producing four paths down through the resulting tableau. Two of these paths are
incapable of producing a Hintikka set because they contain both an atom and its
ne.gation: one contains both p and —p, the other ¢ and —g¢. Every formula in a
Hintikka set has to evaluate to true for a valuation indicated by its atomic compon-
ents, but there can be no valuation of (say) p that makes both p and —p true. A
branch may be closed and marked with a cross as soon as a clashing pair of atoms
appears because it could not lead to a satisfying valuation. Hintikka sets may be
read from the remaining two open paths of the tableau as follows:

Sl={(pv—g@)A(=pVvq,pv—gq, v 4q,p,q}
S2={(pv = A (=P Vv @.pVv~q —pvq —q —p)

Set S1 indicates that valuations val(p) = true and val(g) = true provide a model for
the proposition and S2 indicates a further model val(p) = false and val(g) = false.
Thus, the proposition is satisfied in valuations where both p and q are interpreted as
frue or when both p and q are interpreted as false, suggesting an alternative equi-
valent proposition:

(PA@) VvV (apA—g)

Semantic tableaux are very useful for producing certain equivalent forms of pro-
positions called normal forms; this feature is explored in more detail in Section 1.6.

Inference rules are applied to propositions containing implication symbols in
much the same way as in the examples above. A tableau constructed by applying
rules to the proposition (p — ¢) — {—=q — —p) is shown in Figure 1.4. Three open

PROPOSITIONAL LOGIC 17
1. (p—q9)—>(—g—>-p)
/ \
2. =(p—>9q) —q = —p left > on |
3. p right >on2 ¢ —p left > on2
|
4. —q as above

Figure 1.4 Implications in a semantic tableau

paths are visible and three corresponding Hintikka sets suggest that this formula is
satisfied by the following three sets of valuations:

val(p) val(q)
modell true false
model2 & true
model3 false &

Asterisks in the table represent “don’t care” situations in which atomic valuations
of true or false do not affect the truth of the formula. This table clearly shows that
the formula is rrue when val(p) = true and val(q) = false OR when val(q) = true OR
when val(p) = false, yielding an equivalent formula (p A —¢) v ¢ v —p. Again a
special form of the proposition has been obtained from the tableau, but this is not
our immediate concern. If the table above is expanded by including explicit true
and false values for each “don’t care” value, it produces a larger table of five lines,
but one of these lines is repeated. There are only four possible pairs of valuations
for a two-symbol proposition. and from the table we deduce that all four are models
for the formula. In other words, the formula is true in any valuation and is therefore
a tautology, but this is not immediately obvious from the tableau of the proposition
itself.

Tautologies are important in the applications of logic to computer science, and
methods of deciding if a proposition is a tautology are of great interest. The ex-
ample above suggests that the direct use of semantic tableaux does not provide an
easy procedure for deciding if a given proposition is a tautology, but an alternative
approach is possible. If a proposition is a tautology. it is satisfied by every set of
valuations and its negation is a contradiction that cannot be satisfied by any valu-
ation. As a result, the semantic tableau produced from a negated tautology has
only closed branches containing clashing pairs. This property provides a convenient
decision procedure for deciding tautologies. A tableau constructed from the negated
formula is shown in Figure 1.5 and confirms the original (unnegated) proposition to
be a tautology. Notice that the proposition in line 3 is first broken down by a “right
—" inference rule to give lines 4 and 5, then the proposition in line 2 is decom-
posed by a “left —" rule to give line 7. It was not essential to apply the rules in this

18 LOGIC AND DECLARATIVE LANGUAGE

L. =((p = q) = (g > —p))

2. p—q right > on |
|

3. —(—g > —p) as above

4 —||q right - on 3
|

S. ——p as above
|

6. p negation

7. -p q left — on 2

X x

Figure 1.5 A semantic tableau from a negated tautology

order, so the proposition in line 2 could have been discharged before the proposi-
tion in line 3. The order in which inferences are applied does not affect the outcome
of a deduction, but it does affect the shape of the tableau produced and the effi-
ciency with which a result is obtained. Whenever a choice between a branching and
non-branching step is possible, the non-branching inference should be applied first

because it delays tableau spanning until it is unavoidable. Directives of this sort are
often called heuristics.

1.3.1 Extended tableau rules

Disjunction and conjunction are associative operations and the equivalent repres-
entations

(AvB)yvC=AvBvVvC()
AABYAC=ZAABAQO

may be represented by the unbracketed propositions A v Bv C and A A B A C.
Since it is unimportant which pair of arguments is evaluated first, it is equally
unimportant which connective is first removed in the semantic tableau. As a result,
it is possible to define rules that remove two connectives at a time for these opera-
tions, leading to the extended tableau rules in Figure 1.6. These new rules are
equivalent to two applications of the previous two-symbol rules and are only pos-
sible because of the associative nature of the connectives. Extensions of the “right”
rules follow from the generalised form of De Morgan’s relation:

—|(A/\B/\C)E—|AV—18V—|C
—\(A\/BVC)E—IA/\ﬁB/\—\C

PROPOSITIONAL LOGIC 19
AABAC —~(AABAC)
| / | \
A
B
I
& —~(AvBvC(C)
I
AvBvC _A
ﬂB
A B C |
ﬁC

Figure 1.6 Extended tableau rules

A “right A is true when any one of its subformulas is false whereas a “right v” is
true only when all of its subformulas are false. In effect, the negated formulas are
also associative.

Extended tableau rules are not permitted for the — symbol because the inter-
pretation provided for this connective is not associative. As a result, the two for-
mulas A = (B — C) and (A —> B) — C have different meanings and cannot be
reduced with a single extended “left —>” rule. It would of course be possible to
assume left association or right association and build extended tableaux on this
basis, but this would not be very helpful. In practice the extended tableaux are re-
quired for propositions containing only A and v symbols, so a generalised implica-
tion is not required.

1.3.2 Soundness and completeness

Proof systems are said to be sound if any theorem proven by the system is indeed
valid, i.e. in the case of propositions every theorem is a tautology. A propositional
theorem is proven by a semantic tableau when it is shown that the negated theorem
produces a closed semantic tableau. A negated tautology is certainly a contradiction,
s0 it is sufficient to be sure that a contradiction always produces a closed tableau.
This is easily done because the semantic tableau rules implement a systematic search
for a satisfying valuation. If one existed it would be found as an open path with a
corresponding Hintikka set; the absence of such a path must indicate a contradiction.

Conversely, a proof system is said to be complete if every valid proposition may
be proven within the system. In this case we have to show that a closed semantic
tableau may be constructed for every contradictory proposition. First of all, we note
that a finite tableau may be constructed for any finite proposition. The argument

20 LOGIC AND DECLARATIVE LANGUAGE

here is simple: each time a rule is applied, the number of connectives is reduced and
eventually there are no more connectives to which rules may be applied. Thus any
finite root proposition yields a tableau of some sort. A contradictory root proposi-
tion is unsatisfiable and is connected through the rules to closed paths. This may be
proven by showing that a satisfiable proposition has a tableau with at least one open
path that defines a satisfying valuation. In fact, we have already shown that the
Hintikka set defines a model for a satisfiable root proposition and the absence of a
Hintikka set implies an unsatisfiable root proposition.

EXERCISES 1.3

1. Produce a semantic tableau for each of the following propositions. From each
tableau produce Hintikka sets to show the conditions under which the proposi-

tion is true:
ag—-o(p—9
b.(pvge)>(pnrg
c. (pArg—or

2. Use semantic tableaux to show that each of the following propositions repres-
ents a tautology:

a (pArgq) > (@Ap)
b.(pArg) > (pVv e
c.p=2g>Ug->nrnaAa(por))

d (pvg) o (@vp

e (poNA@-omM->WUpag -1
f.(pv=ar)e—par)

1.4 SEMANTIC ENTAILMENT

Formula A is said to entail formula B if every valuation that makes A frue also
makes B true. In other words, any set of atomic valuations that is a model for A is
also a model for B. A semantic entailment, sometimes called a logical consequence,
is shown with the aid of the semantic turnstile symbol:

AEB

Although formula B must evaluate to frue in any valuation where A evaluates to

true, it might also be true in valuations where A is false. Consider as an example
the following entailment:

A vV(-pArq)Epvyg

Truth tables for the propositions on each side of the turnstile are easily constructed:

PROPOSITIONAL LOGIC 21
p q (PA—@) V(opAg) pv4q
true true false true
true false true true
false true true true
false false false false

The formula on the left of the tumnstile is in fact the exclusive-or function and
evaluates to true when just one but not both of its arguments is true. An ordinary or
function, on the other hand, is true when either or both of its arguments are true.
Clearly the ordinary or function is true whenever exclusive-or is frue, but it is
also rrue in one valuation where the exclusive-or is false. An entailment such as
the one above is equivalent to a valid implication, i.e. the proposition (p A —g) v
(=p A g) = p v g is a tautology because its consequent must be true whenever its
antecedent is frue. A tautology can always be written from a semantic entailment in
this way, and the semantic tableau of the negated proposition in Figure 1.7 confirms
this particular example. Notice, however, that the semantic entailment symbol is a
metasymbol and is outside propositional logic, whereas the implication symbol is
part of the formal system being examined.

More generally, a proposition B is entailed by (or is a logical consequence of) a

set of propositions M, represented as M F B. A specific example is provided by the
entailment

ipoqg.qortEp—>r

l. ~((pAr—agv—pAqg) =pVvg)

2. PA—GV P AG right - on |
|
3 —(pVvq) as above
|
4, —p right - on 3
|
5. —q as above
/ \
6. pAr—g —pAq leftvon2
I I
7. p -p left Aon 6
| I
8. —q q as above
X X

Figure 1.7 Tableau for an entailment

22 LOGIC AND DECLARATIVE LANGUAGE

and a first attempt to check this entailment could involve writing a truth table for
each of the formulas:

p q r p9q q-or por
true true true true true true
true true false true false false
true false true false true true
true false false false true false
false true true true true true
false true false true false true
false false true true true true
false false false true true true

It is clear that no valuation simultaneously makes both p — ¢ and ¢ — r true but
p — r false, so the entailment is proven. In fact, there was no need to write out the
full truth table because it is only necessary to check that no valuation makes every
formula on the left true while making the one on the right false. Only the rows in
which the entailed formula (p — r) is false need to be checked and, since this
only occurs when p is true and r is false, just rows 2 and 4 have to be checked. This
semantic entailment confirms the tautology

pP=2Argon)>(p-orn)

and this is further confirmed by the semantic tableau of Figure 1.8.

L =(p=2@al@gon—(p-or)

2. po>Pnrl@g—>r) right - on 1
|
3. —~(p—or) as above
|
4. pP—q left Aon 2
|
3. q—or as above
|
6. P right — on 3
I
7. = as above
/ \
8. -p q left > on4
VA NN
9. -9 ro—q r left > on 5
X X X x

Figure 1.8 Tableau for an entailment

PROPOSITIONAL LOGIC 23

A larger example with more proposition symbols illustrates the advantage of not
considering every possible valuation:

p.po@gVvr,g—os,r>skEs

We have to check there is no valuation that satisfies every proposition on the left
while falsifying the proposition on the right of the turnstile. Since the formula on
the right is a single symbol s, only a valuation of false for this symbol has to be
considered. Equally, since all propositions on the left have to be rrue, only valuations
that set p to true have to be considered and the truth table is reduced to four lines:

q r p—{(qvr) qg->s r-s
true true true false false
true false true false true
false true true true false
false false false true false

No valuation makes all of these propositions true, so there is no valuation that
makes every formula on the left frue at the same time as making the entailed
formula false. As a result, the entailment is proven and the following formula must
be a tautology:

PAPOE@E@VINAWQ@OIATDS) DS

In each of the examples above, an implication was derived from an entailment, and
for the general case this may be shown as

A AAAAA...AA DB

If any of the subformulas joined by conjunctions in the antecedent evaluates to
false, the whole antecedent is false and formula B may be either true or false. If
every subformula is true the antecedent as a whole is nue and formula B has to be
true in order to make the implication true. Thus an entailment has the properties
indicated by an implication.

It is worth reviewing the procedure used to establish semantic entailment be-
cause it has much in common with the Gentzen G system described in the next
section. This procedure takes a proposed entailment of the form

(AL AL A, .. AL FB

and systematically attempts to satisfy every formula on the left while falsifying
formula B on the right. It is a systematic search for a counterexample that will
disprove the entailment, i.e. an attempt to find one set of valuations where each
formula on the left evaluates to true when B evaluates to false. Failure to find such
a valuation set establishes the entailment.

A set of n formulas

M= {A|»A3~ A_‘, 0oa »Aul

24 LOGIC AND DECLARATIVE LANGUAGE

is said to be consistent if there is at least one valuation that makes every formula in
the set true, i.e. there exists at least one model for the set of formulas. An inconsist-
ent set of formulas has no model and therefore entails any other formula: if there is
no valuation that makes every formula on the left frue, the result of a valuation on
the right-hand formula is irrelevant. But if the set M is consistent, an entailment
imposes the requirements described above on formula B, then

MEB

and B has to be true when all of M are rrue. It follows that, if B is entailed by set
M, the set of formulas

{A, A, A,, ..., A, =B}

is inconsistent because —B evaluates to false whenever the other formulas in the set
all evaluate to true. Consistency and inconsistency are the proof theoretic equival-
ents of satisfiability and contradiction in interpretations. Just as it is easier to prove
tautology by showing that the negated formula is a contradiction, it is easier to
prove entailment by showing the set {A,, A,, A;, ..., A,, =B} to be inconsistent.
Indirect proofs of this kind are usually described as refutation techniques because
they work by refuting negated forms rather than demonstrating the feature directly.

Truth tables may be used to evaluate formulas and to establish entailments,
tautologies and contradictions in the way shown above, but the procedure becomes
more difficult as the number of statements to be interpreteted increases. A formula
with n symbols has 2" possible valuations, so the size of a truth table increases
exponentially with the number of symbols involved. Relatively small examples
with four or five symbols require truth tables of 16 or 32 lines, so the approach is
already becoming impractical. Modern integrated circuits often have more than a
million transistors that have to be represented by distinct symbols and a truth table
of greater than 2' ™" lines. Clearly we have to develop methods of establishing

the truth of a formula without the use of truth tables, and it is this purpose we now
address.

EXERCISES 1.4

1. Prove the following entailments by deriving truth tables for propositions on each
side of the entailment symbol:

a pangEpvyg

b.—-p-opEp

c.gkpvg

d (ponNAl@gonkEpveg >r
e (po@AnNEpP->pa(p-r

Each entailment A F B indicates that the corresponding proposition A — Bis a
tautology. Draw semantic tableaux to confirm each entailment above.

PROPOSITIONAL LOGIC 25

2. Prove the following entailments from sets of propositions:

a {poqgrosiE(pAr)o@Aays)
b.{p—=grosikE(pvrn-o@vs
c. lpeo—qqgeo—rlEpor

3. Show that the following entailments do not hold:

a pvgqgEpAg
b.pogEpnarg

1.5 A GENTZEN PROOF SYSTEM FOR PROPOSITIONS

In 1935 Gerhard Gentzen laid down deduction rules for two formal proof systems
which he called the LK and LJ calculi. The first of these is equivalent to a simpler
approach called the G system of deduction later developed by Lyndon. Any LK
proof may be translated into an equivalent G proof and, since this latter approach is
easier, it makes a better starting-point than the LK form. We shall see that the
inference rules of such a Gentzen-style proof system are compatible with the inter-
pretation described in Section 1.2. This particular interpretation of propositional
logic symbols has the advantage that it is very easily related to the rules of proof
systems. Gentzen himself recognised a close relationship between what he called
sequent systems and the concept of an entailment or logical consequence described
in the preceding section. An LJ proof system may also be expressed in the style of
Lyndon and rules for this variation are presented in Chapter 7. Although there are
only small differences between the rules given here and those provided later, the
effect of these changes is to define a completely different formal system called
intuitionistic logic.

A G proof system may be seen as a proof theoretic form of the reasoning that
establishes the extended semantic entailment

{A|, Ags . ,A,,,} ': {BI- BZ’ 0aaoQ Bn}

This entailment is true if valuations that make every formula on the left true also
make at least one of the formulas on the right rrie. In other words, there is no
valuation that makes all of the formulas on the left rrue at the same time as making
all formulas on the right false. As before, the entailment is proved by systematically
searching for valuations that make formulas on the left frue while making the right-
hand side false. A proof of the entailment is provided by the failure of a systematic
and exhaustive search for a counterexample. A Gentzen-style proof system applies
rules to sequents of the form

(A, Asy ... A= [B. By ..., B,)

m

in which the left- and right-hand lists, called respectively the antecedent and suc-
cedent, are separated by the sequent symbol (=). In the original (LK) formulation

26 LOGIC AND DECLARATIVE LANGUAGE

1. (pv—g)A(mpVvg) >

2. (pv—gh(=pvag> left Aon 1

3. (pv—g),—p= (pv—q),qg= left v on 2

4. p,—p= —gq,—p = p.qg= —q.q= leftvon3

5. p=p =p.q pPqg= _q—:,_q negations
X X

Figure 1.9 A deduction tree

the order of formulas in the lists is important and rules are provided to change the
order in which objects appear. This order is unimportant in the G proof system
described here, allowing the antecedent and succedent to be treated as sets rather than
lists. Nevertheless, the square brackets are sometimes retained to keep the notation
compatible with LK usage and in practice we show neither set nor list brackets. Just
as in the entailment, a sequent is valid if there is no valuation that makes all of its
antecedent formulas frue without making at least one of the succedent formulas true.

As a first example, we demonstrate the conditions under which the proposition
(p v —9) A (—p Vv q) is true by making it the antecedent of a sequent

pv—-@r(=pvg =

A semantic tableau has already been provided for this formula in Figure 1.3 and the
G system deduction tree is shown in Figure 1.9. The reasoning now is similar to
that used in building the semantic tableau, but the notation in which it is expressed
is rather different. In order to make the antecedent true, subformulas (p v —¢) and
(=p Vv g) have separately to be made frue, so these subformulas are placed in the
revised lower antecedent. If one of the subformulas had to be made false in order to
make the initial antecedent true, it would then be moved to the new succedent.
Subformula (p v —q) is in turn frue when either one of propositions p or —gq is true,
generating two subsequents with p in one antecedent and —¢ in the other. Finally in
the leftmost branch we see that the sequent is true if p and —p are both rrue or,
equivalently, that p occurs in the antecedent where it has to be satisfied and in the
succedent where it has to be falsified. A sequent containing the same atomn in both
its antecedent and its succedent is called an axiom. A branch may be terminated
and marked with a cross whenever an axiom occurs. Similar reasoning is used to
build the right-hand side of the deduction tree.

In addition to two axiom sequents labelled with crosses, the deduction tree in
Figure 1.9 contains two non-axiom leaf sequents, indicating there are valuations
capable of making the proposition true. From the non-axiom sequents = p, ¢ and
P, ¢ = we deduce that the original formula is satisfied (is true) when both prop-
ositions are false or when both are rrue. The informal arguments used above may
be formalised into a set of inference rules similar to those given earlier for semantic
tableaux. Figure 1.10 shows eight G system inference rules as opposed to the six
rules required for semantic tableau construction. Two extra rules arise because

PROPOSITIONAL LOGIC 27

X,AAB =Y X=Y AAB

X, AL B=Y X=Y,A X=>Y B

X.AvB =Y X=YAvB
X A=Y X.B=Y X=YAB

X.A-oB>Y X=>Y A->B
X=VY A X.B=Y X, A=Y B

X -A>DY X=Y,-A

X =Y, A X A=Y
Left Right

Figure 1.10 G system rules

formulas in the antecedent are distinguished from those in the succedent and “not”
rules are required to transfer between the two. If a formula occurs on one side of a
sequent symbol, it may be moved to the other side, provided an appropriate correct-
ing negation is made. This scems quite reasonable: if we seek to satisfy antecedent
formulas and falsify succedent formulas, a move from one to the other has to be
accompanied by negation. Apart from the addition of a “left =" rule, the left G
rules correspond almost exactly to the semantic tableau rules. At first, the obvious
correspondence between right tableau and G system rules might seem surprising,
but it has a simple explanation. The right tableau rules derive conditions under
which a negated proposition is true whereas G rules derive conditions under which
the formula itself is false. This amounts to the same thing, hence the similar rule
structure. Like the semantic tableau in Figure 1.3, the deduction tree in Figure 1.9
required the application of “left A, “left v™" and “left —" rules before it reached a
point where no further rules could be applied. Unlike the semantic tableau, it
required final negation rules to produce axioms.

The whole purpose of G system rules is to demonstrate the subformula condi-
tions under which antecedent formulas are rue and succedent formulas are false.
These requirements are entered into subsequents that become the subjects of further
applications of the rules. Eventually it becomes impossible to apply any more rules
because all the connectives have been exhausted. If the initial antecedent proposi-
tion is a contradiction such as p A —p, the following steps are observed:

PATpD =
P =
p=pr

Antecedent p A —p is true if both p and —p are separately frue, so the single
proposition is replaced by two separate propositions on the left. Proposition —p 1s

28 LOGIC AND DECLARATIVE LANGUAGE

in turn true only if p is false, so —p on the left may be replaced by p on the right-
hand side. In terms of the G system rules, this deduction consists of a “left A”
followed by a “left =" and results in a single-axiom sequent.

If the initial sequent contains an empy antecedent together with the tautology
p v —p in the succedent position, a similar sequence of steps is observed:

=>pVv-p
=p,—p
p=p

Proposition p v —p is shown false if both p and —p are separately shown false, and
a single proposition on the right of the sequent symbol is replaced by two separate
propositions. Proposition —p in turn is false only if p is shown true, so —p on the
right, false side can be replaced by p on the left, true side. In terms of the rules, we
see a “right A” followed by a “right —”, leading to an axiom.

Both of these small examples lead to an axiom that does not contain any other
propositions, but in the more general case an axiom takes the form

X,P,Y=>WPZ

in which symbol P represents the common proposition and X, Y, W, Z represent any
other propositions. If P is false the sequent is frue because an antecedent formula is
false. If P is true the sequent is true because the succedent has at least one true
element. In this case other elements of the antecedent may be true or false, but the
sequent can never be falsified. An axiom in the G system proof derived from an
antecedent contradiction has much in common with a clashing pair along a path in
a semantic tableau.

In the more general case a deduction tree beginning with a sequent of the form

contradiction =

must lead to a tree in which every branch terminates in an axiom. A deduction tree
with this property is called a proof tree. The object of the systematic search is to
find valuations that make the antecedent true, but no valuation can make a contra-
diction true. In the same way, an initial sequent of the form

= tautology

!eads to a proof tree because the search for a valuation that makes a tautology false
1pevitably ends in failure. This line of thought suggests a method of proving proposi-
tions to be tautologies: make the proposition a succedent in a sequent and apply the
G sysFem rules until the tree is complete. If every branch of the tree terminates with
an axiom, the initial proposition is indeed a tautology because an exhaustive search
has failed to find any valuation to falsify it. If every possible rule has been applied
to a branch and no axiom has resulted, the branch remains open, producing a
counterexample to the proof.

As an example of a proof tree produced from a tautology, we now consider a
proposition called the contrapositive:

PROPOSITIONAL LOGIC 29

l. 2F=p-o>—-9)->@-p

2. (—p—o>—q)=>(g—p) right—>onl
3 (=p > @) q=>p right — on 2
4. g=p.—p —~q.q=>p left>on3
5. p.q=>p q=p,q necgations

X X

Figure 1.11 A proof tree for a tautology

(=p > —q) = (@ > p)

In order to prove this, we could prefix the formula with a negation symbol and
systematically attempt to satisfy the negated formula. This was the procedure adopted
to demonstrate a tautology with a semantic tableau. A failure to find any valuation
at all in which the negated formula is frue then indicates that the original unnegated
formula is a tautology. This approach is equivalent to proving the sequent

but the first inference rule to be applied to such a sequent would be the “left =" rule
and would result in the sequent

=>(ﬂp—>—.q)—>(q—>p)

Now the objective is to falsify the succedent, to decompose the sequent into
subformulas with the objective of showing this succedent to be false. Successive
decompositions generate subsequents with antecedents to be shown true and suc-
cedents to be shown faise. Figure 1.11 shows that two applications of the “right —»”
rule followed by a single “left —=” rule result in subsequents that are easily con-
verted to axioms by the “left —” and “right =" rules. The succedent proposition
produces a proof tree containing only leaf axioms and is therefore a tautology. It is
interesting to note that a semantic tableau proof beginning with the negated formula
uses equivalent inference rules in the same order. A sequent is deemed valid if it
produces a proof tree, so a valid sequent containing only a succedent formula
implies the validity of that formula.

No rule has been offered for mutual equivalence, but this connective can be
implemented by substituting one of the following equivalent propositions:

A B ==(A>B)AB-A
(A(—)B)"_—‘(A/\B)v(ﬂB/\—‘A)

after which the existing rules may be applied. Consider as an example the following
mutual implication:

(pog—-=2nNep@E-2@-on

Using the first logical equivalence, this problem may be divided into two separate
sequents with implications as principal connectives. The first of them 1s

30 LOGIC AND DECLARATIVE LANGUAGE

=2(Po2@-oON)->Up—>q) -1

(po@-onN)=>p—>q) —>r) right - on 1

(po@-omMNp-oq)=>r right — on 2

qo2>rnpoq=r po>g=rp left - on 3

p—o2q=rgq rp—oqg=r =>rpp g=rp lftoond
q=>l',q =rq,p

X

Figure 1.12 A counterexample tree

Sp29->D->pE->@—n)

It produces a proof tree and is therefore a tautology. Figure 1.12 shows a deduction
tree for the reverse implication

S@P-o2@-onN->Wp-oq9 >0

It is clear this tree contains a number of leaf sequents that are not axioms. Con-
sequently, the original mutual implication is not valid because counterexample
valuations may be deduced from the tree.

A sequent is valid if at least one succedent formula is rue in every valuation
'.lhat makes all of its antecedent formulas rrue. A single false antecedent formula
1s S}Jfﬁcient to make the whole antecedent false and the sequent valid. Conversely
a single true succedent formula is sufficient to make the whole succedent rruc;
and the sequent valid. This suggests that the formulas might be written in the fol-
lowing form:

AI/\AZ/\.../\A,,,:B,szv...vB,,

in which antecedent formulas are explicitly joined by conjunctions and succedent

fomulas are explicitly disjuncted. Explicit connectives may also be shown in the
entailment

A,/\A:/\.../\A",FBIVBZV...\/B,,

so the meaning of the sequent is expressed in the following entailment:
t=A,AAzA...AA,,,—>B,szv...vB,,

A . T
sequent may be mterprgte.d as a general implication from a conjunction of its
antecedent formulas to a disjunction of its succedent formulas.

1.5.1 Proof systems, soundness and completeness

Although G rules have been explained in terms of making propositions true and
false, the whole procedure should be seen purely as a proof system without regard
to the .1nterpretati0n. A sequent is proven if it is constructed in a proof tree ige a
deduction tree in which every leaf sequent is an axiom. Previously we thou’gi;t 'of

PROPOSITIONAL LOGIC 31

decomposing sequents in a way that makes antecedents true and succedents false,
but in proof theory we think of building large sequents from collections of axioms.
Instead of seeing leaf sequents as the final step of a decomposition, a proof system
sees them as a collection of premisses from which the sequent at the root of the tree
is concluded. This means the reasoning steps are upwards in the deduction trees, as
shown in this chapter, and the G system rules take the form

conclusion or conclusion
premiss premissl premiss2

It would of course be possible to draw the diagrams the other way up so that initial
premisses occur at the top and are joined together on moving down the page to
reach a conclusion at the bottom. This approach might have some merit in a final
presentation, but nobody actually attempts to prove a sequent by joining together a
collection of axioms. It is far better to arrive at the necessary axioms by using G
system rules to decompose sequents. One attractive feature of the G proof system
is that its rules preserve validity in both directions, so there is no real distinction
between premiss and conclusion. An LK system on the other hand only preserves
validity in one direction, that of moving from axioms towards the final sequent. As
a result, LK sequent deduction trees have traditionally been written with the root
sequent at the bottom of the page.

A deduction that begins with the formula to be proven is sometimes said to be
goal oriented and the reasoning procedure is said to be top-down or backward
chained. A deduction that begins with a set of axioms that are then joined together
through inference rules is described as a botrom-up or forward-chained procedure.
Top-down and bottom-up may be interpreted literally in the G system deduction
trees as they have been presented here.

A theorem is proven in the G proof system by showing that a sequent with the
theorem as succedent can be constructed from axioms alone. However, we need to
be sure that the G proof system is both sound and complete, meaning that every
proven theorem is actually valid and that every valid theorem is provable. Sound-
ness is easily demonstrated. Axioms are valid sequents and validity is preserved
when sequent rules are applied, therefore a final concluding sequent must be valid.

To show completeness, we have to show that a proof tree may be constructed for
any valid sequent, but first we need to be sure that a proof tree is always con-
structed with a finite number of inference rules. To do this, we note that the premiss
or premisses of every rule contain fewer logical connectives than the conclusion. It
follows that the total number of connectives in subsequents must reduce as we work
backwards from the conclusion to more distant premisses. Since the sequent is of
finite size, a point must be reached at which all the connectives are used and leaf
sequents are visible. Thus the deduction tree obtained from a finite proposition is of
finite size and must be either a proof tree or a counterexample tree. A root sequent
is valid if and only if every leaf sequent in the tree is an axiom and falsifiable if
and only if at least one leaf sequent is not an axiom. We can be sure that every
falsifiable sequent yields a counterexample because this requirement motivated the

32 LOGIC AND DECLARATIVE LANGUAGE

construction of the rules. Conversely, we are sure that every valid sequent is prov-
able from some proof tree.

EXERCISES 1.5

1. Show that each of the following propositions is valid by adopting each proposi-
tion as a root succedent in a G system proof tree:
ag9g->@-q
b. (p = q) > (—g > -p)
c. (ponNA@-onNalpvg)—or
d (prgy>(pve
e (pvgeo(p—y9)
f.pv@amn)->Wvealpvry
g =29 A@on)A-lp o)
hpo>p->n-op-o@-on)
L ((pvra@v=r)->(pvyg

2. Show that the following propositions are not valid by producing counterexamples:
a(pve->(prg
b. {p > q) > —g—p
c. (p =g} A(=g > —p)

1.6 NORMAL FORMS

The dual proposition of an atomic statement p is the proposition —p whereas the
dual of —p is proposition p, i.e. a statement is converted to its dual by adding or
detachmg a negation symbol. Atomic propositions and their negations are usually
described as literals, and the dual proposition above is sometimes also called the
complerpent .of a literal. Propositions are called cubes if they contain just literals
and conjunctions or clauses if they contain just literals and disjunctions. These two
forms are illustrated by the following examples:

PA—=gATrA-—s cube

PV —gvrv s clause

Eifher a cube or a clause may be negated as a whole then simplified by the gener-
alised De Morgan rule. Taking the clause above as an example, we obtain

—(pV—agvrv—s) negated clause
TP A g A =F A —os generalised De Morgan
P AGATrAS simplify

PROPOSITIONAL LOGIC 33

producing the complementary form as a result. A moment’s reflection reveals that
the dual of a clause is always a cube that may be written directly from an inspection
of the clause. Disjunctions are changed to conjunctions and literals are replaced by
their duals. Conversely, the dual of a cube always simplifies to a clause.

A proposition is said to be in negation normal form (NNF) if it contains only
the connectives A and v together with literals and any necessary bracketing. Any
proposition not already in NNF may be converted to this form by the application of
logical equivalences followed by the movement of negations into literals. Formulas
containing implications are converted by the following procedure:

a. Eliminate all occurrences of implication and mutual implication using the fol-
lowing logical equivalences:

(Ao B =(A> B AB > A)
= (mA Vv B) A (=B Vv A)
=] (A/\B)V(—|B/\—1A)
(A>B)=—-AVBEB
b. Move negation symbols inwards using De Morgan’s rules until each one stands
directly in front of an atomic statement, i.e. until it is contained in a literal.

Thus, formula p — ¢ is not in negation normal form because it contains an implica-
tion, but it may be converted to the formula —p v g, which is in NNF. Equally,
—(pp A —g) fails to satisfy the requirement because a leading negation sign applies
to the whole subformula inside the brackets, but it can be converted as follows:

—p v =~—gq De Morgan
—p Vg double negation

Any proposition may be expressed in an equivalent negation normal form, but
the form obtained is not unique: every proposition has many equivalent NNF
propositions.

Two special cases of NNF are defined: disjunctive normal form (DNF) consists
of cubes joined together by disjunctions; conjunctive normal form (CNF) consists
of clauses joined together by conjunctions. These two forms have the general
appearance

(PAmgAnVSADD VU DNF
(pvogvryalsvaDAu CNF

CNF has a dual form that is easily found by negation and simplification as follows:

—{(pV g VAV) AN negated CNF
—(pvogvr)yVvalsyv oy De Morgan
(mpAgA—T)V(mSADY U De Morgan

Clearly the dual of a CNF proposition simplifies easily to a DNF proposi.tion
and vice versa, but some caution needs to be exercised here. The dual of a given

34 LOGIC AND DECLARATIVE LANGUAGE

formula is actually a different formula from the original, equivalent in fact to a
negation of the original formula, and in later sections this conversion has the re-
quired properties. On other occasions it is necessary to find a CNF for the proposition
itself, rather than its negation, and the techniques described below are then used.
Any proposition can be expressed in either DNF or CNF, so we immediately have
two possible equivalent NNFs. Later we shall see how a conversion to normal form
can be a useful first step in deciding the truth of a proposition, so methods of
converting formulas to normal forms are required.

1.6.1 Finding disjunctive normal forms

There exists a simple but tedious method of converting a proposition to its equival-
ent DNF: simply write out the truth table for the formula and read off the valuations
that are a model of the formula. The proposition (p — ¢) — r evaluates as follows:

p q r (po>qg>r
true true true true
true true false false
true false true true
true false false true
false true true true
false true false false
false false true true
false false false false

A DNF of the proposition is obtained by extracting the five valuations for which the
proposition is true:

PAGANYNV(PA=GANYVDAGA-)V(SPAGAT) V(DD A—G AT
Although this approach provides an equivalent proposition in DNF, the resulting
formula is not as simple as it might be. However, the size of this proposition may
be reduced by pairing off cubes and joining such pairs through the distributive rule.
For example, cubes 2 and 3 above are joined and simplified as follows:

PA=gAr)V(PA—=g AT

(pA=g)A(rv=r) distributive rule

(p A —q) tautology: (+ v —r) = true
bgcause proposition r v —r is equivalent to frue and has no effect in conjunction
with the other subproposition. If this procedure is repeated for other pairs of cubes,
the large DNF is reduced to a much simpler form then to the minimal form

PADNVPA=g)V(mp AL

(PA=g)V(pAr)v(=pAr) rearrangement

PpA-q)vr distributive rule

PROPOSITIONAL LOGIC 35

. (pog—->r=

2.2(p—oq r= leftoonl

3. ?q— right - on 2
Figure 1.13 Finding the DNFof (p > g > r

In fact, this much simpler result could have been found directly by using formula
equivalences:

(p—q)>r
—(—=p v q) v r logical equivalence
(p A~ —-q)vr De Morgan

Semantic tableaux and G system proofs incorporate the meaning of truth tables in
a display and should be capable of producing normal forms for a formula. Fig-
ure 1.13 shows the deduction tree that arises when this proposition is made the
antecedent of a sequent and G system rules are applied until termination. Leaf
sequents p = ¢ and r = arise, indicating that the formula is true if p is true when
q is false or, reading from the second leaf sequent, if r is true. This requirement is
expressed in DNF as (p A —q) v r, the same result as above.

1.6.2 Finding conjunctive normal forms
Those valuations that falsify the proposition (p — ¢} — r are read from the truth
table above to produce a disjunctive normal form
(p/\q/\—u‘)v(ﬂpAqAﬂ)')v(—‘p/\—.qA—lr)

and this proposition is therefore equivalent to the negated proposition —((p - q)
— r). It follows that the formula (p = q) 2 7 itself is equivalent to the proposition

—~A(pAgGA—TV(EPAGA) V(TP ATGA —r))

and this expression might be simplified to negation normal form by th(f. applic?tion
of De Morgan’s rules. However, as explained earlier, the result of simplifying a
negated DNF expression is the dual CNF

(—wpv—-qvr)/\(pv—.qu)/\(pqur)

This formula may be simplified with the distributive rules to give a simpler but
equivalent CNF

(pvrya(=gvr
In summary, a truth table approach to finding equivalent CNFs proceeds as follows:

a. Write a DNF proposition from those valuations that falsify the truth table
proposition.

36 LOGIC AND DECLARATIVE LANGUAGE

b. Write the dual CNF of this proposition (a step equivalent to negation and
simplification).

¢. Use the distributive rule to remove clashing literals from the result of step b.

Although the truth table approach provides considerable insight into the relation-
ships between truth tables, valuations and normal forms, it is not a very practical
approach. A truth table has to be constructed before the DNF can be extracted and,
as the number of statement variables increases, this method becomes increasingly
intractable. The procedure has an obvious exponential complexity because the number
of truth table lines to be considered doubles with each extra variable.

A CNF proposition may be found by the direct application of a distributive rule
to a DNF expression. Thus the DNF of proposition (p — ¢) — r is converted to a
CNF in one step:

(pA-q@vr DNF
(p v r)A(—gvr) distributive rule

Although this algebraic approach appears attractively simple, it too hides an under-

lying exponential complexity that creates problems when the examples become
larger.

The above example showed that a truth table approach to finding CNFs proceeds
by forming a DNF from those valuations that falsify a proposition then taking the
dual of the resulting proposition. Apart from having to create the table, the process
of simplifying the resulting proposition makes this method unattractive in practice.
However, a simplified propositional DNF that falsifies a given proposition may be
obtained by constructing a deduction tree with the proposition as its succedent. A
CNF may then be written directly as the dual of this formula. Figure 1.14 shows
that if the earlier example is made a succedent and inference rules are applied, it
generates leaf sequents = r, p and ¢ = r, producing the DNF formula

(=p A=)y v (g A-—r)
but the dual form of this proposition is easily written as

(pvryA(ngvr)

A little practice allows the CNF of a proposition to be read directly from the
deduction tree by making the appropriate corrections for the dual form.
As a slightly larger example, we now convert

Po>@-onN)—>WUpnrs)—>nr

ILL=2(p-oq -r
2. (po>q)=r rightoonl

3.=rp qgq>r lefi>on2
Figure 1.14 Finding a CNFof (p - q) > r

PROPOSITIONAL LOGIC 37

to normal form. A truth table approach is possible, but this proposition has four
distinct statement symbols and would require a table of 16 rows. The substitution of

equivalent propositions followed by an algebraic manipulation of the substituted
symbols provides the following conversion:

(po2@-oM—->WUpas)y—r)

—(=p V(g VvIYVa(pAs)vr) equivalences
(==p A=(=g Vv)V ({(=pvVvas)vr) De Morgan
(pA@Ar=r)vV{=pvVv=as)vr) De Morgan
(PpAgA=r)VI(mpYV sV brackets

In fact, the resulting formula is not only in negation normal form but also in

disjunctive normal form. Applications of the distributive rule allow a further con-
version to CNF:

(pv(=mpvasVIDAQV(EpY sV A(mrV(apy —s v r))
true A (g v (=p v =5 V) Atrue
qV ap Vs Vv Fr

Clearly the direct use of equivalences followed by an algebraic simplification has
become rather more complex than was the case in the earlier example. Although
the algebraic method looked attractive with a small proposition, the size of that
example disguised the exponential complexity of this procedure. Like the truth
table approach, it quickly becomes intractable as the size of the problem increases.

Negation normal forms for this proposition are obtained when a counterexample
tree is constructed using the proposition as either the antecedent or succedent. Fig-
ure 1.15 shows the tree obtained when this formula is taken as the antecedent, leading
to four leaf sequents of the form

p.g=r =p =5 r=
from which a DNF is read as
(pAgGA—NYVY PNV SV

A counterexample tree constructed with the proposition as succedent is shown in
Figure 1.16, producing the leaf sequents

p,s=>nrp rp,s=r p.s=nrgq

but the first two of these sequents are axioms and the remaining sequent produces
a single clause of CNF

(p__)(q—)r))—)((p/\s)—))‘)2>

=p(@-on (pAs)—or=
p=>@—>r) SPpAS re
p.g=r =p =3

Figure 1.15 A deduction tree to obtain DNF

38 LOGIC AND DECLARATIVE LANGUAGE

=S(p-o@-onN)->Upas)—n

(po@-oMN=2Upnas)—or)

(p=@-onN)pars=r

(p 2@ -onN)ps=r

p,s=rp qorp.s=r
X

p.SSr. g rps=r
X

Figure 1.16 A deduction tree to obtain CNF

“pV=SVIVG

A small increase in the size of the problem and in the number of statement symbols
has made the deduction tree approach much more attractive compared to the altern-
atives. Perhaps more important, the rules of the G system are easily implemented in
computer programs, so the process is easily mechanised.

1.6.3 Normal forms in proofs

Propositional normal forms have characteristic features that make them more suit-
able for certain purposes than propositions in general form. However, the concept
of a normal form may be extended to proofs arising from the propositions: specific
normal forms of proof are defined by characteristic deduction trees. To illustrate
such normal forms, we first find an equivalent normal form for the proposition

P=2@->M->Up>g9>p-or)
This proposition is an instance of Hilbert's second axiom and is therefore valid, i.e.
it is a propositional tautology, frue in all valuations. A deduction tree developed
with this formula as its initial succedent has only leaf axioms, confirming that the

formula cannot be falsified. A tree developed from a sequent taking this proposition
as antecedent is shown in Figure 1.17 and it generates the leaf sequents

pP.g=>r p=gq =p r=
This information allows an equivalent DNF proposition to be written as
PAgA=-r)V(PA—g)Y —pVF

The resulting proposition is in both NNF and DNF, and since it is equivalent to the

formula from which it was derived, it should behave equivalently. In particular, a
sequent of the form

SMPArga-nyv(pA-g)vy—pvr

should produce a proof tree when subjected to G system inference rules, and Fig-
ure 1.18 shows this is indeed the case. The proof in Figure 1.18 uses a generalised

PROPOSITIONAL LOGIC 39

Po2@->mM=Spo>(P-=2r)=

=2(p—og—>r) (p—oq) =»(p—->rN=> lefi>onl
p=1{q—or) =>p-—q p—or= leftioon2
p.g=r pP=4q =p r=

Figure 1.17 A deduction from Hilbert's second axiom

2P AGA=IV(PASg)V PV

=P AqgAa=r), (pA—g),—p.r

=SA{pAgar).op.rp S((pAgA—r),—pr,—g

p=(pAgA=r)rp =>pAqg,—p.r.g = —r,-p.r, g
x =p,p.rooqg =4 p. g r==apr, g
X

p=p.r.nq q=4q,p.r
X X

Figure 1.18 A normal form of proof

“right v inference rule that removes all disjunction symbols in one step. This
might appear simply as a form of shorthand, since the individual steps could have
been written, but they would have produced exactly the same sequent. After this
step, the only rules that can be applied are the “right A” inference rule and negation
inference on the literals.

Suppose more generally that a formula is the succedent in a sequent:

= formula

and the application of inference rules generates a proof tree. Suppose further that
the formula is converted to disjunctive normal form and again taken as the succedent
of a sequent:

= formula,,,

It too must lead to a proof tree. though different inference rules are required to
produce axioms. If a particular formula is valid. any other formula claiming tg bf.
its equivalent must also be valid. Reasoning from the G system “not” rule, it is
clear that the sequent

—(formula,,) =

must also lead to a proof tree because the first rule to be applied would be the “left
=" rule and the sequent would be returned to its previous form. However, the nega-
tion of a DNF formula is an easily derived CNF formula, so a sequent of the form

formula_, =

cal

must also lead to a proof tree (provided the original formula is valid).

40 LOGIC AND DECLARATIVE LANGUAGE

(—pVgVIA(PVYGAPA—Tr=

(—pv—gvr,(—pvg),p—r=

(mpVv—ogvr),—p,p,—r= (=pv—qvn),q.p,—r=

(mpv—ogVvr),p,—r=p
X

—pVv—q,.4q, p—r= rog.p.—r =

-, q, p,r= —4,q,p, "= rp.gq>r
X

4. pr=p qp-r=gq
X X

Figure 1.19 A deduction tree from a CNF antecedent

Returning to the example above, we negate and simplify the DNF to obtain an
equivalent CNF formula:

—“((pAgGA=")V(DPADG)V—PVYF)
—(pAGA=F)A(pA—g)A——=p A-r De Morgan
(=pVgVIA(EPVY G AP AT De Morgan

Note how this is the CNF of the negated formula and could have been obtained
from the DNF by inspection, since one is the dual of the other. Having converted

the formula to the CNF style of NNF, it might now be made the antecedent of a
sequent

PV —=gVIAEPVYGAPA—T=

and inference rules applied to this sequent should produce a proof tree. The result-
ing tree is shown in Figure 1.19 and from this we see an interesting property: the
whole proof appears to be the dual of that given in Figure 1.18. First of all, a gen-
eralised “left A” rule is used to remove all conjunctions then a number of “left v
rules are applied until axioms are obtained through negation inferences. The import-
ant point here is that proofs have dual forms related to the dual forms obtainable in
NNF.

The familiar style of proof, producing axioms from formulas taken as the suc-
cedent of a sequent, is called proof normal form. This procedure systematically
attempts to falsify the formula until every branch of the deduction tree produces
axioms or counterexamples. If every branch produces an axiom, the falsification
attempt has failed and the formula must be valid. The alternative style introduced
above, taking the negation normal form of the negated proposition as antecedent. is
called refutation normal form. Here the objective is to satisfy the negated form, i.e.
to show that the formula has a satisfying valuation. A systematic attempt is made
to find such satisfactions, but if every branch of the tree is an axiom, the negated
formula represents a contradiction and the original unnegated formula is valid. This
technique of demonstrating the validity of a formula by refuting its negation is

more characteristic of semantic tableaux and is developed in the resolution method
of Chapter 3.

PROPOSITIONAL LOGIC 41
EXERCISES 1.6

1. Use truth tables, equivalences and G system proofs to deduce DNF and CNF
equivalents from the following contingent propositions:

a p-o>@-or
b (po>@Arlg—ohn
c. (pog>r-1)

2. Use equivalences and G system proofs to produce DNF and CNF equivalents of
the following contingent propositions:

a (p—og)—or)—>s
b.p—>(@—=0As)
C. (—pVv@g) = (=r—>3)

3. Find disjunctive normal forms for the following tautologies by making each one
in turn the antecedent of a G system deduction tree:

a (po@apP-oN-o(pP-o@nar)
b (po(@-o>mM->@->(p—>1)
C.poNA@oMN—=WUpvg —>n)

Check that the equivalent DNFs obtained are still tautologies by making each
one the succedent in a proof tree. Show that the dual CNF propositions produce
refutation trees.

4. Find negation normal forms for each of the propositions in the previous exercise
by substituting equivalences and simplification.

1.7 A HILBERT PROOF SYSTEM FOR PROPOSITIONS

The Gentzen proof system contained just one axiom scheme and eight rules of
deduction. It is easily related to the semantic tableau method because its inference
rules are chosen to reflect the intended semantics of the formal system. A Hilbert
proof system does not relate to the semantics in such an obvious way but we shall
see that the theorems it proves are exactly those proved by the G system. First of
all, an alphabet and a set of rules for combining elements of this alphabet are pro-
vided as in Section 1.1 then a proof system is defined by giving three axioms ar.1d a
single deduction rule. Whereas the Gentzen system described earlier has one axiom
and eight inference or deduction rules, the Hilbert system defined here hz?s three
axioms and just one deduction rule. The structural rules. axioms and deduction rule
are as follows:

a. An alphabet of symbols:

= =) pag s

42 LOGIC AND DECLARATIVE LANGUAGE

b. Rules for building up propositions from the alphabet:

1. Atoms such as p, g, r are propositions.
2. If A and B are both propositions then —A and A — B are propositions.
3. Nothing else is a proposition.

¢. The following axiom schemata:
1. (A > (B> A)

2((A>B>oC)Y) D ((A>B)> A -0

d. A rule of deduction called modus ponens (MP):
A, A->B)H,B

This alphabet obviously contains fewer symbols than the alphabet in Section 1.1,
but it was clear from Section 1.2 that the original alphabet contained several con-
nectives that are redundant in the usual interpretation of these symbols. In fact,
distinguishable but equivalent Hilbert proof systems may be constructed from any
adequate set of connectives. If interpretations are provided by truth tables, there is
no great disadvantage in using a more than adequate set of connectives. On the
other hand, a Hilbert system is a pure proof system that encapsulates the traditional
meaning of logical connectives in a number of axioms, so a larger alphabet requires
a greater number of axioms. Although a reduced number of connectives makes the
formal system less expressive, it is easier to prove properties for those that are
defined. Connectives not contained in this alphabet may then be defined as abbre-
viations for propositional fragments using elements within the aiphabet.

The fact that A can be proven from ——A within the Hilbert system is indicated
by a syntactic turnstile with an H subscript

A proof of the above statement runs as follows:

l. =—A assumption
2. 2mA 5 (A > ——A) axiom 1
4. (+=—=—=A 5 2=2A) > (A 5 =——A) axiom 3
6. (A > 7——A) > (——A 5 A) axiom 3
7. -—A 5 A 5.6 MP
8. A 1,7 MP

A propositional statement to the left of the turnstile is seen as a hypothesis, a basic
point from which reasoning begins. The proposition in line 2 is obtained by substi-
tuting ——A for A and ~——-A for B in axiom 1 and is therefore an instance of the
axiom. Modus ponens is then applied to the formulas in lines | and 2 to obtain the

PROPOSITIONAL LOGIC 43

result in line 3. Every line in a proof of this sort contains a formula proven on the
basis of some assumptions, the axioms and modus ponens. Further substitutions
using axiom 3 are both followed by applications of modus ponens, leading eventu-
ally to the desired result. It is clear that Hilbert-style proofs are much more difficult
and far less intuitively reasonable than corresponding G system proofs. Worse still,
apparently trivial relationships sometimes require inordinately many lines to prove
them. To counter this problem, it is usual to work from a stock of proven relations,

substituting them in later proofs as required. This procedure is justified by a law
usually described as the deduction rule.

1.7.1 The deduction rule

The deduction rule states that if a proposition B is deduced from proposition A and

a set of propositions M (possibly empty), the proposition A — B may be deduced
directly from the set M. Symbolically

If MU{A}+B then MFA—>B

In practice this means that propositions may be taken from the left of the syntactic
turnstile and made the antecedent of a new propositional implication on the right.
Already we have shown a deduction of the formula A from the formula —=—A and
this is represented as follows:

——A kA

According to the deduction rule, this result might equally well be shown as
i'” —A DA

and we have a proposition that may be assumed without any hypotheses. A prop-
osition with this property is called a theorem, and one of the purposes of the
deduction rule is to build up a stock of theorems that may be used in deductions
in much the same way that axioms are used. This particular example is called the
double-negation theorem and its existence permits an occurence of =—A ina proof
to be replaced by A through modus ponens. Notice that the implication is only
proved in one direction and a further proof is required before it can be used in the
other direction:

l. ==—=A4 - —A dubneg of —A
3JA->—-A 1,2 MP

As a result of this deduction, we are able to state another theorem:
}‘“A - A

Another useful theorem can be derived from the following deduction:

44 LOGIC AND DECLARATIVE LANGUAGE

ALA->B,B->CHC

This deduction is easily proved without any axioms:

1. A assumption
2. A —> B assumption
3. B— C assumption
4. B 1,2 MP
5.C 4,3 MP

Having proven this result, the deduction theorem can now be applied to give a very
useful theorem called the chain rule:

A->BB->CtHAC

As the name implies, this rule allows implications to be chained along a series. A
glance at the proof should be enough to show that the method could be applied to

chains longer than three symbols and is really just an extended version of modus
ponens.

In order to derive another rule, we prove the following deduction:

(B> A) Hy (-A > =B)

Taking the single proposition from the left as an assumption, the derivation is as
follows:

1.B—A assumption
2. =—-B—>B dubneg

3. B> A 2, 1 + chain
4. A—> ——-A dubneg

5. =—B — —A 3, 4 + chain
6. ((=—=B) - (w—A)) > (-A > —B) axiom 3

7. -A > —B 5,6 MP

Thi

s is modified through the deduction rule to give
Fy (B > A) - (-A > =B)

and is usually called the contrapositive rule.
One more useful rule is obtained after we prove the deduction

A5 B->C)h B> A >C)

1.A-> B ->C) assumption
2 A->B-CHY>@A>B) > (A>C) axiom?2
3. A>B>MA->C0) 1,2 MP
4. B—>((A—>B) axiom 1
5.2.B—=>A->0C) 4, 3 + chain

After an application of the deduction theorem, the “exchange of antecedent rule” is
obtained:

PROPOSITIONAL LOGIC 45

Fy (A B—=C)—>B->A->0)

Finally we show that A — A is a theorem in the Hilbert proof system with the
following deduction:

LADSD(A>A) DA >((A>(A>A) - (A— A) axiom?2
2. A (A > A) o A) axiom 1
3. A=A DA > Ao A) 1, 2 MP
4. (A > (A > A)) axiom 1
5. (A —= A) 3,4 MP

No assumptions have been made in the above deduction and we can state the final
result in the form

FhA—= A

This theorem is equivalent to the law of the excluded middle in classical logic, i.e.
the proposition —A v A is also a theorem.

1.7.2 Soundness and completeness

A deductive system is sound if every theorem proven in the system is in fact valid.
For the propositional Hilbert deduction system this means that a proven theorem i1s
a tautology, true in all valuations, and this requirement may be expressed as

F,, proposition implies F proposition

As a first step. we note that every theorem is derived from assumptions. axioms and
the rule modus ponens. Assumptions are discharged at the point where the deduc-
tion rule is applied and are in a sense built into the resulting theorem. However, we
do have to be sure that the steps leading from assumptions to conclusion preserve
the meanings of the assumptions. This will be the case if we can show tvhz?t the
axioms are universally valid, i.e. they are tautologies, and that this v.alldny is
preserved by the deduction rule. It is relatively easy to show in a semantic lat?leau
that each of the Hilbert axioms is a tautology and an example for one of the axioms
was given earlier. Next we note that the modus ponens rule is equivalent to an
assumption that implication is a tautology, i.c. in this usage we assume the truth qf
implication. Now. if A is always true and A — B is always t.rue, it follovys that B is
always true. i.e. it too is a tautology. Thus a Hilbert dec.iuctl.on sy‘stem 1s sou.nd.

A formal system is complete if every valid proposition is derivable within the
system, essentially the converse of soundness, ie.

F proposition implies -, proposition

If a proposition is a tautology it must be derivable within the deduction systemn.
Luckily, we have already shown that the G proof system Is compliete, so all we
need to show is that a proof in this system can be converted to a Hilbert proof. A

46 LOGIC AND DECLARATIVE LANGUAGE

deduction above showed that —=A v A is a theorem in the Hilbert system and we
know that it is also equivalent to an axiom in the G system, so any proof in G may
be converted to an equivalent proof in H. Thus the Hilbert system is complete.

EXERCISES 1.7

1. Use the Hilbert calculus to prove the following propositions:
a —p - (g - —p)
b. =(p—>q)—>p
c. (p—>—p)—>—p
d (p=g) > (P> -9 —>(@->p)

2. Using metasymbols A, B, C, ... to represent any proposition, show that the
following formulas represent theorems:
a. «(A—>A)—>B
b. =(A - B) - —-B
c. =B > (B — A)
d A—-> (B> A4 - B)
e. (A - B)—> (B - A)

CHAPTER TWO

First-order logic

Atomic propositions are non-decomposable statements that have to be interpreted
as a single entity by either a true or false valuation. Symbols such as p, ¢ and r
might represent the following statements:

p john is taller than mary
q mary is taller than tim
r john is taller than tim

and appropriate valuations for the statements are decided by a little extralogical
activity such as applying a tape-measure to the people concerned. A brief examina-
tion of the statements reveals that the truth of statements p and ¢ implies the truth
of statement r, and this observation might be expressed as an implication

PAgOT

This statement encodes something we know about the property of tallness: if it is
true that john is taller than mary and that mary is taller than tim, it follows that john
is taller than tim. There is nothing wrong with descriptions of this sort, but a prob-
lem becomes apparent when the same reasoning is applied to greater numbers of
people. Separate atomic statements have to be written for another comparison, say
s, t and u, and another formula is required to bind these statements together in an
implication relationship like the one above.

Propositional logic by itself has limited expressiveness because each statement
has to be accepted as a whole, even though the statement has an obvious internal
structure. The property or predicate “is taller than” relates two objects in a sentenc.e
and, although the objects being compared might differ in each sentence, the predi-
cate has a common interpretation that might be applied to many pairs of people.
Obviously, a human reader decides the truth of a statement such as p A g = r by

47

48 LOGIC AND DECLARATIVE LANGUAGE

examining the names of the individuals in the atomic statements while interpreting
the predicate “is taller than” in the accepted way. Predicate logic extends propositional
reasoning by defining a new form of statement that allows a property or predicate to
be separated from the objects to which it is applied. The statements above may be
written in this more flexible notation as

Is_taller_than(john, mary)
Is_taller_than(mary, tim)
Is_taller_than(john, tim)

When the person named in the first argument is indeed taller than the person in the
second argument, the atomic formula is interpreted as true in much the same way
as for the propositions above. Furthermore, the transitive nature of tallness is equally
well expressed in the predicate form

Is_taller_than(john, mary) n Is_taller_than(mary, tim) —
Is_taller_than(john, tim)

conveying the same information as before. However, there is a major difference in
that the predicated statements are now connected to each other through their argu-
ments. Each of the argument objects, john, mary and tim, appears twice in the for-
mula above, connecting atomic predicates in a way not possible with propositions.
The real advantage of this separation into predicates and objects is that statements
may be generalised by introducing variables that represent arbitrary individuals:

ls_taller_than(x,y) A Is_taller_than(¥.2) = Is_taller_than(x,z)

This is far more satisfactory because it expresses the relationship in a general form.
None of the propositional work described in Chapter 1 is wasted because that
form of logic occurs as a subset of the more extensive logic now described. Predic-

2.1 SYNTAX FOR FIRST-ORDER LOGIC

FIRST-ORDER LOGIC 49

2.1.1 Terms

A term is defined to be one of the following:

a. Zero-arity symbols called constants, often represented by lower case letters from
the beginning of the alphabet, ie. a, b, c, ... or any one of these letters with
numeric subscripts. An infinite number of such constants is available, but the
examples that follow use only a small number of constants.

b. Symbols called variables that may be substituted by any other term, usually repres-
ented by lower case letters from the end of the alphabet, typically w, x, y and z.

¢. Constant symbols that have arity greater than zero and so require other terms as
arguments before they themselves are terms. Symbols of this kind, called func-
tions, are given lower case letters in the range f, g, A,

Terms are easily constructed from constants and variables because these symbols
are themselves terms and any more complex term has to be constructed with the aid
of function symbols. If function symbols f and g have arities of one and two, each
of the following strings of symbols represents a term:

f@ f(fle)) gy g(flo), fl@) geba), fb))

so the procedure for constructing a term is very similar to the procedure for con-
structing a proposition in the previous chapter. Terms constructed with just constants
and function symbols are called ground terms because they represent unchangeable
forms. Each one of the examples above is a ground term.

Variables in terms may be substituted with ground terms or even with a different
variable. The substitution of term ¢ for variable x is generally shown as {¢/x}, so the
substitution of constant ¢ for variable x in a term may be shown as

8(f), h(b,y){cix) = g(f(c), hb.y))

Only variable x is replaced by term c; other constants and variables remain un-
changed. This pattern of substitutions is summarised in the following rules:

bla/x} = b
valx} =y
ylaly} =a
ftt, b, ., t) {alx} = f(r,{a/x}, t{alx}, ..., t{a/x})

which tell us that the result of substituting a for x in constant b is to leave b
unchanged. Variable y is similarly unchanged when another variable is substituted,
but is replaced by the new term when it is the object of substitution. Substitutions in
functions are achieved by making the same substitutions in each function argument.

2.1.2 Predicates

First-order logic extends the simple notion of statement symbols to the concept of
predicate symbols, usually represented by the upper case letters P, O, R, Each

50 LOGIC AND DECLARATIVE LANGUAGE

predicate symbol has an associated arity or rank indicating a numbe.r of terms
required as arguments to make it into a well-formed formula. A predicate might
have an arity of zero and is then equivalent to the simple proposition described in
Chapter 1, but upper case symbols are used in full first-order logic. Predicate sym-
bols P and R with arities of two and three have correctly formed strings P(a, f(b)) and
R(g(a),b,c) and, since the arguments used here are all ground terms, these strings
may be described as ground predicates or ground formulas. Variable terms that
occur within predicate arguments may be substituted as in the following example:

R(g(x), h(f(y:b).c)laly} = R(g(x), h(f(a,b),c))

In general, the substitution of term ¢, for variable x in a predicate R results in the
substitution being made in each argument term:

Rty -t Me/x) = R {e/x), 6{e/x), ..., e {e/x))

Terms and relations might differ in each first-order language, depending on the
intended interpretation of the language. In addition to this differing base of sym-
bols, there exists a fixed set of logical symbols consisting largely of the proposi-
tional symbols described earlier. As we might expect, a small number of additional
symbols are required to extend logical reasoning to term symbols.

2.1.3 Logical symbols

In addition to the term and predicate symbols defined above, first-order logic has
the following alphabet of logical symbols:

1

AV, DO

G

v, 3

and it is clear that all of these symbols except the last two are inherited from
propositional logic. At the moment, we are only concerned with the syntax of first-
order logic, but it might be helpful to note that the interpretations (semantics) we
shall give to the symbols V and 3 are respectively “for all” and “there exists”. The

syn.1bols are usually read as such, but are also described as the universal and exist-
ential quantifiers.

inen correctly formed terms and predicates, a formula is defined from the
logical symbols by the following rules:

a. Predicates are formulas and the constant L is a formula.

b. If A is a formula then — A is also a formula.

¢. If A and B are formulas then A A B,AVvB,A— B, A < B are also formulas.
d. Given a variable x and a formula A then VxA and 3xA are also formulas.

FIRST-ORDER LOGIC 51

e. A string of symbols not constructed in accordance with these rules is not a
formula.

Thus the simplest formula consists of either the constant L or a single predicate
symbol with an appropriate number of terms as arguments, e.g. P(b), O(a,b) and
R(a,b,c) are formulas. Predicates such as these may be joined together by the log-
ical symbols from propositional logic in much the same way as simple statements
were constructed from proposition statements. Thus formulas —Q(a,b) and P(b) A
Q(b,c) are well formed because they comply with the above rules and are ground
formulas bécause they contain only ground terms.

A formula with unquantified variable terms such as P(x,y) is said to contain free
variable arguments that could be substituted with other terms, whereas a formula of
the type

VxVyP(x,y)

has two variables bound by universal quantifiers. A variable in a formula is bound
by a quantifier if it lies within the scope of an appropriate quantification, otherwise
it is free. For example, the formula

VxP(x,y) v Q(x)

contains one occurrence of x bound by a universal quantifier and a second occurtrence
of x that lies outside the scope of the quantifer and is therefore free. The single
occurence of y is also free. Increasingly large formulas are constructed from smaller
ones according to the four rules for creating formulas. Looking in the other direc-
tion, we see that a large formula contains correctly formed subformulas and the
behaviour of the whole depends on the behaviour of these subformulas.

2.1.4 Substitutions in formulas

Substitutions in formulas are really substitutions in the arguments of predicates
within formulas and they follow the pattern of term substitutions described earlier.

An attempt to substitute a variable in the constant L or in ground formulas has no
effect:

Lialix} =1
Qb.c)taix} = Qb

but a substitution applied to a formula with unbound variables reduces to substitu-
tions in the appropriate arguments of each predicate, thus

P(x) A Q) alx} = P(a) A Q(a.y)

Substitutions in a quantified formula are similar, except that only free occurrences
of the variable are substituted.

52 LOGIC AND DECLARATIVE LANGUAGE

Sets of substitutions are usually labelled with lower case letters from the Greek
alphabet, giving the general form

T={t/x), Lixy, . .., L%}

For example, the substitution
o = {y/x, dly)

is applied to formula P(f(x,a), h(y,z)) as follows:
P(f(x.a), h(y,2)) 6 = P(f(y,a), h(d,z))

the important point being that constant 4 is only substituted for the existing y vari-
able, not for the first substituted item, i.e. the substitutions do not “chain” along.
Any term, including another variable, can be substituted in the place of a variable;
it amounts to renaming the variable. However, a substituted variable should not
become captured on substitution, i.e. it should not be substituted within the scope
of a quantification for that symbol. This possibility is illustrated in the substitution

VxP(x,y){xly} = VxP(xx)

in which free variable argument y is replaced by variable x within the scope of the
Vx quantification, binding the. variable and preventing any further substitution. A
substituted variable should not change the properties of the formula in which it is
substituted and should not become bound on substitution. A substituted term should

be free for the variable it replaces, but in this example the variable x is not free for
y in the initial formula. '

2.1.5 Compositions of substitutions

Muitiple §ubstituti0ns carried out separately might produce a different result from
that tha}lned when the same individual replacements are contained in a single
substitution. For example, two substitutions defined as

n = {y/x}
p = {dly}
might by applied to a formula one after the other. T

T ° p, read as “7 followed by p”
giving the result

: he composition of substitutions
indicates that substitution 7t is followed by p,

P(fx.a), h(y.2)) 7 ° p = P(f(y,a), h(y,2)) p
= P(f(d,a), h(d,2))

In this case the second substitution is able to use the previously substituted variable
to obtain a result different from that obtained in a single substitution ©.

FIRST-ORDER LOGIC 53
EXERCISES 2.1

The following substitution sets are used in the examples below:

n={alx,yiz} @={bly} p=laix,yz by} ©={c/xdly dlz}

1. Carry out the following term substitutions:

a. glx, f(yx), hz)
b. g(x, f(yx), h(z)) 0
c. glx, fyx), h(2)) p
d. P(h(x.y,2), f(x)) p

2. Carry out the following substitutions in formulas:

(P(x,a) A =Q(y.2)) T

. (P(y) > IyQx.y)) ©

Vy(P(y) = Q(x,2)) T

. (VYP(f(x.3)) — Q(g(»), h(2))) p

. Vx@ByP(f(x,2),y) v JzR(z,h(x,y))) ©
Qx.y.z.f(x;y)) 0 ° p

- Qry.zf(xy) p o6

g o a0 o P

2.2 SEMANTICS FOR FIRST-ORDER LOGIC

An interpretation of a set of propositional logic symbols amounts to no more than
a valuation that assigns one of the truth values true or false to each symbol. Inter-
pretations in first-order logic extend the simple valuations of propositional logic to
cover predicates that include argument terms. Just as we assigned a truth value to a
single proposition P, we have to assign one to the predicate P(a), but such an
assigned value may be different from that of formula P(b). The truth value of a
predicate clearly depends on the argument to which it is applied; we need to know
all of the truth values for all possible arguments. If the number of arguments is
small, it might be possible to list truth values of the predicate applied to each
possible argument. More often it is necessary to depend on some understanding of
the interpretation of the predicate P. Once a truth value has been found for each
predicate in a formula, the truth tables given earlier are used to derive a truth value
for the formula as a whole. .

A first-order logic interpretation must provide a non-empty universe or domain
of discourse D with elements representing constants of the syntax. It must also
provide

a. A mapping from constants {a, b, ¢, . . . } in the formal system to elements of the
domain D in the interpretation.

54 LOGIC AND DECLARATIVE LANGUAGE

b. A mapping from function symbols (f, g, &, ... } in the formal system to
operations of the same arity in the interpretation.

¢. A mapping from predicate symbols {P, @, R, ... } in the formal system to
relations of the same arity using arguments from the domain D.

A set of constants {a, b, ¢, d} in a formal language might be interpreted by a
domain of pet animals {rover, pixie, tiddles, fido} as follows:

I(a) = rover I(b) = pixie I(c) = tiddles I(d) = fido
whereas a set of arity-one predicates {P, 0, R} might be interpreted by the relations
I(P) = ((rover), (fido)} KQ) = {(tiddles)} I(R) = {(pixie))

An interpretation of the predicates such as this is simply a list of the arguments for
which the predicate is true, and we conclude that formulas P(a), P(d), Q(c) and
R(b) are all true in this interpretation. These are the only predicates that are rrue in
this interpretation, ensuring that any other combination of predicate and domain
element is false. As a result, P(b) is false because b is interpreted as pixie and this
domain element does not appear in the set of elements interpreting P.

An alternative approach might map each predicate symbol to another symbol of
known meaning, thus the interpretation of the predicate symbols is now

IP)=Dog IQ)=Cat IR)= Parrot

whereas the interpretation of the domain element set {a, b, ¢, d} remains as above.
Given an interpretation in terms of a meaningful name and the domain element
assignment above, we would like to deduce that formulas P(a), P(d), Q(c) and R(b)
are true in this interpretation, but here the method does not work very well. Although
the predicate names clearly define a distinguishable set, it is not obvious which of
The named animals belong in each set. Nevertheless, such an approach works well
in applications where the predicate property may be deduced from the domain
object, e.g. the prime number predicate applied to a number, Prime(5). Similarly,
formulas Odd(x) and Even(x) are predicates applied to natural numbers and their

mean.ing is understood without an explicit listing of all satisfying constants. In this
and in many other examples drawn from arithme

. . tic, such an explicit listing is

impossible.

Logical connectives are interpreted in exactly the same way as described in

apter 1 and are necesssary to decide the truth of formulas constructed according

to the syntax rules. Consider the interpretation given above applied to the formula
P(a) > =0()

olf’sef" ing that constant a is interpreted by rover and this domain element appears in
the relation interpreting P but not in the one interpreting Q. Thus P(a) is true in this

interpretation whereas Q(a) is false, and the atomic formulas may be replaced by
truth values to give a proposition

Ch

true — —false

FIRST-ORDER LOGIC 2 55

An intepretaton of this formula reduces to the following valuation of the proposition:.

val(true — —false)
true implies not false
true implies true

which is obviously true. As a result, we conclude that the formula is true in this
interpretation. Distinguishing between the syntactic and semantic forms in this way
is a heavy burden, so it makes sense to use just the syntactic form and decide how
it is to be used from the context.

Formulas may be manipulated with propositional equivalences in just the same

way as simple propositions. Thus the formula above might be expressed in either of
the following forms:

-|P(a) v —1Q(a)
—(P(@) A Q@)

using a logical equivalence and the De Morgan relation. The last formula might be

interpreted as a more recognisable statement that a pet may not be both a dog and
a cat.

Variables allow formulas such as the one above to be expressed in a more
general way, allowing any constant to replace symbol x in the formula
P(x) > —=0(x)

Each different mapping of variables to constants is called an assignment, but in this
particular case only the assignment of x influences the value of the formula. When
X is assigned to constant b it produces an instantiated formula

P(b) = —Q(b)

and in the interpretation given above this formula evaluates to true. In fact, this
formula evaluates to frue “for all” assignments of the variable, making the quanti-
fied expression Vx(P(x) = —Q(x)) true in this interpretation.

An arity-one function f in the formal language might be interpreted by the
operation father, producing as its result the single domain object that is the father of
the argument domain object. Such an interpretation may be written as

I(f) = {(rover — fido)}

showing that fido is the (only) father of rover. A formula may be defined with
interpretations in the domain of pets in mind, thus

Vx(P(x) — P(fix)))

and is interpreted as a requirement that the father of any dog is also a dog. This
interesting biological fact applies to all animals, not just dogs, and the formula

VxX(Q(x) — Q(f()))

is interpreted to restrict fathers of cats to be cats. Since the same property applies to
all predicates, we might be tempted to write a general formula as follows:

56 LOGIC AND DECLARATIVE LANGUAGE

VAnimale(Animal(x) — Animal(f(x)))

intending to range over both types of animals and instances of animals of one type.
Quantifications over instances of the predicate belong to first-order logic. Quantifi-
cations over the predicates themselves would require the use of second-order logic
and this introduces many unwanted complications. In practice the first-order form is
sufficient to express anything of interest and the second-order form is not required.

Two quantifier symbols have been defined, but one of them is redundant in the
same sense that many of the propositional connectives in Chapter 1 are redundant.
Symbol V is usually taken as the more fundamental quantifier and is interpreted as
a requirement that a predicate is true for all domain elements. Symbol 3 requires
that “there exists one” domain element satisfying the predicate, though there might
be more, and is defined in terms of the universal quantifier as

IxP(x) = 2Vx=P(x)

There exists one domain element that satisfies the predicate if it is not the case that
all domain objects falsify the predicate. If both sides of this equivalence are negated
and the right-hand side simplified with the double-negation rule, the following dual
equivalence is obtained:

—3AxP(x) = Vx-P(x)

Alternatively, if the predicate in the first formula above is replaced by a negated predi-
cate, the following equivalence arises after an application of the double-negation
rule:

Jx—P(x) = =VxP(x)

It is clear from this equivalence that negations may be “passed over” quantifiers

provifled the quantifer is changed to its dual form, converting existential quantifiers
to universal forms and vice versa.

221 Some formulas involving natural numbers
Consider the formula

Vx3yP(x,y)

}mth an mt'erpr‘etation in which the arguments are natural numbers and predicate P
is the.relatlon greater than”. Since this relation is usually represented by the more
meaningful symbol >, the formula might be written in the more familiar form

Vaxdy(y > x)

indicating that for gll x there exists a number y that is greater than x. Clearly this is
frue because there is no larg

: . est number, so a bigger one can alw But
if the intended interpretatio o S i

: n of predicate P is the relation “I ”? i
modified version of the formula might be used: on s than”s the followine

FIRST-ORDER LOGIC 57

Vxdy(x > y)

This formula is false in such an interpretation: there does not exist a smaller
number for every other natural number, so this interpretation is not a model of the
formula. In moving directly from variables to domain elements, we have cheated a
little by not describing the syntactic constants associated with natural numbers.
Although a more detailed treatment of this relationship is postponed until Chapter
5, we note here that the familiar Arabic representation of natural numbers is an
interpretation of the abstract series zero, succ(zero), succ(succ(zero)), . . . described
later. Every number is either zero or the successor of some other number.

Suppose that we have a language with predicates P and Q of arity one and two
together with constants zero, succ(zero), succ(succ(zero)) and as many variables as
required. An interpretation of this language is provided as follows:

I(zero) = 0,
I(succ(zero)) = 1,
I(succ(succ(zero))) = 2

1Py = {(0), (D},
IQ) = {(0.1), (0,2), (1,2)}

Thus P(zero), P(succ(zero)), Q(zero, succ(zero)), Q(zero, succ(succ(zero))), and
Q(succ(zero), succ(succ(zero))) are true whereas all other constants make these

predicates false. In the light of this interpretation, we now decide the truth of
formula

Vxdy(P(x) = Q(x.y))

by checking every possible assignment of x. In order to be true “for all” values of
. x, this formula has to be true for the three constants defined in the formal system. In
other words, we have to show that each of the formulas

Ay(P(zero) — Q(zero.y))
Ay(P(succ(zero)) — Q(succ(zero),y))
(P (succ(succ(zero))) — Qsucc(succ(zero)),y))

is true in the interpretation. Taking the first of these, we note that P(zero) is true in
the interpretation because 0 occurs in /(P). As a result, the formula is only true if
there exists a y such that Q(zero,y) is true in this interpretation. Looking at the
interpretation /(Q) supplied for Q, we see there are in fact two possible pairs gf
arguments that satisfy the requirements: (0,1) and (0,2). The second formula is
satisfied in a very similar manner when the y variable is assigned to the consFant
succ(succ(zero)) because Q(zero, succ(succ(zero))) is true in this interpretation.
Finally the third formula is true because its antecedent P(succ(succ(zero))) is false
and this is sufficient to satisfy the implication, regardless of the consequent. Th.ere
are only three domain elements and the formula is true “for all” of them, making
the universally quantified formula itself true in this interpretation.

58 LOGIC AND DECLARATIVE LANGUAGE
2.2.2 Formulas with function symbols

An interpretation of a language with functions must provide an interpretation for
each function, providing either an explicit listing or a known meaning. Consider a
language with an arity-one predicate P, a function symbol f and with constants
zero, succ(zero), succ(succ(zero)) and succ(succ(succ(zero))). The constants are
given the usual interpretation 0, 1, 2, 3, . . . and function f is given the interpretation

IH={0~>1H(1~2)2—>3)3~0)}
which is just a modulo 3 increment operation. Predicate P has the interpretation
IP) = {(0),)}

indicating that P(zero) and P(succ(succ(zero))) are true in the interpretation whereas
P(succ(zero)) and P(succ(succ(succ(zero)))) are false. A truth value for the formula

VXP(f(f(x)) = =P(f(x)))

is then deduced by evaluating the formula for all domain elements. For example,
substituting the first domain element, we obtain

P(f(f(zero))) = —P(f(zero))

and this is evaluated only when the functions themselves have been evaluated.
Element zero is interpreted as 0 and a single application of function f converts this

to element 1. A further application of the function to element 1 results in element 2,
so the interpretations are as follows:

I(f(zero)) = 1
I(f(f(zero))) = 2

Relation P given above contains element 2 but not 1, so P(f(f(zero))) is true in

;hﬁ interpretation whereas P(f(zero)) is false and the formula above evaluates as
ollows:

lrue — = false
frue - true
true

If this procedure is repeated for the other three domain elements, the universally
quantified formula is also found to be frue.

A formulja is said to be satisfiable in an interpretation if there is some assignment
that makf.s 1t frue in that interpretation. A formula is frue in an interpretation if
every assignment makes it true in that interpretation. In this case the interpretation
s said to be a model of the formula, It is false in an interpretation if there is no

assignment that makes it true. Finally a formula is valid if it is true in every assign-

ment in every ir‘lterpretation; it is a contradiction if false in every assignment of
every interpretation.

FIRST-ORDER LOGIC 59

EXERCISES 2.2

1. A formal system has constants g, b, ¢ and d with predicates P, @, R and S with
the following interpretation:

I(a) = huey 1(b) = duey I(c) = luey I(d) = donald

I(P) = {(huey), (duey)}

I(Q) = {(duey), (luey)}

I(R) = {(donald), (mickey)}

I(S) = {(donald,huey), (mickey,duey), (mickey,luey)}

Decide whether this interpretation is a model for the following formulas:
a. Ax(P(x) A Q(x))

b. I(Px} A Q)

c. VxVy(Rx) A (P(y) v Q(») - Skx.y)

2.3 SEMANTIC TABLEAUX

The move from propositional to predicate logic introduced existentially and univer-
sally quantified formulas that may be either true or false in a particular interpreta-
tion. Remember that the objective of the semantic tableau approach is to break
down formulas into fragments that would have to be true in order to make the root
formula true. For this reason, we need to know the conditions under which quanti-
fied formulas will be true. Taking first the existentially quantified formula 3xP(x),
we claim it is true if there exists an instantiated predicate P{a/x} that is true, i.e. if
there is a ground formula P(a) that is true. This is quite reasonable: the statement
that there exists a domain element x which makes predicate P(x) true is replaced by
aformula containing an element that actually does so. As a result, we have the “left
3” rule shown as one of the semantic tableau rules in Figure 2.1 and the fact that
the truth of P(a) establishes the truth of 3xP(x) is shown by placing it directly along
a tableau line below the earlier formula.

AxP(x) —3xP(x)

P(a) —P(a)

VxP(x) —VxP(x)
P(a) —P(a)

Left Right
Figure 2.1 Tableau rules for quantifiers

60 LOGIC AND DECLARATIVE LANGUAGE

If the left existential rule is used more than once in a given tableau, a fresh
constant must be introduced with each use, otherwise a constant is endowed with
properties that it might not possess. If the fragment 3xP(x) is instantiated to give
P(b) then JyQ(y) is instantiated to give Q(b) in the same tableau, a claim that
object b has both properties P and Q is made. Such a claim is unjustified and is
only avoided if a fresh constant is introduced with every use of the rule.

A similar line of reasoning leads to the establishment of a left universal rule, but
there is a crucial difference in the way this rule is used in comparison with the left
existential rule. An existential formula is of no further interest after a left existential
inference rule has been applied and is therefore discharged in the same way that
propositional formulas are discharged. The fact there exists one object that satisfies
a predicate is demonstrated by instantiating just one constant. In contrast, a univer-
sally quantified formula is not discharged by the use of the left universal rule,
because the quantified formula is true if and only if the predicate is true “for all”
domain elements. As a result, a tableau with fragment VxP(x) should have descend-
ents P(a), P(b), etc., exhausting all the domain elements a, b, c,...,but the rule
instantiates them one at a time. Hopefully, the instantiated formulas allow every
branch of the tableau to close, removing the need for any further instantiations.
Since a universally quantified formula must be true for all domain elements, a left
universal inference may use a constant previously introduced by other left universal
or existential inference rules.

As in the propositional case, “right” rules show the conditions under which

negated formulas are rue, but two logical equivalences given earlier show a diag-
onal relation between left and right rules:

—VxP(x) = Ax—P(x)
—3xP(x) = Vx—P(x)

A “right V" inference is equivalent to a “left 37
rule has the properties of an existential rule. In
when the rule has been used once, and fresh
each usage. Similarly,
universal rule.

acting on a negated formula, so this
particular, a formula is discharged
variables must be introduced with
the right existential rule has all the properties of the left

As a first example, we demonstrate the validity of the formula
IxP(x) - JyP(y)
by constructing a semantic tableau with the
shows how a propositional “right =" rule is

into two separate quantified subformulas,
duced through an applicatio,

negated formula at its root. Figure 2.2
first applied to decompose the formula
Then, in line 4, the constant g is intro-
n of the left existential rule. When an instance of an

rmula in line 3 js not discharged by the applica-
—P(a) on a single path ensures the

FIRST-ORDER LOGIC 61

1. =(xP(x) — IyP(y))
|

2. JxP(x) right > on 1
1

3. —3yP(y) as above
|

4. P(a) left3on2
|

S. —P(a) right 3on3
X

Figure 2.2 A proof tableau

closure of that path. Additions of —~P(b), —=P(c) and others by further applications
of the rule would not change the result.

In a slightly more ambitious example, we use the same approach to prove the
formula

Vx(P(x) = Q(x)) = (VxP(x) = VxQ(x))

An application of the “right —” rule discharges the formula at the root of the
tableau in Figure 2.3, producing a choice of two formulas that could be subjected
to further inference rules. A left universal inference could be applied to line 2 or

1. =(Vx(P(x) = Q(x)) = (VxP(x) = YxQ(x)))
|

2. Vx(P(x) > Q(x)) right — on 1
|
3. —(VxP(x) > VxQ(x)) as above
|
4. VxP(x) right - on 3
I
5. —VxQ(x) as above
|
6. —-Q(a) right V on 5
|
7. P(a) left V on 4
|
8. P(a) - O(a) left V on 2
PN
—P(a) Q(a) left > on 8
X X

Figure 2.3 A closed semantic tableau

62 LOGIC AND DECLARATIVE LANGUAGE

a right implication to line 3, the latter option being taken in this demonstration. A
“right V" rule is then used to discharge the formula in line 5, introducing constant
a into line 6. Once introduced, this constant is reused when the “left V" rule is
applied to the formula in line 4, but the formula itself is not discharged. The same
constant is used yet again when the “left V” rule is applied to line 2, producing the
formula in line 8. A single propositional “left —” inference then closes the tableau.
Two universally quantified formulas in lines 2 and 4 remain undischarged and
could be used to introduce further constants into the tableau, but both paths are
closed and further ground formulas would not change anything. Just as it is wise to
apply non-splitting rules first, in the propositional case it is equally wise to apply
existential rules (either “left 3” or “right ¥”) first to quantified formulas.

In propositional examples, a tableau might close before all of its formulas have
been discharged; but if this does not occur, the tableau terminates when it runs out
of connectives to decompose. The introduction of universally quantified formulas
generates an endless “self-generated universe” of constants that might continue
indefinitely. Closure might now be the only way of obtaining a certain result. A
termination problem arises in the following non-valid formula:

IAxP(x) A AxQ(x) = Ix(P(x) A O(x))
According to this formula, the existence of objects that separately satisfy predicates
P and Q implies the existence of a single object that satisfies both P and Q. This is
in fact the misconception avoided by instantiating existential formulas in a given
tableau with different constants. Since the formula is not universally true, we would
not expect its negation to produce a closed tableau, and as shown in Figure 2.4, this

1. =(3xP(x) A IxQ(x) - Ix(P(x) A QX))
|

2. AxP(x) A AxQ(x) right > on 1
|
3. —x(P(x) A Q(x)) as above
|
4, IxP(x) left Aon 2
I
5. 3x0(x) as above
|
6. P(a) leftJon 4
I
7. —(P(a) A Q(a)) right 3 on 3
N
8. —P(a) —Q(a) right A on 7
x

Figure 2.4 An open tableau

FIRST-ORDER LOGIC 63

is indeed the case. The first part of the tableau proceeds in much the same way as
the previous example, but fails to generate ground atoms capable of closing every
path. The two existential subformulas in lines 4 and 5 are discharged to give ground
formulas P(a) and Q(a), then the right existential rule is applied to the formula in
line 3 to give the result in line 8. A propositional rule then produces one closed path
and one open path. Since the formula in line 3 is not discharged by one use, it may
be used to generate further ground formulas such as —(P(b) A Q(b)) but this causes
further branching. Note that further instantiations using constants c, d, e will not
solve the problem, though this is less obvious than in the propositional case.

EXERCISES 2.3

1. Use semantic tableaux to demonstrate the following tautologies:
a. VxP(x) — P(a)

. Ax(P() v Q) = GxP(x) v 3xQ(x))

c. (P = VxQx)) © Vx(P — 0x))

d. Vx(P(x) = Qx)) = —3Ix(P(x) A =Q(x))

e. Yx0(x) » —3x—Q(x)

f. Vx(P(x) A Q) & (VxP(x) A VxQ(x))

g VX(P(x) = 0(x)) A Fx(R() A =0()) = IxRE) A —~PX))

o

2. Brackets are not absolutely necessary when writing a formula because pred-
icates such as P(x), Q(x) and R(x) may be written more simply as Px, Qx and Rx.
Use this abbreviated notation in a semantic tableau to show that the following
formula is valid:

IxPx A Vx(Px — Qx) A Vx(Qx — Rx) = 3x(Px A Rx)

Predicates of greater arity, such as Q(x,y) and R(x,y,z) may be shown in a similar
style as Qxy and Rxy:z.

3. Show that the following formula is a contradiction by attempting (and failing) to
establish its truth in semantic tableaux:

VxVyVz(Pxy A Pyz — Pxz) A Vx—Pxx A AxTy(Pxy A Pyx)

2.4 SEMANTIC ENTAILMENT

Semantic entailment or logical consequence is applied to predicated formulas in
exactly the same way as the propositional case. An entailment

64 LOGIC AND DECLARATIVE LANGUAGE

ALAy ..., AFB

is true if there is no interpretation that makes the formula on the righF false when
every formula on the left is true. Consider a potential entailment using just one
predicate symbol P:

—.P(x) E VX—|P(X)

in all possible interpretations with the two-element domain {1, 2}. Each domain
element leads to two possible interpretations of the predicate P(1) and P(2), both of
which might be true or false, producing the four possible interpretations in the table:

n n I3 14
P(1) true true false false
PQ2) true false true false
—-P(1) false false true true
—-P(2) false true false true
Vx—P(x) false false false true

A negation symbol in front of a predicate inverts the truth value obtained for the
whole formula, just as for a propositional formula. Since there are only two domain
elements in this case, the formula is true “for all” elements if it is true for both
elements 1 and 2. In order to confirm the entailment, we have to show that the truth
of Vx—P(x) follows from the truth of —P(x). In other words, we have to show that
if —P(x) evaluates to true for any one domain element, the formula must evaluate
to true for all elements. A glance at the table shows this is not the case: interpreta-
tions I2 and I3 have entries where —P(x) evaluates to true but in which Vx—P(x)
evaluates to false.

Tumning our attention to a second possible entailment

—P(x) E —VxP(x)

we have .to show that formula —VxP(x) is true whenever the formula —P(x) is true.
To do this, we first extend the table above to include two more lines:

n n 3 14
VxP(x) true false false false
—~VxP(x) false true true true

This t1m§, a glance at the formula shows the entailment does follow: the right-hand
formula is true in the three interpretations that make the left-hand side true.

. The tru.th values of formulas —VxP(x) and Vx—P(x) are clearly different in each
Interpretation, confirming that these formulas are not equivalent. Remembering the

FIRST-ORDER LOGIC 65

carlier identity relating universal and existential quantifiers, this second entailment
could be written as

—IP(X) E 3x—‘P(x)

and the entailment seems much more obvious. When a particular instantiation
makes —P(x) true, there must exist a domain element that makes the formula
Ix—P(x) true.

The number of cases that has to be considered increases with the number of
domain elements, so this method of demonstrating entailments is very limited. An
alternative approach depends on generating just those constants necessary to dem-
onstrate the entailment, the so-called self-generated universe of the entailment. As
an example, we take an entailment with quantified formulas but with a similar
structure to one of the propositional entailments examined in Section 1.4:

Vx(P(x) = Q(x)), Vx(Q(x) = R(x)) F VYx(P(x) = R(x))

As in the propositional examples, we have to show there is no interpretation that
makes all the formulas on the left rrue while making the entailed formula on the
right false. As a result, the entailment is only made invalid when the entailed
formula Vx(P(x) — R(x)) is false, and this only occurs when there is some constant
¢ that makes formula P(c) — R(c) false. There might be more, but one example is
enough to falsify the entailment. Having generated the constant ¢ in this way, we
now note that both formulas on the left are universally quantified and should
therefore be true for all domain elements. This being the case, they must be true for
¢, since it is one of the domain elements, and the quantified entailment above
reduces to the following ground formula entailment:

P(c) = Q(c), Q(c) = R(c) E P(c) = R(c)

One constant might not seem enough to demonstrate the entailment, but constant ¢
might be taken as any one constant that makes the entailed formula false. Both
formulas on the left are universally quantified and therefore true for such an arbit-
rary constant, since they are true for all such constants.

An entailment containing only ground formulas is equivalent to a propositional
form and is treated in exactly the same way. Formula P(c) = R(c) is false only
when P(c) is true and R(c) is false, so these are the only valuations that need to be
considered. This leaves only Q(c) undecided, but a small truth table shows the
consequences of assigning each truth value to this formula:

O(c) P(c) - Q(c) Q(c) = R(c) P(c) = R(c)
false false true false
true true false false

It appears that no valuation of Q(c) makes both of the formulas on the l(?ft of th.e
entailment true while making the formula on the right false; the entailment is

66 LOGIC AND DECLARATIVE LANGUAGE

proven. As in the propositional case, the failure of 2 systematic attempt to falsify the
right-hand side of the entailment while satisfying the left-hand side proves validity.
A slightly different strategy is required to demonstrate the following entailment:

AxP), Yx(P(x) = Q()) kE Ix0(x)

Again we aim to prove the entailment by failing to find a counterexample in a
systematic search for interpretations that satisfy every formula on the left while
falsifying the formula on the right. In this particular example, the right-hand for-
mula is false if none of the domain elements makes Q(x) true. This means that “for
all” domain elements the predicate Q(x) is false, giving the formula a universally
quantified nature. An existentially quantified formula on the right-hand side of an
entailment clearly behaves like a universally quantified formula on the left and is
not a suitable starting-point.

However, the left-hand formula 3xP(x) is true if there exists a single constant
¢ making P(c) true, and this makes a better starting-point in the search for a
counterexample. Given such a constant, we then reason that the right-hand formula
AxQ(x) is false if and only if formula Q(x) is false for all domain elements. This
being the case, the formula must be false for the element ¢ that satisfies formula
P(x), since this is just an arbitrarily generated argument. The universally quantified
formula on the left must also be true for the element c, since it has to be true for all
domain elements. As a result, the search for a counterexample reduces to a check of
the following propositional entailment:

P(c), P(c) - Q(c) F Q(c)
There is no valuation that makes both formulas on the left true while making the

one on the right false, because the implication must be false when P(c) is true and
0O(c) is false. The search for a counterexample fails and the entailment is proven.

EXERCISES 2.4

1. Use the truth value reasoning techniques of the preceding section to demonstrate

the following entailments:

a. Vx(P(x) > Q()), VxP(x) & VxQ(x)

b. Vx(P(x) = Q(x)), Vx(Q(x) - —R()) k Vx(P(x) > —R(x))
. Vx(P(x) v O(x) = R(x)), Vx—R(x) F Vx-P(x)

d. Vx(P(x) - Q(x)) E VxP(x) - VxQ(x)

. Us.e truth value reasoning to demonstrate the foll
existential quantifiers:

a. x(P(x) > Q(x)), IxP(x) k IxQ(x)
b. Vx(P(x) v Q(x) = R(x)), I—R(x) E Ax-P(x)
c. Vx(P(x) - Q(x)), Ix(R(x) A P(x)) F Ix(R(x) A Qx))

owing entailments containing

FIRST-ORDER LOGIC 67
2.5 A GENTZEN PROOF SYSTEM FOR FORMULAS

G system inference rules operate on two sets of formulas in a sequent with the form

antecedent => succedent

and aim to show antecedent formulas to be rue while showing succedent formulas
to be false. G system rules demonstrate validity by failing to falsify the sequent
itself, leading to a collection of subsequents called axioms.

The Gentzen G proof system described in Chapter 1 is extended to first-order
logic by introducing the four new rules shown in Figure 2.5. These rules have a
similar form to the semantic tableau rules, including the diagonal relationship be-
tween the rules. Both the “left 3” and “right V" rules are considered to be existen-
tial inferences that cause formulas to be discharged after one application, leaving
only the instantiated formula. The fact that the “left ¥ and “right 3" rules do not
discharge their formulas is shown by reproducing the formula below the line in the
deduction tree. These four rules have to be used in conjunction with those already
given for propositions in Figure 1.10.

As a first example, we consider the formula

Ax(P(x) A Q(x)) = FxP(x) A IxQ(x)

The existence of a single object making both predicates P and Q true implies the
existence of an element making P true and the existence of one making Q frue.
This formula is certainly valid, unlike the reverse implication, for which the seman-
tic tableau is given in Figure 2.4. In order to demonstrate its validity, the formula is
made the succedent in a sequent and G inference rules are applied as appropriate.
Figure 2.6 shows how a right implication rule first generates a sequent to which
either a “left 3” or “right A” might be applied. Since the second option causes the
proof tree to divide, it is delayed and the left existential formula instantiated. A
dividing inference has to be applied at line 4, at which point the “right A” rule is the
only rule that can be applied. Once this is done, the right existential formulas may
be instantiated with the previously introduced constant to produce axioms. Notice
that the right existential formulas remain in the final sequents, but this is not a
problem because these sequents are axioms, and the original formula is proven.

X, Px)=>Y X=WPx),Y
X,Play=Y X = IxP(x), P(a), Y
X, VxP(x)=>7Y X = VxPx), Y
X, VxP(x), P(a)=>Y X = Pa),Y
Left Right

Figure 2.5 G system quantifier rules

68 LOGIC AND DECLARATIVE LANGUAGE

= Ae(P(X) A QX)) = IxP) A TxQ ()

IP() A Q) = P (x) A Q) right > on 1
P(@) A 0(@) = xP() A Q) left 3 on 2
P(a), 0(a) = TP (x) A QX left Aon 3
P(a), Q) = IxP(x) P(a), Q(a)=>3xQ(x) right Aon4

P@a), 0@ = P@).,3xP(x) P@),0@=0), Q) rightIon4
X X

Figure 2.6 A G system proof tree

= Vx(P(x) v Q(x)) = VxP(x) v VxQ(x)

Vx(P(x) v Q(x)) = VxP(x) v Vx0(x) right — on 1
Vx(P(x) v Q(x)) = VxP(x), Vx0(x) right v on 2
Vx(P(x) v Q(x)) = P(a), VxQ(x) right Von3
Vx(P(x) v Q(x)) = P(a), Q(b) right V on 4
Vx(P(x) v Q(x)), P(a) v Q(a) = P(a), Q(b) left V on 5
Vx(P(x) v Q(x)), P(a) = P(a), Q(b) left von 6
X

Vx(P(x) v Q(x)), Q(a) = P(a), Q(b)
Figure 2.7 A non-terminating tree

As a second example, we try to prove the validity of the formula

Vx(P(x) v Q(x)) = (VxP(x) v YxQ(x))

Figure 2.7 shows how two right propositional inference rules are followed by two
applications of the right universal rule, generating two differently labelled con-
stants. Fresh constants are required for each application of either the left existential
or right universal rules, leaving two different predicates instantiated with two dif-
ferent constants, P(a) and Q(b). Finally the left universal rule is applied, generating
ground atoms that close one branch of the tree. The remaining branch of the tree is

the non-axiom sequent

Vx(P(x) v Q(x)), Q@) = P(a), Q(b)

and further instantiations of the universally quantified formula do not lead to a
proof tree. The situation is similar to Figure 2.4, because a deduction has not

terminated and the whole matter is left unresolved.

FIRST-ORDER LOGIC 69

EXERCISES 2.5

1. Show that the following formulas are valid by constructing a proof tree, taking
each formula as the initial succedent:

a. VxP(x) > IxP(x)

b. VX(P(x) = Q) —» @QxP(x) = Q)

¢. =A(P(x) A Q%)) = Vx(P(x) o O(x))
d. VxP(x) v 3xQ(x) = Ix(P(x) v O(x))

2. By constructing a proof tree, demonstrate the validity of the following formulas:
a. VxVyR(x,y) & VyVxR(x,y)

b. IxIyR(x,y) <> IyIxR(x.y)
c. dxVyR(x,y) = VyAxR(x,y)

Two of these formulas are mutual implications and one is a simple conditional.
Explore the result when the conditional of the last example is reversed.

3. Prove that the following formulas are valid:

a. Vx(P(x) = =0(x)) A Ix(R(x) A P(x)) = Ix(RX) A =Q(x))
b. IP(x) > =01)) = (VX(R(X) A P(x)) = Fx(R(x) A =Q(x)))

2.6 NORMAL FORMS

Normal forms are standard methods of writing formulas or proofs that reveal prop-
erties not obvious in the unnormalised form. A number of such forms were defined
for the propositional subset of first-order logic and further definitions connected to
quantified formulas are now given.

2.6.1 Prenex normal form

A formula in prenex normal form has all its quantifier symbols to the left of a
collection of predicate and logical connective symbols called the matrix. If symbol
Q represents either an existential or universal quantifier with its variable and M
represents the matrix, a prenex normal formula has the following general form:

QIQ‘ZQ] ..M

Consider first a formula that is not in prenex form because two quantifiers appear
within a propositional subformula

V(P(x) A VyAx(Q(x,y) v R(x,Y)))

70 LOGIC AND DECLARATIVE LANGUAGE

Notice further that symbol x is used for two distinct variables: the inner disjunction
has variable x bound by an existential quantifier and the variable in P(x) is bound
by the outer universal quantifier. Since the precise symbol given to a variable in a
quantified formula is unimportant, one of the occurrences of x may be relabelled
with symbol z to give

Vx(P(x) A Vy3z(Q(z,y) v R(zy))
Quantifiers can then be moved to the left, producing a formula in prenex form:
VxVy3z(P(x) A (Q(zy) v R(z.y))

Notice that, in moving the quantifiers to the left, we have assumed the two quanti-
fiers can be “carried over” a predicate such as P(x). This repositioning is justified
by the following logical equivalences:

Ox(AAB) =AAQxB
OxAvB) =Av QxB
Ox(A—>B)=A - OxB

Provided x does not occur free in A, the quantifier can be carried over this formula

to the left, increasing its scope. Similar logical equivalences occur when the quan-
tifier occurs to the left of a conjunction or disjunction symbol:

Ox(AAB)=QxAAB
Ox(AvB)z=QxAVB

Again the scope of a quantifier is extended to the whole formula, so variable x
should not occur free in B. Provided the movement of a quantifier is not allowed to
capture a free variable on moving to the left, the change to prenex form is straight-
forward for conjunctions and disjunctions.

. Sl.igh.tly more care is necessary when a quantification on the antecedent of an
implication is to be applied to the whole formula rather than just the antecedent. In

this case the quantifier changes from existential to universal, or vice versa, as its
scope changes:

Vx(A - B)=3xA —» B
Ix(A > B) =VxA - B

C.opﬁrm'ation of thgse identities is easily obtained by replacing implications with
disjunctions before increasing the scope of the quantifier:
IxA > B=-3IxA VB

=Vx(-A v B)
=Vx(A - B)

g;\;:gil;s:, f?ir:ir}l{las \yith implications require greater care than those with only
and disjunctions. Consider the followin. i

D o00) 1 prortons g conversion of formula VxP(x.y)

FIRST-ORDER LOGIC 71

VxP(x,y) = —=3yQ(y)

VxP(x,y) = —3z0(2) rename variable

YxP(x,y) = Vz—Q(2) move negation inwards
Vz(VxP(x,y) = —Q(z)) extract consequent quantifier
Vz3Ax(P(x,y) = —0(z)) extract antecedent quantifier

2.6.2 Normal forms of writing proofs

A formula expressed in prenex normal form is equivalent to the formula from
which it was derived, but has some useful features for a task in which it is to be
used. Similarly, a sequent proof has normal forms equivalent to an unnormalised
proof, but the application of inferences in the normal form illustrates features not
obvious in the initial proof. In earlier examples, quantifier inferences or propositional
inferences were used in a sequent proof in the order that each one appeared in the
decomposition of the formulas. A Gentzen normal form of proof requires that all
quantifier inferences are applied before any propositional inferences are used, divid-
ing the proof into two separate parts above and below a line called the midsequent.
Working down from the root formula, the midsequent is the first sequent that does
not contain any quantifier symbols. Such a normal form of proof has the general
appearance shown in Figure 2.8: a formula to be proven occurs at the top of a
deduction tree followed by a number of quantifier inferences, leading at some point

to the midsequent. Below this, only propositional inference rules are applied until
axioms are obtained. '

Quantified formula

Quantifier rules

. Midsequent

/ Propositional rules E

Figure 2.8 Midsequent proof pattern

Propositional and quantifier inferences have so far been applied in the order in
which they arise. Applications of the two sorts of rules have been interleaved a.nd
the first inference rule to be applied has often been a propositional one. If we w.1sh
to apply every quantifier inference before any propositional rule, some modiﬁcat!on
of the procedures described in previous sections is required. One possible solution
is to express all formulas in prenex normal form so that quantifier inferences are
naturally the first to arise.

The following formula has already been validated by the Gentzen proof of
Figure 2.6:

72 LOGIC AND DECLARATIVE LANGUAGE

(P(x) A Q(x) = @ExP(x) A QX))
Using the identities given earlier, the formula is converted to prenex normal form:

IPE) A Q) = (P () A IxQ(x))

Vx(P(x) A Q(x)) = @yP(y) A 3zQ(z)) rename variables
Vx((P(x) A O(x)) = @xP(x) A IxQ(x))) extract quantifier
Vx3yAz((P(x) A Q(x)) = (P(y) A Q(2))) extract quantifier

and a proof tree for the modified formula is shown in Figure 2.9. Since the prenex
formula is equivalent to the original one, the fact that it is proven valid should not
be a great surprise. The real point to be observed is that quantifier inferences are
now applied first, leading to the midsequent line, then propositional rules are used
to produce axioms. Only “right” quantifier rules are required in the proof and this
will be the case in all proofs arising from a prenex form succedent. There can be no
“right” negation or propositional rule that could move quantifiers over to the left
because these connectives have been moved into the matrix. If the matrix had
additionally been converted to negation normal form only, “right” propositional
rules would be required.

As a larger example, we take the two formulas already in prenex form:
VxVyVz(P(xy) A P(y,2) = P(x2)) Vx(=P(x.x))
and show that the prenex formula

VaVy(P(x,y) = —P(y,x))

is a consequence. This might be achieved by using the semantic entailment arguments
from the previous section or by building a semantic tableau from the first two for-
mulas and a negation of the third. Equivalently, we might show that a Gentzen proof
taking the first two formulas in its antecedent and the entailed formula as succedent
leads to a proof tree. Figure 2.10 shows that the entailment does in fact hold and
that a midsequent again divides quantifier inferences from propositional inferences.

= Vody3z(P(x) A O(x) = P(y) A O(2))

= 3y3z(P(a) A Q(a) - P(x) A Q(2)) right V on 1

= 3z(P(a) A Q(a) > P(a) A O(2)) right Jon 2
midsequent = P(a) A Q(a) - P(a) A O(a) right 3on 3
P(a) A Q(a) = P(a) A Q(a) right — on 4
P(a), 0(a) = P(a) A Q(a) leftAon 5
P(a), 0(a) = P(a) P(a), Q(a) = Q(a) right Aon 6

X x

Figure 2.9 Proof of a prenex formula

FIRST-ORDER LOGIC 73

VxVyVz(P(x,y) A P(y,2) = P(x,2)), Vx=P(xx) = VxVy(P(x,y) > —P(y.x))

VaVyVz(P(x,y) A P(y,2) = P(x,2)), Vx=P(x.x) = P(a,b) = —=P(b,a)

P(a,b) A P(b,a) - P(a,a), Vx—P(xx) = P(a,b) = —P(b,a)

P(a,b) A P(b,a) = P(a,a), ~P(a,a) = P(a,b) = —P(b,a)

P(a,b) A P(b,a) > P(a,a), -P(a,a), P(a,b) = —P(b,a)

P(a.a), =P(a,a), P(a,b) = —P(b,a)

P(a,a), P(a,b) = —P(b,a), P(a,a)
X

—P(a,a), P(a,b) = =P(b,a), P(a,b) A P(ba)

—P(a,a), P(a,b) = —P(b,a), P(a,b) —P(a,a), P(a,b) = —P(b,a), P(b,a)
X

—P(a,a), P(a,b), P(b,a)= P(b,a)
X

Figure 2.10 A deduction from prenex formulas

2.6.3 Negation normal form

A formula is said to be in negation normal form (NNF) if its logical symbols are
restricted to the set {3, V, A, v, -, L, (,)} and every occurrence of the symbol —
stands directly before an atomic formula. Thus, the formula ~VxP(x,y) is not in
NNF, but the equivalent form 3x—P(x,y) has the desired property. In fact, every
first-order formula can be expressed in an equivalent negation normal form and the
procedure for achieving this is an extension of that described in Chapter 1.

a. Use equivalences to replace unacceptable symbols by those in the above set. In

practice this usually means the replacement of implication and mutual implica-
tion symbols.

b. Use further equivalences to drive inwards all — symbols that do not stand
directly before atomic formulas.

As a first example, we convert the formula
AP A QX)) = FxP(x) A Tx0K))
to negation normal form as follows:

3P() A Q(x)) > FxP(x) A TAQX) _
~@x(P(x) A Q(x)) v (3xP(x) A IxQ(x)) propositional identity
Vx—(P(x) A Q(x)) v (3xP(x) A 3xQ(x)) quantifier identity
VX(=P(x) v ~Q(x)) v (3xP(x) A 3xQ(x)) De Morgan

A formula F in NNF has a dual form that is no more than the negated formula —f
adjusted so that it too is in NNF. The simplest negation normal forms are atomic

74 LOGIC AND DECLARATIVE LANGUAGE

formulas with or without preceding negation symbols such as P(x), —Q(x.,y) and
—R(x,y,z). Such formulas are usuaily called literals and 'have dual forms that are
obtained by adding or removing negation symbols, producing the dual forms —P(x),
Q(x,y) and R(x,y,z) from the examples above. Quantified formulas have dual forms
that are obtained by the equivalences given earlier:

Formula Dual
VxP(x,y) Ix—P(x,y)
IxP(x,y) Vx—=P(x,y)
—VxP(x,y) VxP(x.y)
—AxP(x,y) AxP(x,y)

Dual forms are equivalent to the negated formulas and each one of the tabulated
duals could have been obtained by simplification of the negated formula. The dual
of formula VxP(x,y) is obtained as follows:

=VxP(xy) = Ix=P(x,y)

using the earlier identity.
The dual form of the NNF formula

Vx(=P(x) v =Q(x) v (@xP(x) A IxQ(x))
is obtained by negation and simplification as follows:

S(Vx(=P(x) v = Q) v AxP(x) A IxQ(x)))
“Va(=P(x) v =0()) A ~(TxP(x) A IQ(x))
(P(x) A QX)) A (Vx=P(x) v Vx=0(x))

but this result might have been written by inspection of the previous formula: uni-
versal and existential symbols are exchanged, atomic formulas are replaced by their
dual forms and disjunctions and conjunctions are exchanged.

A formula might be in prenex form without also being in NNF; this is certainly
the case when a prenex formula contains implication connectives or if negation
symbols have scope over more than one predicate. Conversely,
in NNF but not in prenex form. Given a formula in either of these forms, it should

not be difficult to adjust the formula so that itis in both forms; the following prenex
formula is modified to ensure it is also in NNF:

VadyAz((P(x) A Q(x)) = (P(y) A O(2)))
Vady3z(—(P() A Q) v (P(y) A O(z))) identity
VadyAz(=P(x) v ~0x) v (P(y) A Q(2))) De Morgan

A.fomxula in NNF is very .easily adjusted to put it in prenex form. An NNF formula
might have several quantified subformulas within a propositional statement and

each subformula might use the same variable symbol. This layout appears in the
following formula;

a formula might be

FIRST-ORDER LOGIC 75

P v QX)) v (Vx=P(x) v Vx=0Q(x))

but the variables could be renamed and the quantifiers then moved to the left to
give a prenex form

IVyVz((P(x) v QX)) Vv (=P(y) v =Q(2))

Later we shall see that there are sometimes advantages in retaining an NNF formula
in non-prenex form.

2.6.4 Refutation normal form

A formula, or set of formulas, is proven valid by making it the succedent of a

sequent and applying inference rules until a proof tree is obtained. Thus the starting-
point of the proof is the sequent

= formula

but the left negation rule allows this sequent to be identified with another sequent

—formula =

A given formula may be proven from either starting-point, but in the second case
the first rule to be applied is the left negation inference and the sequent is returned
to the succedent form. However, if the negated antecedent formula is converted to
negation normal form, the sequent becomes

(—formula),, =

and applications of negation rules are delayed until the very last steps of the proof.

Earlier we saw how prenex formulas lead to special normal forms of proof in
which all the applications of quantifier inference rules are discharged before any of
the propositional inferences. As a result, a special sequent without any quantifier
symbols called the midsequent appears to divide the two different kinds of infer-
ence rules. This is possible because the quantifier inferences are naturally the first
to be used in a sequent containing only prenex formulas. A second method allows
all quantifier inferences to be discharged before any propositional ones are used.
Especially useful in refutation form, this second method allows quantifier inference
Tules to be applied to quantified subformulas within sequent formulas, provided the
sequent formulas are expressed in negation normal form. The need to have for-
mulas in NNF is clear if we consider the apparent need to apply a “left V” inference
tule to the subformula VxP(x) in the following sequent:

Aab) v —(P(b) A VxP(x)) =
but when this formula is converted to NNF it becomes

0(a,b) v —P(b) v Ix—P(x) =

76 LOGIC AND DECLARATIVE LANGUAGE

(P (x) A QX)) A (Vx=P(x) v Vx—Q(x)) =

(P(a) A Q(a)) A (Vx =P(x) v Vx=0(x)) =

(P@@) A Q@) A (=P(a) v Vx—Q(x)) =

midsequent (P(a) A Q(a)) A (=P(a) v ~Q(a)) =

P(a) A Q(a), —P(a) v —Q(a) =
P(a), Q(a@), —P(a) v = Q(a) =
P(a), Q(a), ~P(a) = P(a), Q(a), ~Q(a) =
P(a), Q(a) = P(a) P(a@), Q@ = Qa)

X X

Figure 2.11 A refutation tree

and it is clear that what is really required is an application of the “left 3" rule to
give the subsequent

Qa,b) v —P(b) v =P(c) =

Formulas in NNF only contain negation symbols within literals and we can be cer-
tain that in this case the subformula quantifiers really are what they appear to be.
Earlier it was shown that the formula

AP A Q(x)) = @xP(x) A IxQ(x))

is valid By making it the succedent in the proof tree of Figure 2.6. This formula was
converted to NNF as an example and its dual form was derived as

Ix(P(x) A QX)) A (Vx=P(x) v Yx=0(x))

If this formula is taken as the antecedent in a root sequent and quantifier rules are
applied to quantified subformulas, the deduction tree in Figure 2.11 is obtained. All
of the quantifier inferences can be applied before any of the propositional infer-
ences; this is because subformulas can be instantiated when the formula is in NNF.
The tree is divided by a line called the midsequent, above which there are only
quantifier inferences and below which there are only propositional inferences. Every
branch of this tree terminates with an axiom, indicating that an attempt to demon-
strate the truth of the negated formula has failed. This in turn indicates that the
negated formula is a contradiction and the original unnegated formula must be a
tautology, i.e. it is a valid formula. Proofs of this kind are called refutations because
they achieve their objective by refuting a dual, negated formula.

2.6.5 Skolem functions

Skolem functions may be used to re

place existentially quantified variables in a
formula such as

FIRST-ORDER LOGIC 77

I(Woman(x) n Loves(mike,x))

simply by replacing the quantified variable by a specific though unknown object
(Woman(a) A Loves(mike,a))

The claim that “there exists” such an object is replaced by a label for the object
itself in a process resembling an application of the “left 3” inference rule. Suppose,

however, that we try to extend this reasoning to the following formal expression of
“every man loves a woman™

Vx(Man{x) — Iy(Woman(y) n Loves(x.y)))

by instantiating a specific object in the place of the existentially quantified variable
Vx(Man(x) — (Woman(a) A Loves(x,a)))

Unfortunately, constant a represents a specific though unknown woman, so the for-
mula suggests that every man loves the same woman. The problem arises because
the variable of the existential quantifier occurs within the scope of a universal quan-
tifier and the simple constant a above does not take this into account. Every man
loves 2 woman, but the woman may be different for each man and any substitution
for the existentially quantified variable must reflect this. Skolem solved the problem
by introducing a function f(x) to represent an existentially quantified object within
the scope of a universal quantifier. Function f(x) is substituted in place of the simple
constant a to give the formula

Vx(Man(x) = (Woman(f(x)) A Loves(x, f(x))))

In this Skolemised form, Man(a) loves Woman(f(a)), Man(b) loves Woman(f(b))
and so forth, allowing the individual instances of men @, b, c, ... to be mapped to
distinct women f(a), f(b), f(c),

Going still further, we formalise the well-known claim that every sailor loves a
woman in every port he visits:

Vx(Sailor(x) — Yy(Port(x,y) = (IzWoman(z) A Loves(x,2)}))

Now the woman who is loved depends not only on the sailor but also on the port,
ie. it is a function of two variables and the Skolem function f(x,y) used to replace
the existentially quantified variable takes this into account:

Vx(Sailor(x) — (VYyPort(x,y) = (Woman(f(x.,y)) A Loves(x, f(x.y))))

A simple rule emerges from these examples: the arity of a Skolem function used to
replace an existentially quantified variable depends on the number of universal.ly
quantified variables within whose scope the existential variable is placed. An exis-
tentially quantified variable that is not within the scope of any universally quanti-
fied variable is replaced by a simple constant, an arity-zero function. Each additional
universally quantified variable increases the arity of the Skolem function by one.

There is an implicit assumption that the formula being Skolemised appears in
the antecedent of a sequent. Thus the sequent

78 LOGIC AND DECLARATIVE LANGUAGE

YxdyP(x,y) =
is Skolemised to give
VxP(x, f(x)) =

However, the initial sequent might equally well be written in the following succedent
form:

= xVy—P(x,y)
and the Skolemised form could also be transformed to the succedent form
= Ix-P(x, f(x))

The replacement of existential quantified variables in an antecedent is clearly equiva-
lent to the replacement of universally quantified variables in a succedent. The pro-
cedure for antecedent formulas outlined above is now inverted: universally quantified
variables are now replaced by functions of arity equal to the number of existential
quantifiers within whose scope they are positioned. There is a dual system of Skolem
functions corresponding to the dual forms of formulas described earlier. Skolem
functions applied to succedent formulas are sometimes called Herbrand functions
because they were used by Herbrand in the theorem described below.

The following example shows the care necessary in inserting Herbrand or Skolem
functions in a formula:

= Vx@yP(xy) = Vz0(x,2))

Here the inner universally quantified variable might appear to be within the scope of
an existential quantifier, but the scope of the Y variable is limited to the first sub-
formula. As a result, both universally quantified variables are replaced by constants

= FyP(ay) - Qa,b))

The following sequent formula requires the use of arity-one and arity-two Skolem
functions:
= IWVxIYVz((=P(wx) v Ow)) > R(y,z))

because variable x is in the scope of 3w and variable z is within the scope of both
3w and Jy. This gives the formula

= IwIp(=Pw, fw)) v O(w)) — R(y, gw.y)))

2.6.6 Herbrand’s theorem

A sequen.t containing only prenex formulas can be rearranged to place all such
formulas in the succedent of a sequent:

= formulas

FIRST-ORDER LOGIC 79

and the first inferences to be applied will then be the right existential and universal
rules. Herbrand’s theorem states that a quantified formula is provable if and only if
the quantifier-free formula obtained by the application of quantifier inference rules
is provable. In terms of normal form proofs, the initial sequent is provable if and
only if its midsequent is provable. New constants are introduced into succedent
formulas by each application of the right universal rule, then existential inferences
are free to reuse any such constants. As a proof proceeds towards its midsequent,
the order in which these introductions occurred is lost, so the form of the original
formula is lost. Herbrand compensated for this loss of information by instantiating
Skolem functions rather than simple constants, thus recording the order in which
introductions are made. In the simplest case, represented by the sequent

= Vody3z((P(x) A Q(x)) — (P(y) A Q(2))

the replacement of an existentially quantified variable with a constant produces a
result identical to that obtained from the right universal rule:

= JyFz((P(a) A Q(@)) — (P(y) A Q2)))

Only functions with an arity of one or more have a significant effect in the Herbrand
proof procedure and the following sequent is therefore of more interest:

= IVu-P(ru), WVYw-Q,w), VxIyJz(P(x,y) A Q(,2)

A deduction tree for this formula is constructed as far as the midsequent in Fig-

ure 2.12a, then propositional inferences may be used to produce a proof tree. This
sequent may be Skolemised to give

= =P, f(1), v=0(v,g(v)), IyAz(P(a.y) A Q(¥.2))

and a proof tree tree derived from the Skolemised form is shown in Figure 2.12b.

Axioms can be produced from the midsequent of Figure 2.12b using the same
two propositional steps required to produce axioms from the midsequent in Fig-
ure 2.12a. The important difference between the two approaches is that the original
root formula can be reconstructed from the Skolemised midsequent, allowing the

direct connection between a formula and its midsequent required for Herbrand’s
theorem.,

2.6.7 Skolem-Herbrand-Gadel theory

Herbrand’s theorem asserts a claim that the provability of a formula rests on the
provability of a quantifier-free formula derived from the quantified form. An glte.m-
ative approach called the Skolem—Herbrand-Godel (SHG) theory makes a similar
claim for the semantic concept of unsatisfiablity. According to this theory, a for-
mula is unsatisfiable if and only if a quantifier-free formula derived by the appllc:.a-
tion of quantifier rules is itself unsatisfiable. A formula may be shown to be valid
through the refutation of its negation, i.e. by the failure of a systematic attempt to

80 LOGIC AND DECLARATIVE LANGUAGE

= IVu—-P@.u), IVw-0(v,w), YVxIyJz(P(x,y) A O(3.2))

= AVu—-P@u), IWVWw-0Q(v,w), Iy3z(P(a.y) A O(,2))

= Yu-P(a,u), Vw0 (v,w), yFz(P(a,y) A Q(y.2))

= —P(a,b), WVw=Qv.w), IyAz(P(ay) A 8(.2))

= —P(a,b), Yw=Q(bw), JyFz(P(a,y) A Q(3,2))
= —P(a,b), ~Q(b,c), IyIz(P(a.y) A Q(,2))
(a) = —P(a,b), ~Q(b,c), (P(a,b) A Q(b,c))

= =PEAD), -0 (v.g(v), yAz(P(ay) A Q(¥.2))
= —P(af(a)), -G (v,g(v)), IyIz(P(a,y) A Q(y,2))
= =P(a.f(@), ~Q(f(a).g(f(@)), IyIz(P(a,y) A Q(y.2))
= =P(a.fa)), ~0(f(a).g(f(a))), Iz(P(a.f(a)} A Q(f(a),2)

®) = -P@af(a), ~Q(fa).s(f(@))), Pla.f(a)) A O(f(a).g(f(a)))
Figure 2.12 Midsequents: (a) with simple constants and (b) with Skolem functions

satisfy that formula. However, as explained in Chapter 1, an attempt to produce a
deduction tree from the succedent

—(formula) =

would quickly reproduce the proof form. But if the antecedent is converted to NNF,
the left subformula quantifier rules can be directly applied to the formula. Like
Herbrand’s original theorm, the SHG theorem depends on the separation of quanti-
fier and propositional rules in the deduction tree; but if the antecedent is in NNF,
only left rules are required. The SHG theorem uses Skolem functions to replace
existential quantifiers in a dual approach to that taken in the Herbrand theorem. It is
only of real interest when existentially quantified variables lie in the scope of

universal quantifiers, generating Skolem functions of arity one or more. Consider as
an example the formula

P v HOY)) - 320(x,2) v P(a)))
from which an equivalent NNF is derived as follows:

A(PG) v IyQ(xy)) = (F2Q(x,2) v P(a))
Ix(=(P(x) v IyQ(x,y)) v (320(x.2) v P(@))) remove —
Ix(=Px) A Vy-0(x,y) v (F20(x,2) v P(@)) De Morgan

Since we wish to work in refutation form, we derive the dual of the above NNF by
inspection:

Vx(P(x) v IyQ(x,y)) A (Vz-0(x,2) A ~P(a))

FIRST-ORDER LOGIC 81

Vx(P(x) v 3yQ(x,y) A (Vz=Q(x,2) A —P(a)) =

(P(a) v 3yQ(a,y) A (Yz-0(a,2) A =P(a)) =

(P(a) v Q(a,b)) A (Vz=Q(a,z) A =P(a)) =

(a) (P(a) v Q(a,b)) A (—~Q(a,b) A—=P(a)) =

Vx(P(x) v Q0x,f(x0)) A (Vz2Q(x,2) A =P(a)) =
(P(a) v Q(afla)) A (V2=0(a,2) A—P(a)) =

(b) (P(a) v Q@a.fla)) A (=Q(a.f(@)) A—P(a)) =
Figure 2.13 Midsequents: (a) with simple constants and (b) with Skolem functions

and the deduction of a midsequent from this formula as an antecedent is shown in
Figure 2.13a. When the formula above is Skolemised, we obtain

Yx(P(x) v Q(x,f(x)) A (Vz=Q(x,2) A =P(a))

and a deduction tree produced when this formula is taken as the initial antecedent is
shown in Figure 2.13b. Both of these deduction trees terminate in refutations, but
the Skolemised version allows the original formula to be reconstructed.

EXERCISES 2.6

1. Convert the following formulas to prenex normal form:
a. (P(x) v VYy(Q(x,y) A VXR(x)))
b. Vx(VyR(x,y) A Fy(S(x,y) v VxT(x)))
- Express the following valid formulas in equivalent prenex normal form:
2. Vx(P() A Q(x)) - VxP(x) v VxQ()
b. VxP(x) A VxQ(x) = Vx(P(x) v O(x))
¢. Vx(P(x) A Q(x)) A VxP(x) = VxQ(x)
d. VX(P(x) - =Q(x)) = Gx(R(Xx) A Q(x)) = In(RX) A ~Px))

- Show normal form proof trees for each of the formulas derived in the previous
exercise, indicating the midsequent in each tree.

- Convert each of the formulas of Exercise 2 into equivalent negation normal forms.

- Take the dual forms of each of the formulas resulting from Exercise 4 and
produce a refutation tree for each one.

- Prove the following sequent is valid:

anszR(x,y,z) = VxVz3yR(x,y,2)

82 LOGIC AND DECLARATIVE LANGUAGE

Skolemise both sides of the sequent and repeat the proof.

7. Convert each of the following formulas to NNF then Skolemise out any existen-
tially quantified variables:

VxAxP(x,y)

. VxVy3zR(x,y,2) A Vx3yVzR(x,y,2)

. VaAy(P(x,y) = 320(x,y,2))

. Ax(VyP(x,y) - 320(x,2))

. VxAyVzaw(=P(x,y) v Q(x)) - R(x,2))

o o

o Q.

2.7 A HILBERT PROOF SYSTEM FOR FORMULAS

The Hilbert proof system described in Chapter 1 is expanded to first-order logic in
each of the four components described earlier:

a. An alphabet consisting of the following logical symbols:

-, = v, (i)!
and the following non-logical symbols:
a,b,c,... constants
X 9,2... variables
fgh function symbols
P, Q,R,... atomic formulas

b. Rules for building formulas from the alphabet:
1. Every atomic formula is a formula.

2. If A and B are formulas then so are —A, A > B and VxA where x is any
variable.

3. Nothing else is a formula.

- Five axioms, three of which are inherited from the propositional subset.
. A->B->A)

. ((A—>(B—>C))-—)((A—>B)—>(A—>C)))

- ((04) > (=B) - (B > 4)

. VxA(x) > A(a)

- VXA 5 B(Xx) > @A - VxB(x))

d. Two rules of deduction:

1. Modus ponens (MP): from A and (A - B) deduce B.

L T T R S

2. Generalisation: if A is a formula and x is any variable from A, deduce VxA.

FIRST-ORDER LOGIC 83
It is possible to recognise a subset of symbols, rules and axioms identical to those
defined for the propositional Hilbert proof system within the proof system de-
scribed above. The previous alphabet is extended with terms, formulas and quanti-
fier symbols to allow the construction of full first-order logic formulas. Notice,
however, that the logical symbols available in the alphabet are restricted to a
minimal set and that only a universal quantifier is defined. A Hilbert proof system
may be defined with a larger alphabet, but more axioms are then required to encode
the required properties into the system. In practice a limited set of symbols is not a
major problem because the missing symbols can be introduced as abbreviations for
formulas expressed within the above system. For example

A'v B abbreviates -A — B
A A B abbreviates —(A — —B)

Similarly, the existential expression IxAx may be seen as an abbreviated method of
writing a formula —Vx—Ax, using only symbols from the alphabet above. This is
justified by the equivalences described earlier. The two additional axioms are, like
the previous three, really axiom schemata in which metasymbols A and B represent
any formula.

A Hilbert proof begins with a number of assumptions to which axioms and rules
of deduction are applied until a formula of some interest is obtained. The fact that
the resulting formula is derived from those assumptions using the Hilbert axioms
and rules of deduction is then expressed by the syntactic turnstile:

assumptions +,, formula

2.7.1 The deduction rule

The rule of generalisation may be expressed in a Hilbert deduction as
A Fy VxA(x)

but it does not generally follow that

l‘H A-> VXA(X)

s0 the deduction theorem cannot be applied as simply as in the formal system of
Propositions. The use of the deduction theorem as above is only possible if there is
no application of generalisation to a variable that occurs free in A. Certainly, if A is
aclosed formula, this problem does not arise.

A small proof using quantifier rules shows how formula Vx(A — B(x)) is proven
from the assumption A — VxB(x):

L A - VxB(x) assumption
2. VxB(x) - B(a) axiom 4
3. A B 1, 2 chain

4. Vx(A - B(x)) generalisation of 3

84 LOGIC AND DECLARATIVE LANGUAGE

This deduction is then expressed through the turnstile:
A > VxB(x) +,; Vx(A = B(x))

and since x does not occur free in A, the deduction theorem can be applied to give
Fu (A o VxB(x)) = Vx(A — B(x))

A second example seeks to prove the formula
Vx(P(x) = Q) = (VxP(x) - Yx0(x))

by noting that two applications of the deduction rule might produce such a form.
For this reason, the two antecedents make suitable assumptions from which the
right-hand subformula might be derived as follows:

1. Vx(P(x) = Q(x)) assumption

2. VxP(x) assumption

3. VxP(x) — P(a) axiom 4

4. P(a) 2, 3 modus ponens
5. Vx(P(x) > Q(x)) > (P(@) > Q(a)) axiom 4

6. P(a) - Q(a) 1, 5 modus ponens
7. Q(a) 4, 6 modus ponens
8. VxQ(x) generalisation of 7

The deduction is then expressed in turnstile form:
(VxX(P(x) = Q())), VXP(x) by VxQ(x)
then two applications of the deduction theorem give the desired result:

(Vx(P(x) > Q%)) by VXP(x) — VxQ(x)
Fa (Vx(P(x) - Q(x))) = (VxP(x) - VxQ(x))

Existential quantifiers are so useful in practice that it is useful to have an existen-

tial equivalent of the generalisation property. Such a formula would appear as the
theorem

Fu Pla) > IxP(x)
and this is easily proven:

1. Vx~P(x) > —P(a)

axiom 4
2. (Vx=P(x) > =P(a)) - (P@@) = =Vx=P(x)) contrapositive
3. P(a) - —Vx—P(x) 1, 2 modus ponens
4. P(a) - 3xP(x) definition

The strategy is to prove the deduction in terms of fragments such as —Vx—P(x)

then to replace SUC!I fragments with the equivalent existential form. Such a strategy
has to be adopted in proving the theorem

by VX(P(x) = Q(x)) — @xP(x) —» IxQ(x))

FIRST-ORDER LOGIC 85

The two antecedents again provide some guidance on the assumptions to be used in
proving the formula, but the reason for the second assumption is only clear at the
end of the proof:

1. Vx(P(x) = Q(x)) assumption

2. Vx—Q(x) assumption

3. Vx(P(x) = Q(x)) — (P(a) > Q(a)) axiom 4

4, P(a) > Q(a) 1, 3 modus ponens
5. (P(a) » Q(a)) = (—=Q(a) —» —P(a)) contrapositive

6. ~Q(a) - —P(a) 4, 5 modus ponens
1. Vx-0(x) > —0(a) axiom 4

8. —Q(a) 2, 7 modus ponens
9. ~P(a) 6, 8 modus ponens
10. Vx—P(x) generalisation of 9

confirming the following Hilbert deduction:
Vx(P(x) = Q(x)), Vx—0Q(x) by Vx—P(x)

from which a final result may be obtained after two applications of the deduction
theorem:

Yx(P(x) = QX)) Fy Vx—=Q(x) = Vx—=P(x) deduc

Fa (VX(P(x) > O(x))) = (Vx=0Q(x) > Vx—=P(x)) deduc
This is not quite the formula required, but the replacement of one subformula by its
contrapositive, followed by a simplification, yields the desired result:

b (Vx(P(x) = Q1)) = (=Vx=P(x) = =Vx—0(x))

Fu (Yx(P(x) = Q(x))) = @xP(x) > 3x0(x))
The formulation of proofs in a Hilbert system requires much more experience than
the development of a proof for the same formula in the Gentzen G system described

carlier. A G system proof arises from the decomposition of a formula whereas a

Hilbert proof requires some foresight or experiment to arrive at suitable starting
asumptions.

2.7.2 Soundness and completeness

It can be shown that any formula proven in Hilbert’s system is valid and the proof
system is therefore sound. Thus if M is some set of formulas and F is a formula
Proven in the deduction system, then

M by F implies M k£ F

C°“VCTS°1)’, Godel’s completeness theorem assures us that any valid theorem is
Provable in the calculus, i.e.

M+ F implies M +,, F

86 LOGIC AND DECLARATIVE LANGUAGE

Since any valid formula may be proven and anything proven is valid, it might seem
that any formula at all may be either proved or disproved. However, soundness and
completeness are defined only with respect to valid formulas; they say nothing
about an invalid formula. The real problem is that, unlike propositional logic, first-
order logic is not decidable, i.e. there is no algorithm that can decide whether or not
a formula is valid.

During the early part of the twentieth century, many researchers struggled to find
algorithms that would decide the validity of first-order formulas, but none succeeded.
Eventually in the mid 1930s Turing and Church separately showed that no such
algorithm could ever be developed. Fortunately, this negative result was accom-
panied by a positive one: Church defined the limit of what could be computed in
terms of partial recursive functions. The Church-Turing thesis tells us that first-
order logic is partially decidable and that the parts that may be decided are formu-
lated as partial recursive functions. This group of computable functions includes
some expressions that are in principle computable, but in practice have exponential
complexities, so they rapidly become intractable. A subgroup of primitive recursive
functions contains all those computable functions that are needed in practice, and
this subgroup is exactly what is required to produce the midsequent in Herbrand’s
theorem. Church originally formulated his arguments in a notation called lambda
calculus, but this is equivalent to the (initial) semantics of terms in first-order logic.
More important, this whole area of work gave rise to the functional programming
languages described later in this book.

EXERCISES 2.7

1. Use Hilbert axioms to prove the following formulas:
. VxP(x) = 3xP(x)

. VxP(x) > VyP(y)

. =VxP(x) > Jy-P(y)

- Vx(P(x) A Q(x)) = VxP(x) A VxQ(x)

. VxVyR(x,y) > VxR(x,x)

VXVYQ(xy) = —~Q(y.0)) > Vx-0(x,x)

0o A O o P

CHAPTER THREE

Principles of logic programming

3.1 REFUTING PROPOSITIONS

G system proofs may be constructed in either of the two normal forms described
earlier: proof normal form and refutation normal form. The first of these approaches
places formulas in the succedent position then endeavours to falsify the formula
and thus the sequent. A deduction tree in which each branch terminates with an
axiom, a valid sequent, is sufficient to prove the original formula valid. Refutation
normal form, on the other hand, places a negation normal form of the negated for-
mula in the antecedent then systematically attempts to satisfy the formula and thus
the sequent. A deduction tree in which each branch terminates with an axiom now
indicates contradiction and indirectly shows the validity of the original unnegated
proposition.

In order to show the relationship between the normal forms described earlier and
the resolution technique described in this chapter, we consider again the proposition

Po2PArl@go>r>(p-or)

which we already know to be a tautology from its semantic tableau given in Fig-
ure 1.8. Using the method of substituting equivalences described in Chapter 1, an
NNF of the above formula is derived as follows:

Po>Prg-on->(p-orn

=((=p Vv g A{=g V) Vv{apvr) remove implications
(=p Vv q) v (=g Vvr)v(-pvr) DeMorgan
(pA-g)viga=rv—pvr De Morgan

In fact, this result is also in DNF and, since the original formula is a tautology, a
deduction tree taking either the original formula or its DNF equivalent as the initial
succedent would produce only leaf axioms and is a proof tree.

87

88 LOGIC AND DECLARATIVE LANGUAGE

PV ARGV IIAPA—Fr=

(=pvgh(~gvr),p,—r= gen left A
(=pVvQ,-q,p, —r=> (—~pvq),r,p,—-r= leftvon2
-p, g, p,—r = q,—q,p, °r = leftvon3

Figure 3.1 A refutation deduction

Proof normal form does not in fact require the proposition itself to be in any
special form, but we saw earlier that an especially interesting case arises when the
succedent formula is in DNF, i.e. has the form

= formula,,,

In this case all disjunctions may be removed in a general “right v rule, leaving
only “right A” rules to be applied. Refutation normal form requires the negated
antecedent formula to be in NNF, but again an especially interesting property was
observed when the formula was also in CNF:

(—~formula)_; =

Now all the conjunctions may be removed in a general “left A” inference, leaving
only “left v” and “left —” rules to be applied. Since we are more interested here in
refutation normal form, an NNF of the negated formula is required, but this is
easily obtained as the dual of the previous proposition:

PV ARGV IYAD AT

Remembering this formula is the negation of one that we wish to prove valid, it is
made the antecedent of a sequent which then produces the refutation-style deduc-
tion shown in Figure 3.1. All the “left A” inferences have been carried out in the
first step, leaving an antecedent containing clauses that are then subjected to the
“left v” rule. Subsequents with dual literals in their antecedents are eventually
obtained and the “left —” rule might be applied to convert each of them to an
axiom. Alternatively, we might simply accept that an antecedent containing these
clashing pairs is equivalent to an axiom and stop the tree at this point. Although the
form of the deduction tree is illustrated by a particular example, it should be clear
that a deduction tree whose root is a CNF antecedent always follows this form. A
generalised “left A” inference followed by several “left v produces a tree of leaf
axioms if the root formula is inconsistent. Since the initial “left A” and final “left
—" operations are little more than formatting procedures, the only effective opera-
tion in these deductions is the “left v” inference. Thus the refutation is achieved
with only one rule in a way similar to the resolution procedure described later.

CNF formulas have a particularly simple structure that admits a simplified nota-
tion called clausal form in which logical connectives are not shown. For example,
the CNF formula above is represented by the clausal form

{_"P, q}7 {—‘q! r}a {P}, l—"l

PRINCIPLES OF LOGIC PROGRAMMING 89

{—~gvr} {(=r} {=pvq} {p}

A /
\\l—-p}
AN

{1

Figure 3.2 Resolution to produce an empty clause

with the understanding that literals within set brackets are joined by disjunctions
whereas sets themselves are joined by conjunctions. A resolution proof shows this
proposition to be inconsistent by removing clashing pairs of literals from clauses
until an empty clause is obtained. Figure 3.2 shows how the dual pair of literals
clashing in clauses {—g, r} and {—r} is removed to produce a new clause {—q)
that undergoes further resolution. Obtaining an empty clause through this procedure
is equivalent to obtaining a tree containing only axioms in a G system refutation. In
fact, the three clashing pairs based on r, ¢ and p in Figure 3.2 are quickly related to
the three axioms based on the same symbols in Figure 3.1.

In summary, the method of resolution proceeds as follows:
a. Convert the negated formula to CNF.
b. Rewrite the result in clausal form.

¢. Apply the resolution step, i.e. from {4, X} and {B, =X} deduce {A, B) until an
empty clause is obtained.

The three Hilbert propositional axioms are certainly tautologies and this should be
easily demonstrated with the resolution procedure. An instance of the first axiom is
converted to NNF as follows:

p—(@—-p
—p VvV (—q v p) equivalences
=PV -gVvp remove brackets

producing a DNF in which three unit cubes are joined by disjunctions. Notice that
in this case the resulting proposition is also in CNF because the resulting proposition
may be seen as a single clause. Negation then produces the dual of this proposition

PAGA=—p
and when this is shown in clausal form as
ph Aqh, {=p)

the production of an empty clause is obvious. Although a very small example, this
refutation is interesting because it achieves its result without using all of its clauses.
One form of a logic law called the compactness theorem states that a clausal form

90 LOGIC AND DECLARATIVE LANGUAGE

{(=p.—q, 1t {=p.q} {r} {—r}

N/
(=p. 7]
N
(r)
N
{1

Figure 3.3 Refutation of the negated second axiom

is unsatisfiable if any subset of the clauses is unsatisfiable. Thus if any subproposition
is unsatisfiable, the whole proposition is unsatisfiable.
Hilbert’s second axiom has the form

Po2@-=>mM->->29->p@-r)
and the equivalent DNF of this proposition was derived in Section 1.6 as
PAgA=arnV(pPA-gIV—pvVT

A negated form of this proposition is easily expressed through its dual, automatic-
ally in CNF:

(pV—gVIIAEEPVY P AP AT
which is expressed in clausal form as
{=p, =g, r}, {=p, g}p), {—r)

and a resolution diagram leading to an empty clause is shown in Figure 3.3.
Finally, Hilbert’s third axiom (—p - —g) = (¢ = p) has the negation normal
form derived below:
(=p—>-9)>@->p
A(==p vV —g) v (—g v p) equivalences
(—pAg@yv—gqvp De Morgan

producing a result conveniently in DNF. The negation of this proposition is easily
expressed in CNF by the following dual form:

@Pv-ogyaga—p

and the clausal form {p, —q}, {¢), {—p} has obvious clashing literals.

As one further example, consider the semantic tableau of the following proposi-
tion, already in CNF:

(PVDASVPA(RSY g AS

Figure 3.4a shows that a semantic tableau built from this proposition closes before
all of its clauses have been used. Similarly, the resolution diagram of Figure 3.4b
produces an empty clause from the equivalent clausal form

va _‘ql’ {ﬁsv qlv {—|S, ﬁq}v {Sl

PRINCIPLES OF LOGIC PROGRAMMING 91

(PVAg) A(SVY @ A(asVg)AS

Py -q
I
—|SVq
I
sV g
I
s
N
—s g
X / \
-5 q
(a) X X
{pv—=g)l {=svgql {—sv-gq) {s}

e
\l J

Figure 3.4 (a) Semantic tableau and (b) resolution of a negated formula

(b)

without using the clause {p, —q}. As noted above, any subset of clauses that
produces the empty clause is sufficient to refute the whole formula, so the existence
of {x} and {—x} in any clausal form is sufficient. When this occurs, the semantic
tableau also closes without using all of its clauses.

A resolution step only depends on an implication from left to right:

(AvVX)ABVX) 5AVE

and the validity of this formula is shown in the semantic tableau of Figure 3.5. The
following proposition is, however, not valid:

(AvX)ABv-X)e(AVvB)

Some valuations of the atoms in this mutual implication are a model for the for-
mula, i.e. they make the overall formula rrue, but not all of them do so. It is a useful
exercise to derive truth tables for the left- and right-hand sides of the mutual
implication and to show that the two are not equivalent.

Figure 3.1 showed how a proposition in CNF is refuted when it is the anteced-

ent of a root sequent in a deduction tree. The form of the example with its CNF
antecedent is

92 LOGIC AND DECLARATIVE LANGUAGE

~((AVX)A(BV—X) > (A VB))
|

(AvX)A (B v-=X) right - on 1
I
—(A v B) as above
|
(AvX) left A on 2
|
(B v =X) as above
I
—A right v on 3
|
—-B as above
7\
A X left v on4
* /' N\
B —X leftvon$s
X X

Figure 3.5 A tableau proof of the resolution principle

CPVPA(GVYIYAPA—r=

but we might be curious to know how the example would have proceeded if the
antecedent had been in DNF rather than CNF. In order to find out, we have to find
the equivalent formula, rather than the dual form, using algebraic techniques. Since
the DNF is equivalent to the previous form, another refutation tree should result,
but it is the form of this tree that is of interest. To convert CNF to DNF, the clauses
are “multiplied out” rather like arithmetic formulas; for example, the first two
clauses multiply out to give a product proposition

EPVPAGVIZ(EPA-Y YV (mpANVIGAg) VI(GAD
and this result is “multiplied” by proposition p A —r:
(=pA=@)v(mpAr)viga =QV@AN)A(pPA-F)

E(-—.p/\—lq/\p/\—.r)v(—\pAr/\p/\—xr)v(q/\—\q/\p/\—d‘)
V@ATrApA=Y)

A Gentzen style refutation taking the resulting proposition as antecedent immedi-

ately divides through a generalised “left v into four subsequents of the form
SPASGAPA-rD

then a generalised “left A” applied to each subsequent produces sequents of the form
=P, =g, p, or =

PRINCIPLES OF LOGIC PROGRAMMING 93

with a clashing pair of literals. Every cube in the DNF contains a pair of comple-

mentary literals that immediately produces an axiom, so a refutation of this kind
always stops after the first step.

EXERCISES 3.1

1. Convert each of the following tautologies into disjunctive normal form then
derive the dual to give a formula in conjunctive normal form:
a (pvg)->(@vp)
b ((p > @PA—g) > —p
c.(po@-omM-o>par-gq
d ponNaA(g-o-r)=((p -9
e.(poONA@-onrn-(pvg-or)
2. Produce refutation trees smilar to Figure 3.1 for each of the CNF propositions
obtained in the previous exercise.

3. Express each of the CNF propositions from Exercise 1 in clausal form and show
through resolution that the formula is unsatisfiable.

4. The converse of the resolution proposition is
AvB)yS>AVvX)ABvV-X)

Show that this proposition is not valid, by tableau and by writing out the truth
table.

5. Prove the following mutual equivalence by proving two separate implications in
tableaux or G system proofs:

(AvX)IABVaXNDeo@AVX)ABY-X)AAVE)

3.2 REFUTING FORMULAS

The previous section showed a close relationship between the refutation normal
form of a G system deduction and resolution applied to the same proposition. Now
we have to extend this connection to deductions involving the quantified formulas
described in Chapter 2.

Figure 2.3 shows a semantic tableau for the negation of formula
Vx(P(x) = Q(x)) = (VxP(x) = VxQ(x))

and it is clear from the tableau that every path is closed, the negated formula is a
contradiction and the original formula is therefore valid. This formula might equally
well have been made the succedent of a sequent and the same series of inference

94 LOGIC AND DECLARATIVE LANGUAGE

rules applied as in the tableau construction. A proof tree in which every leaf is an
axiom then shows the validity of the original formula. In the manner of the previ-
ous section, we now convert this formula to its equivalent negation normal form:

(Vx(P(x) = Q) = (VxP(x) = VxQ(x)))

SVx(=Px) v Q(x) v (=VxP(x) v VxQ(x)) identity
Ax—(=Px) v Q(x)) v Ix—=P(x) v VxQ(x) identity
IPx) A -Q(x)) v Ix=P(x) v VxQ(x) De Morgan

A G system proof taking the resulting NNF formula as its succedent produces a
proof tree, but obviously the series of inferences required to achieve this is different
from that required for the original formula. At this point, we are more interested
in a refutation normal form of the Gentzen-style deduction, so the above NNF is
negated and manipulated back into NNF as follows:

=(@x(P(x) A 2Q(x)) v Ix=P(x) v VxQ(x))

=x(P(x) A —Q()) A —3x=P(x) A =Vx0(x) De Morgan
V= (P(x) A =Q(x)) A Vx—==P(x) A 3x—0(x) identities
Vx(=P(x) v Q%)) A VxP(x) A Ix—Q(x) De Morgan

noting that the result could have been written directly as the dual of the earlier NNF
f.ormul.a. The resulting formula may be made the antecedent of a sequent and deduc-
tion might proceed using the subformula rules introduced in Chapter 2. A refutation
sho»yn in Figure 3.6 adopts this approach, creating a midsequent after three quanti-
fier inferences and axioms after further propositional operations. Notice that after
the midsequent is obtained, the process of deduction is exactly that described in the
preceding section on propositions. A single generalised “left A”
to convert the midsequent to a list of clauses and the “left =" rule might be com-
pletely avoided if we accept an antecedent with dual literals as an axiom. As a
result, only the “left v rule is significant in the production of the final result.

In order to develop a resolution refutation approach for quantified formulas, we
ﬁrst replace existentially quantified variables with Skolem functions. In this par-
ticular case, a single variable is replaced by a constant to give the formula

Vx(=P(x) v Q(x)) A YyP(y) A =Q(a)

rule may be used

Vx(=P(x) v O(x)) A VxP(x) A 3x -Q(x) =

VYx(=P(x) v Q(x)) A VXP(x) A —Q(a) = left Jon 1

Vx(=P(x) v Q(x)) A P(a) A —Q(a) = left ¥ on 2

midsequent (—P(a) v Q@) A P(a) A =Q(a) = left Von 3
(=P(a) v Q(a)), P(a), =Q(a) = genleftAon s

=P(a), P(a), ~Q(a) = Q(a), Pa), =Q(a) = leftvon6
Figure 3.6 A refutation deduction

PRINCIPLES OF LOGIC PROGRAMMING 95

At the same time, the second use of variable x has been replaced by a distinct vari-
able y. Since all remaining variables are represented by distinct symbols and must

be universally quantified, there is no longer any need to show quantifier symbols
and the formula appears as

(=P(x) v Q) A P(y) A =Q(a)
or, if written in clausal form, as follows:
{=P), QW) {P(M}, {=0(a)}

Resolution steps can now be applied to the clausal form in a development of the
procedure explained earlier. Again the object is to resolve out new clauses from
pairs of existing clauses that contain clashing atoms, but the existence of terms in
the atoms makes this more complicated than before. Although —P(x) and P(y) do
not appear to clash, if x is substituted for y or vice versa, the atoms become iden-
tical and Q(x) or Q(y) may be resolved from the pair. Similarly Q(x) and ~Q(a) do
not immediately clash, but the constant ¢ may be substituted for variable x and a
clash obtained. Notice that the substitution may be carried out either way round
when both are variables, but in only one direction if one is a constant. When a
choice exists, it is better to take the option that leaves the greatest number of vari-
ables in the resolvant, allowing further resolutions to take place. Figure 3.7 shows
how these interleaved substitutions and resolutions lead to an empty clause, proving
that the formula being resolved is unsatisfiable. Since this formula is the negation
of the one in which we are really interested, the original unnegated formula must
be valid.

Gentzen-style proofs become increasingly difficult as the size and complexity of
the sequent to be proven or refuted increases. Left universal quantifications present
particular problems because they might have to be used several times to obtain
different ground-state formulas that might then be subjected to propositional rules.
It is difficult in such deductions to know which instantiations are required to close
the final deduction tree, so much experimentation is required. The problem is one
of needing to see ahead in order to instantiate universally quantified formulas with
appropriate constants. Repeated resolution of Skolemised formulas, on the other
hand, leads to a systematic method of attempting every possible instantiation until
a refutation is achieved. Furthermore, resolution is mechanised in a fairly direct
way to produce the logic languages described in the following sections.

(=P v oW PO {(—~Q@)}

N/

(g}

\10/,\'}
{1

Figure 3.7 A resolution diagram with predicates

96 LOGIC AND DECLARATIVE LANGUAGE

VyP(a,y) A Vx—=P(x,b) =

P(a,b) AVx=P(x,b)= leftVonl

midseq P(a,b) A =P(ah) = left V on 2
P(a,b), =P(a,b) = left Aon 3
P(a,b) = P(a,b) left — on 4

Figure 3.8 A refutation deduction

A hint of the problems that might be encountered in a G system proof appears in
a deduction from the following small formula:

IVyP(x,y) — Vy3xP(x,y)
This example is quickly translated into negation normal form
Vx3y-P(xy) v Yy3xP(x,y)

Refutation requires that we take the dual of this formula which, by inspection, we
are able to write as

IxVyP(x,y) A FyVx—P(x,y)

Existentially quantified variables may then be replaced by Skolem constants to give
the simpler form

VyP(a,y) v Vx=P(x,b)

We can then show this to be unsatisfiable in the deduction tree of Figure 3.8. The
deduction tree clearly demonstrates unsatisfiability, but the way in which this result
is obtained indicates problems ahead. Notice that formula VyP(a,y) is instantiated
to P(a,b), but it could have been instantiated with domain element a to P(a.a) or
with any other available domain element. Equally, Vx—P(x,b) might have been
instantiated to —P(b,b) but this was not done because it was obvious that —=P(a,b)
was required to terminate the deduction. In this case there are just two formulas in
the initial antecedent and the necessary instantiations are obvious; but as the ex-
amples get larger, the required instantiations become less obvious. If the above
formula is drafted in clausal form as {P(a,y)} {=P(x,b)}, it is clear that substitution
{a/x, bly} produces a clash of atoms and no other substitutions need be considered.

In larger examples the guidance provided by the need to produce clashing pairs
makes problems tractable.

3.2.1 Substitution and resolution
Clauses derived from full first-order logic formulas are resolved when a clashing

pair occurs in two different clauses in much the same way as clauses of propositions.
A general scheme for resolving formula literals might be written as

PRINCIPLES OF LOGIC PROGRAMMING 97

{A), PO} A {B(), =P(2)} = (A(x), B(Y))

However, unlike the propositional case, it is possible to have pairs of literals that
clash only after appropriate substitutions of terms have been made in the atomic
arguments. One approach is to instantiate all terms to ground states, i.e. to replace
all variables by constants, and then attempt to resolve the resulting ground clauses.
The problem here is that a great many different ground clauses are possible and it
is not always easy to see which ones are required to produce a refutation. This is
in fact much the same problem that arises in choosing suitable instantiations in a
semantic tableau or G system tree deduction. A cleverer approach interleaves sub-
stitutions and resolutions so that the minimum necessary substitutions are made
before each resolution step. An accumulation of each of these individual substitu-
tions is then used to compute an equivalent single-step substitution.

The process of making two atoms the same through substitution is called uni-
fication. Taking the simplest example first, P(z) unifies with P(w) after the substi-
tution {w/z} or with P(c) after substitution {c¢/z}. Atoms with different predicate
symbols cannot be unified and cannot therefore be resolved out of a clause, e.g.
P(x) and Q(y) cannot be unified. Substitutions only apply to variables appearing as
arguments in atoms so that, even when predicate symbols are identical, differences
of constants prevent unification, e.g. P(a) and P(b) cannot be unified. Atoms with
two arguments might require a double substitution before unification occurs, e.g.
Q(ax) and Q(y,b) are unified by the substitution {aly, b/x}. Sometimes one substi-
tution forces another; for example, the unification of Q(x.x) and Q(a,y) requires
substitution a/x, but since x occurs twice in the first atom, a further substitution
aly is also necessary.

Functions occurring as arguments are handled in much the same way as sim-
ple constants, e.g. Q(x, f(a)) and Q(g(b), y) are unified by the substitution {g(b)/x,
fla)ly}. In a slightly more complicated example, Q(x, f(x)) and Q(g(b), y) are
unified by the substitution {g(b)/x, f(g(b))/y}. Notice that ground atoms result from
unification in both of these examples and there is no alternative substitution. In
contrast, the atoms Q(x, f(x)) and Q(y, f(z)) may be unified in two ways:

a. By {c/x, cly, ¢/z} to give Q(c, f(0)).
b. By {x/y, x/z) to give Q(x, f(x)).

The second example admits a further substitution that produces the same result as
the first:

Qx, f(x) {elx} = Oe, f(e))

and is considered to be a more general unifier. In fact, this substitution is the most
general unifier (mgu) possible for the atoms, leaving open the maximum possible
number of subsequent substitutions. An mgu is obtained by avoiding the instantia-
tion of constants wherever possible.

Atoms with more than two arguments are treated in exactly the same way as
above, e.g. atoms R(q, f(x), y) and R(w, f(z), z) are unified in two ways:

98 LOGIC AND DECLARATIVE LANGUAGE

a. By {a/w, a/x, aly, a/z} to give R(a, f(a), a).
b. By {a/w, z/x, z/y} to give R(a, f(2), 2).

The second method is the most general unifier for the two atoms. Notice that the

most general unifier is not unique and Q(a, f(x), x) or O(a, f(¥), y) might have been
obtained with a different strategy.

3.2.2 Robinson’s algorithm

Unifications might be found by inspection, as in the examples above, but if the
process is to be mechanised, they have to be discovered by a fixed algorithm.
Robinson’s algorithm for finding an mgu is fairly simple: just work from left to
right through the arguments of a pair of atoms, making whatever substitutions are
necessary to unify each individual argument. A composition of the substitutions
then provides the unifier. The arguments in atoms P(w, f(a), z) and P(b.x,y) are
unified as follows:

P(w, f(a), 2) P(byx,y)
Arg 1 P, f(a), 2) P(b,x,y) {biw}
Arg 2 P(b, fla), 2) P(b, f(a), y) {fa)/x}
Arg 3 P(b, f(a),) P(b, f(a), 2) {z/y}

When the last pair of arguments has been unified, the atoms themselves have been
unified and, provided no unnecessary constants have been introduced, this pro-
cedure generates the most general unifier for the two atoms. A single equivalent
substitution is obtained from the composition of individual substitutions

{biw} o {fla)ix} o {zly} = (blw, f(a)lx, zly)

Here the single unifier is the sum of the individual substitutions, but this might not
always be the case. A variable substituted into a term might itself be removed in
a later substitution and this chaining of replacements has to be reflected when
individual steps are combined. Such a problem occurs when atoms Q(x, f(y.a)) and
Q(z, f(z,2)) are unified by Robinson’s method:

O(x, f(y,a)) 0(z, f(z,2)
Arg 1 oG, f(y.a) 0@z, f(z,2) {z/x}
Arg 2 0(z, fz.a)) 0(z, f(z,z)) {z/y}
Arg3 Qa, f(a,a)) Ola, fla,a)) {a/z}

An allowance has to be made for the fact that x and y were initally replaced by z,

but this variable was then itself replaced by constant a, so the net effect is that all
variables are replaced by constant a:

PRINCIPLES OF LOGIC PROGRAMMING 99

{z/x} o {z/y} ° {a/z} = {a/x, aly, alz}

A final and larger example unifies atoms S(x, g(f(z), v, a)) and S(f(»), g(x, A(x), ¥)),
demonstrating the approach when argument functions themselves contain functions:

S(x, g(f(2)), v, @) S(f(y), glx, h(x), y))

Arg 1 SOy, gf), v, @) Sy, g(f(y), (). y) {f(y)x}
Arg 2 Sy, gUF(Y). v, @) SCAY), g, R(F(Y), y) {y/z}
Arg3 Sy, g(fM). A(f(¥)). a)) S(f(y), g(F(¥), RCFY ¥) {h(fNv}
Arg 4 S(f(@), g(f(@), h(f(a)}), a)) S(f(a), g(f(a). h(f(a)), a)) {aly)

and the unifying substitution is obtained from the sum of individual steps:

{fx} o {ylz) o {h(fy)/Iv) ° {aly) = {fa)/x, alz, h(f(a)lv, aly}

EXERCISES 3.2

1. Convert each of the following valid formulas into negation normal form and
convert the resulting formula to its dual form:

VxP(x) A Vx0(x) = Vx(P(x) v Q(x))

. Ax(Px) A Q(x)) = AxP(x) v AxQ(x)

Vx(P(x) = Q(x)) A x(R&) A P(x)) = Tx(R(x) v Ox))

. VX(P(x) = Q(x)) & —dx(P(x) A =Q(x))

e. x(P(x) A V(Q(Y) = R(x,y)) A
(VxP(x) > VY(S() = =R(xy)) = VX(Qx) v =S(x))

a o o P

2. Produce refutation trees similar to that shown in Figure 3.6 for each of the dual
formulas obtained in the previous exercise.

3. Skolemise out any existentially quantified variables in the NNF dual formulas
obtained from Exercise 1, convert the resulting formulas to clausal form and
show they are unsatisfiable in a refutation diagram.

4. Produce unifying substitutions for the following pairs of atoms or explain why
unification is not possible:

P(a) and Q(x)

R(f(a)) and R(f(b))

Q) and Q(f(a))

Q(x) and Q(f(»))

R(x, f(x)) and P(f(a), y)
R(x, f(a)) and R(g(b), f())

100 LOGIC AND DECLARATIVE LANGUAGE

5. Use Robinson’s algorithm to unify the following pairs of atoms and so produce
unifying substitutions:

P(w, f(a), z) and P(b, x, g(x))
R(x, z, f(a)) and R(y, g(b), x)
O(x, x, a) and Q(y, f(2), 2)

3.3 HORN CLAUSES AND FORWARD CHAINING

Resolution might show that a collection of clauses is unsatisfiable by showing that
successive removal of clashing literals from pairs of disjunctions leads to an empty
clause. The technique can be applied to sets of clauses containing arbitrary numbers
of literals with and without negation symbols. In order to convert logic statements
into a form that may be animated, clauses have to be restricted to the Horn clause
form described below. Statements in Horn clause form are equivalent to a logic
program that may be used to answer questions on the basis of a number of axioms
called facts and rules. This section is concerned with the generation of all theorems
or true statements from program axioms through the process of forward chaining.
The following section uses a technique called backward chaining to decide whether
a specific statement is true in the environment created by a particular program.

3.3.1 Horn clauses

A Hom clause is a disjunction of literals containing at most one positive literal.
Clauses containing this one allowed positive literal are called definite clauses whereas

those without such a literal are called negative clauses. Definite clauses have the
general form

RVﬂAVﬁBVﬁCV...

but one application of the generalised De Morgan rule to the negated atoms in this
formula introduces the following alternative formulations:

Rv—a(AABACA...)
R—AABACA...

Notice that in logic programming it is convenient to write an implication from right
to left and to read the reversed implication statement as “if”. Thus R is true if A and

B and C ... are true. A reverse implication of this sort is related to disjunction
through a variation of the familiar identity

Yv-X=YeX

A definite clause must contain one positive literal, but need not contain a negative

literal, so a single positive literal is also a Horn clause. Such a clause is usually
shown in the form R « or more simply as just R.

PRINCIPLES OF LOGIC PROGRAMMING 101

A definite program is a collection of definite clauses written in both resolution
form and as a logic program:

l.pa p

2. g A q
rvat vasa ret, s
4. rvagv ot A regq,t
5.t v—op A tep
6.t vagv s tegq,s

The meaning or interpretation of a propositional definite program is a valuation of
the atomic statements in the program, usually expressed as the set of those state-
ments that are true. Thus an interpretation in which none of the program statements
is true is shown as an empty set:

10={)

but this cannot be a model for the program. A first pass through the program reveals
that statements p and ¢ occur as facts and any valuation that acts as a model must

include them among its rrue statements. The next attempt at a model might there-
fore be the set

11 ={p, q}

but this too proves to be inadequate. Passing down the program a second time,
armed with the knowledge that elements p and g are true, we encounter the clause

t « p and deduce by resolution that ¢ must also be frue. This leads to a further
improved attempt:

12={p, q,1}

but another pass through the program, starting with /2, establishes r as a con-
sequence of the clause r « g, r, forcing us again to expand the interpretation:

B3={p,q,t r}

Further passes through the program do not produce any new true statements, so
13 is a “fixed-point” interpretation for the program. The meaning of a program is
clearly obtained by forward chaining in repeated passes through the program, gen-
erating greater numbers of rrue statements until the fixed point is reached. The
distinctive advantage of definite programs over arbitrary clauses is that a fixed point
of this kind is always obtained.

Clauses derived from first-order logic formulas carry implicit universal quantifi-
cations and might be better shown as

YR—AABACA...)
V(R «)

Once again, these clauses are equivalent to the axioms of a formal system, so the
program is a theory. An interpretation that is a model for each of these axioms is
also a model for the theory.

102 LOGIC AND DECLARATIVE LANGUAGE

Unfortunately there exist an infinite number of possible interpretations when a
program includes predicates, and some way of expressing every possible interpreta-
tion in a single form is required. One way of doing this is suggested by the Herbrand
and Skolem—Herbrand-Gédel theorems of Chapter 2. It was shown there that quan-
tified formulas are proven or refuted if and only if special kinds of quantifier-free
formulas appearing in the midsequent are proven or refuted. The deduction trees
used to demonstrate validity or contradiction use one particular interpretation to
characterise the properties of an infinite number of other interpretations. In effect, a
Herbrand interpretation uses the formal symbols themselves to characterise every
possible interpretation. Thus, predicate symbols P, Q, ... are represented by the
letters P, Q, ... and term symbols @, b, ¢, ..., f, g, h, . . . are also represented by
their own characters. Existentially quantified variables will have been replaced in
refutation mode by Skolem functions and universally quantified variables will not
introduce further constants into a definite program. As a result, the domain of a
Herbrand interpretation is restricted to a special set called the Herbrand universe
(sometimes called the Herbrand domain). This restriction on domain elements
limits the number of possible interpretations of each predicate to a set called the
Herbrand base; the set that can be constructed from objects in the Herbrand uni-
verse. A small definite program with predicates is now provided as an example:

P(a)
o)
P(x) « Qx)
R(y) « P(y)

This program contains no functions and thus has the simple Herbrand universe
la, b} with just two constants. Its Herbrand base contains all the atoms of the pro-
gram in every possible ground state, and since there are two constants and three
arity-one predicates, this amounts to a set of six ground atoms:

{P(a), P(b), Q(a), Q(b), R(a), R(b))

Herbrand interpretations of programs with predicates differ only in their valuations of
atoms in the Herbrand base. An interpretation is usually described by the set of atoms
mapped to true, all other atoms being assumed false. Clearly the simplest possible
Herbrand interpretation (/0) for the above program is the empty set of base atoms

0={}

but this is not a model for the program. No base atom evaluates to frue in this
interpretation, but the program requires that P(a) and Q(b) are true because these
are facts in the program. Any interpretation capable of acting as a model for the
program must at least contain these two atoms, so a next attempt might be

11 = {P(a), Q(b))

Here the two atoms shown are evaluated to frue and the remaining atoms to false.
Although this interpretation acts as a model for the first two clauses of the program,

PRINCIPLES OF LOGIC PROGRAMMING 103

it fails on the third. Interpretation /1 evaluates atom Q(b) as true and the program
contains formula P(x) < Q(x), making atom P(b) true by resolution A Herbrand

interpretation without this atom cannot act as a model for the program, forcing us to
expand the previous attempt to

12 = {P(a), Q(h), P(b)}

Similar reasoning based on the fourth clause demands a further expansion of the

interpretation to include R(a) and finally to Herbrand interpretation I3, which does
act as a model for the program:

13 = {P(a), O(b), P(b), R(a)}

1t should be clear that the method used to arrive at this interpretation is the forward-
chaining procedure described earlier. An interpretation containing the least number
of elements is always obtained when it is generated in this way, and any other
interpretation that is a model for the program must contain all the elements of this
set. Although they are models, interpretations taking further atoms from the Herbrand
base, including interpretations taking the base itself, are less useful than the min-
imum model. In fact, the set of atoms obtained as the fixed point of forward chain-
ing through a definite program defines the meaning of the program: it is a statement
of all the atoms that may be proven true. Thus the least Herbrand model defines the
semantics of a program.

As a second example of a logic program, consider the definite formulas describ-
ing the linkages shown in Figure 3.9. This diagram contains an example of a
directed acyclic graph, directed because the arrows limit movements in one direc-
tion only, acyclic because it is not possible to return to the same point in the graph.

An alternative representation of the information in the diagram is possible through
the following facts:

Path(a.b), Path(b,d), Path(d.e), Path(a,c), Path(c,e)

Suppose now that we want to describe every pair of points that are connected by
paths in the graph, listing all allowed routes in the graph. The simplest routes are
the links themselves and this observation could be formalised by the rule

Route(x,y) « Path(x,y)

There are also a number of routes passing over more than one link. For example, a
route from b to e via d is possible and this may be expressed in the clause

7 TN
\(‘/7

Figure 3.9 A directed acyclic graph

104 LOGIC AND DECLARATIVE LANGUAGE

Route(b,e) « Path(b,d), Path(d.e)

Routes over increasing numbers of intermediate points may be described by intro-
ducing variables into similar clauses:

Route(x,z) « Path(x,y), Path(y,z)
Route(w,z) « Path(wx), Path(x.y), Path(y,z)

A route might pass overy many links in a larger graph and different rules would
have to be used for routes with different numbers of intermediate stages. A more
elegant solution than this encapsulates routes with differing numbers of intermedi-
ate points in a single rule:

Route(x,z) « Path(x,y), Route(y,z)

There is a route from x to z if there is a path from x to some intermediate point y
and a route from there to z. The final program then has the form

. Path(a,b)

. Path(a,c)

. Path(b,d)

. Path(c,e)

. Path(d,e)

. Route(x,y) « Path(x.y)

. Route(x,z) < Path(x,y), Route(y,z)

NN R W -

and it would be of interest to find the least Herbrand model of this program. First of
all, the Herbrand universe of this program is the set {a, b, ¢, d, ¢} and the Herbrand
base contains the two predicates in every possible ground state:

{Path(a,a), Path(a,b), Path(b,a), . ..
Route(a,a), Route(a,b), Route(b,a), . . . }

There are five constants in the Herbrand universe and thus 25 = 5 x 5 pairs of
arguments that might appear in either of the two predicates, producing a Herbrand
base of 50 atoms. An interpretation /0 in which none of these base atoms is assigned
true is shown as the empty set

10=1{}

but this is certainly not a model for the program. In order to find the minimal inter-
pretation required for the least Herbrand model, a series of interpretations based on
forward chaining through the program is explored. Interpretation /1 contains those
base atoms known to be true from the facts of the program alone:

I1 = {Path(a,b), Path(a,c), Path(b,d), Path{(c.e), Path(d.e)}
A second attempt adds the Route ground atoms generated by clause 6:

12 = I1 U {Route(a,b), Route(a,c), Route(b,d), Route(c.e), Route(d,e)}

PRINCIPLES OF LOGIC PROGRAMMING 105

A further pass uses clause 7 to generate interpretation I3, containing routes with
one intermediate point in addition to the atoms of /2:

13 =12 U {Route(a.d), Route(a,e), Route(b,e))

and a final pass generates the one route spanning two intermediate points:

14 =13 U {Route(a,.e)}

but this adds nothing new because Route(a,e) already occurs in /3. No more ground
states can be added in this way, so a fixed-point interpretation has been obtained.
The model /3 obtained by forward chaining to the fixed point is called the least
Herbrand model of the program and is a characteristic feature of a definite program,
defining the meaning of the program. Different models may be obtained by adding
further base elements to the least Herbrand model, but such models would not be
particularly helpful or informative.

Both of the examples above have a finite universe, making the enumeration of
the least Herbrand model a practical proposition, but the presence of functions
makes this impossible. Interpretations for functions are considered in more detail in
Chapter 6, so we just note the problem of an infinite Herbrand universe here. A
formal system defining the natural numbers is provided by the constant zero and the
successor function succ as follows

zero, succ(zero), succ(succ(zero)), etc.
and a program to add such numbers may be written as follows:

Add(x, zero, x)
Add(x, suce(y), succ(z)) Add(x.y,z)

Adding x to zero gives x and adding x to succ(y) gives succ(z) if adding x to y gives
2. The series of constants above is usually interpreted by the numbers 0, 1,2, ...,
but a Herbrand interpretation takes the strings themselves as the interpretation.
Hence the Herbrand universe of this program is an infinite but denumerable series

of constants; attempts to define a fixed-point interpretation, as we have done earlier,
will therefore not succeed.

3.3.2 Soundness and completeness

Logic programs are syntactic statements in a simplified form of first-order logic: they
are collections of axioms from which further statements may be deduced accord-
ing to a set of deduction rules. Since they consist entirely of definite clauses, only
positive statements may be derived. At the same time, the least Herbrand model
Tepresents a particular interpretation of the program, equivalent to the intended
interpretation. This representation is generated by a production rule that gradually
increases the number of known true facts until a fixed point is obtained. Now if a
given ground fact is derived from program P by proof theoretic reasoning, we write

106 LOGIC AND DECLARATIVE LANGUAGE

PHF

and if that fact is true in the least Herbrand interpretation (M,) we write
M.k F

But the least Herbrand model is a collection of all the facts that can be derived from
the program, so logical consequence must follow from derivability. A predicate that
is derived from the program must be true and the method of deduction is therefore

sound; conversely, the frue statements are those that may be derived, so the method
is complete.

3.3.3 The Datalog language

A forward-chaining strategy such as that described in connection with the least
Herbrand model may be used as the basis of a logic language. Programs are divided
into two parts: an extensional part containing factual information and an intensional
part consisting of rules from which further ground states are derived. Such pro-
grams are seen as databases that store some of their information in the form of
production rules but most of it in the form of an extensional database of facts.
When presented with a query, the extensional database is first checked: if this check
fails and there are rules that may be applied, further ground facts are produced.
Repeated applications of the rules produce more ground facts until the fixed point is
reached; if the desired predicate has not been found by this time, it will never be
found. There are many different languages of this kind, but all of them are included
in a general area described as Datalog languages. If we have a specific query that
can be presented to a definite Datalog program, the question arising is, can this
predicate be derived from the facts and rules of the program? Suppose we wish to

know if Route(a,d) follows from the program P above, we are asking if it can be
proven from the program that

P F Route(a,d)

or, in terms of the least Herbrand interpretation M,, if this atom is contained in the
fixed point obtained by forward chaining:

{...,Routead), ...} F Route(a,d)

The basic principles of Datalog programs are clearly quite simple: just forward
chain through the program until the desired result is obtained. If a fixed point is
obtained without finding the result, it is assumed to be untrue.

A Datalog program has fairly simple semantics: its meaning is revealed by
forward chaining to the fixed point and is therefore exactly that of the least Herbrand
model. Intensional database rules may be applied in any order, but the same defin-
ing fixed-point set of predicates is always obtained. Forward chaining generates

PRINCIPLES OF LOGIC PROGRAMMING 107

duplicate copies of the same predicate, and implementations have to ensure that
such duplicates are removed at each stage. Even so, the method generates many
predicates that are of no interest to a user, and its attractive semantics is to some
extent offset by problems in implementation. Much of the work in this area is

carried out in connection with the set-oriented relational databases described in
Chapter 10.

EXERCISES 3.3

1. Obtain the least Herbrand interpretation of the following definite program by
forward chaining until a fixed point is obtained:

r
sep

Ser, v
Fes

te—u,s
Ve p,r

2. Write down the Herbrand universe, Herbrand base and least Herbrand inter-
pretation for the following program:

P(a)

Q)

R(x) « Q(x)

S(x) « P(x), R(x)

3. Write down the Herbrand universe, Herbrand base and least Herbrand inter-
pretation for the following program:

R(a)

P(a.,b)

P(b,¢)

O(x,y) « P(yx)
S(x) « Q(xy), R(y)

3.4 BACKWARD CHAINING AND SLD RESOLUTION

Backward chaining does not require the generation and storage of large numbers of
Intermediate predicates because it works backwards from the goal using only the

Tules it needs. This technique is based on the simple observation that if a statement
§ can be derived from a program, i.e.

Program + S

108 LOGIC AND DECLARATIVE LANGUAGE

{—p,—r, g} {r,—g, -t} {t,—p} {p} {q}

\ /
[_'P- =, ﬂq}
~

{—=p, —q}
~N
{—q)

{1

Figure 3.10 Backward chaining from a goal clause

a conjugation of the program and negated statement S must be inconsistent. To
show that S follows from the program, we have to show that the formula Program
A —S§ is inconsistent, or in terms of the interpretation, that it is a contradiction. To

show that Route(a,d) can be derived from our earlier program P, we have to show
that

{P} A —Route(a,d)

must be a contradiction. Thus the production of a contradiction between the neg-
ated query and the program refutes the statement and indirectly shows the query to
be true. This is of course the refutation style discussed earlier, so backward chain-
ing is essentially a refutation argument.

The definite program given at the beginning of the previous section may be
written in clausal form as

{p). {g}, {r, =t, s}, {r, =g, —t), {1, =p), {1, =g, —s)

Forward chaining revealed that this program is equivalent to the clausal form
{p}, {q}, {1}, {r}. In other words, the meaning of the program may be expressed as
P A g AtArand aquestion like “is p A g A true?” is easily answered by checking
that propositional statements in the query appear in the Herbrand model.

Adopting the backward-chaining approach, we show that proposition p A ¢ A T
is true by showing that the negation of this query is inconsistent with the program.
The dual of the query is —p v —~q v —r and this is expressed as a negative Hom
clause {—p, —q, —r}. Figure 3.10 shows how this goal is resolved against succesive
program clauses until the empty clause is obtained, proving that the negated query
is inconsistent with the program. Goals are resolved against definite clauses t0
produce subgoals until the empty clause is obtained, refuting a conjugation of the
negated clause with the program.

Such a procedure obviously has to begin with the goal clause, but there remains
a choice of literals within the goal that might be selected for resolution and a choice
of clauses against which the selected literal might be resolved. The method shown

in Figure 3.10 selects the middle literal of the initial goal and resolves this against
an appropriate clause:

PRINCIPLES OF LOGIC PROGRAMMING 109

{-ﬂp, =, —lq} A {I', -q, —|fl - {ﬁp, g, 4, —1f}

but the duplicated —gq literal is removed after resolution. Next the third literal of
a modified goal is selected for resolution against an appropriate clause, then the
first and finally the only remaining one. This ad hoc selection of literals has to be
replaced by a fixed selection rule when the process of resolution is automated and
a simple selection rule that always selects the leftmost literal is usually chosen. The
process of resolving a goal with a set of definite clauses using a fixed selection rule
is called SLD resolution, the acronym arising from Linear resolution for Definite
clauses with Selection function. If the leftmost goal literal is always selected for
resolution, the process is called normal SLD resolution and the result of resolution
is described as a normal resolvant.

Not all the available clauses were used to produce the above refutation and it is
clear that different initial choices might lead nowhere, i.e. they might fail to pro-
duce the empty clause. On the other hand, there might be other ways of producing
an empty goal, allowing multiple refutations. Clauses are usuaily chosen for resolu-
tion in the order in which they appear in the logic program text, on a top-to-bottom
basis when the program is written as

p

q
Fre—tas
regnat
tep
te—~qgns

Actually the choice of literals to be clashed in Figure 3.10 was based on the desire
to produce a neat resolution diagram. An automated search using normal SLD
resolvants traces out a rather less tidy path that can be displayed in the form of an
SLD tree. A tree beginning with the goal =(r A ¢ A 1) following the program above
is shown in Figure 3.11. Here leftmost goal literals are chosen for resolution against
program clauses and the first available clause in the program is taken for resolution.
Following the leftmost branch of this tree to its leaf, we see that atom s needs to be
resolved against a clause, but there is no appropriate clause in the program. At this
point, the search has failed and has to backtrack to an earlier point where an altern-
ative clause can be used. A second resolvant is possible for literal ¢, but though this
is tried it also leads to a leftmost literal that cannot be resolved. The whole process
continues in a very mechanical way, leading to an empty clause (shown as a box)
and a further failed attempt.

Note that the SLD tree is explored from left to right so that two branches have
been tried and failed before the empty clause is obtained. Furthermore, the SLD
mechanism continues to explore alternative ways of showing the goal to be incon-
sistent with the program, even after it has already done so. This method of search-
ing is described as depth-first because it descends to the tips of each branch before
searching alternatives to the right.

110 LOGIC AND DECLARATIVE LANGUAGE

~(pArAg)
| Pe
—(ragq)
~(tASAQ) ~HgALAQ)
MV w/\s | 9«
ﬂ(’/\q)
—(pASAQ) —(GASASAQ)
tep te—qgnas
pe | | qe / \
—(sAq) “(SASAQ)
—pAqg —(gASAQ)
fail fail pe | | g«
—(q)
(s A Q)
q< |
D fail

Figure 3.11 An SLD tree

3.4.1 SLD resolution for first-order formulas

Resolution is essentially a feature of propositional logic, so predicate literals are
treated as simple statements. There exists, however, the extra complication that terms
might have to be unified through substitutions before resolution is possible, and
such substitutions have to be made throughout both goal and clause. Figure 3.12
shows how a goal and clause containing predicates are resolved through a most
general unifier {1, to give a substituted negative clause for further resolution. A
series of normal resolutions of this kind ,, W,, . . . , W, applied to an initial goal GO
might eventually lead to an empty clause. If so, the substitutions made would then
be the composition of a series of most general unifiers:

U= oMol 0. .. op,
Consider the route procedure with the following path data:

Cl Route(x,y) « Path(x,y)

C2 Route(x,y) « Path(x,z) A Route(z,y)
C3 Path(a,b)

C4 Path(b,c)

and take as a goal the predicate Route(a,c). Normal resolution produces the SLD
tree shown in Figure 3.13 with one successful refutation and two failed paths, so we
deduce Route(a,c). Each resolution step on the way to the empty clause required

PRINCIPLES OF LOGIC PROGRAMMING 111

—(AAB AC) A« EAF

\u/
—(EW A Fiu A Bp A Cp)

\“'/ .
\“ S
\“* a
\“f' /

Figure 3.12 Backward chaining with substitutions

—Route(a,c)

Cl1 [a/x,V w/x_ cly}

—Path(a,c) —(Path(a,z), Route(z,c))
fail I 3
—Route(b,c)
Cl{bix, ('V C2{bix, cly}
—=Path(b,c) —(Path(b,z), Route(z,c))
C4 I I Cd{c/z}

—=Route(c,c)

Cl{c/x, y Qc/x cly}

—Path(c,c) —(Path(c,z), Route(z,c))

fail fail
Figure 3.13 SLD tree for goal —Route(a,c)

a substitution and the composition of all such unifiers records a complete set of
substitutions. However, these substitutions are of no interest because the goal con-
1ains no variables. In this case a refutation is itself the answer.

Suppose we begin the SLD tree with the goal containing two variable arguments,
Route(v,w), and apply clauses of the same program to produce the tree shown in

112 LOGIC AND DECLARATIVE LANGUAGE

—Route(v,w)

Cl{vix, wiy}

—Path(v,w) C2{vix, wiy}

C3{alv, biw V \\C4{b/v. ciw)

D D —(Path(v,z), Route(z,w))
C3{alv, biw} YM blv, ¢/z}
—Route(b,w) —Route(c,w)
Cl{bix’, wly’} Cl{c/x’, w/y'/ \CZ{('/X', wiy’}
—Path(b,w) —Path(c,w) —(Path(c,z), Route(z,w))
Ca{ciw} | fail fail

O
Figure 3.14 SLD tree for goal ~Route(v,w)

Figure 3.14. This produces three successful refutation paths followed by two failed
paths as the SLD mechanism attempts to find a route from point ¢. In this case the
composition of unifiers required to achieve the empty clause is important: it pro-
vides the instantiated constants that cause refutation. Thus the first instantiation to
produce a result is the substitution

G = {vix, wiy} © {a/v, biw}
o = {alv, blw}

Simplifications are possible here because v and w are substituted for x and y but the
substituted variables are themselves subsequently replaced by a and b. Composition
of these changes leads to a simpler substitution. Similarly, the series of substitutions
required for the third refutation reduces to a much simpler single-stage substitution:

p = {vix, wiy) o {alv, biw} o {bIx’, wly’} o {c/w)
p = {alv, c/w}

The order of predicates within the body of a rule and the order of the clauses
themselves may be changed to give a modified form of the program:

Cl Route(x,y) < Route(z,y) A Path(x,z)
C2 Route(x,y) « Path(x.y)

C3 Path(a,b)

C4 Parh(b,c)

If we now grow an SLD tree from the goal Route(a,c), we obtain Figure 3.15. Nor-
mal resolution combined with the top-to-bottom selection of clauses now produces

PRINCIPLES OF LOGIC PROGRAMMING 113

—Route(a,c)

CI{W \Cz{a/x, cly}

—Path(a,c)
—(Route(z,c), Path(a,z))

C2{z/x, cly}
Cl{z/x, cly}

—(Path(z,c), Path(a,z))
—(Route(z’), Path(z,2"), Path(a,z)) | C4{b/z}
—Path(a,b)
| c3

O

Figure 3.15 An SLD tree with an infinite branch

a path that neither fails nor succeeds, but instead creates an infinite series of increas-
ingly large goals. Every attempt to resolve Route(z,c) with the first program clause
results in the creation of a fresh variable 2’ and a further attempt to resolve Route(z’).
Backtracking from this hopeless endeavour and resolving Route(z,c) against the
second clause leads fairly quickly to a refutation that is never obtained.

An SLD tree appears to have three different types of path:

4. Successful paths that produce the empty goal and provide the constant instantia-
tions required in the original goal.

b. Failing paths that terminate because the leftmost literal in the goal does not have
a matching literal in a program clause.

¢. Infinite paths that never produce a result.

Unfortunately, the mechanism we have described is equivalent to a depth-first
search of the SLD tree, meaning that paths in a tree are explored to the maximum
depth before any alternative to the right is considered. If, as in the above example,
an SLD tree contains an infinite path to the left of a potentially successful path, the
more productive path is never attempted. The technique fails to produce a result
when one would have been expected and is therefore incomplete. An alternative
breadth-first approach resolves the leftmost literal of a goal with every clause be-
fore proceeding to deeper levels and can be made complete. Unfortunately, the adop-
tion of a breadth-first approach makes the implementation of backward-chaining
systems rather more difficult.

We saw that forward chaining produces a large number of ground relations that
will never be required, so backward chaining seemed an attractive alternative. Now
we discover that a simple backward-chaining system depends on the order in which

clauses occur in a program script. All of these problems can be avoided when more
sophisticated algorithms are used.

114 LOGIC AND DECLARATIVE LANGUAGE
EXERCISES 3.4

1. The clausal form of the definite program given in Exercise 1 of Exercises 3.3 is
{ph s, =ph, {5, =r, =) Ar, =s), e -, s), (v, —p, —r)

Show that proposition s A v is true by resolving the dual of this expression in
clausal form against the program clauses above. Similarly show that r A p is
true.

2. Produce an SLD diagram tracing out the paths of attempts to prove propositions
pAvand s A1 A v true in the definite program of Exercise | in Exercises 3.3.

3. A relation Couple has arguments naming a man and a woman; a relation Mother
has arguments mother and child. A rule named Farher relates fathers to their
children through the Couple and Mother relations:

Couple(a,e)
Couple(d.f)
Couple(b,c)
Mother(f,g)
Mother(e,b)
Mother(f.c)
Father(x,z) < Couple(x,y), Mother(y,z)

Draw SLD diagrams for the goals F ather(d,g), Father(d.x) and Father(x,y).

CHAPTER FOUR

Prolog

4.1 PROLOG BASICS

Atits simplest level, a Prolog system works by comparing facts in a database with
a query called a goal presented at the prompt. Consider as an example some facts
holding information about depositors and borrowers in a building society. A depos-
itor fact contains an account number followed by the customer name and balance,

whereas a borrower fact contains a loan number followed by a name and the loan
amount:

depositor (123, smith, 500) .
depositor (234, brown, 200) .
depositor (345, patel, 700) .

borrower (735, jones, 2000) .
borrower (674 ,patel, 6000) .
borrower (865, evans, 5000) .

Collections of facts with the same name are called procedures or relations, and the
individual instances are called clauses. Each fact consists of an identifier name
followed by a number of arguments contained in brackets together with a terminat-
ing full stop. Prolog distinguishes between atomic and numeric const.ants by requir-
ing atomic constants to begin with a lower case letter and numeric constants to
begin with a digit. Thus, depositor, borrower and the names smith, br.own.‘
etc., are symbolic constants whereas the numbers are numeric constants. A string of
characters beginning with a capital letter represents a variable. but when enclos§d
in single quotes, e.g. “Jones”, the string is taken as an atomic symbol. Pr910g vf/-l”
dccept facts in which numeric and symbolic arguments have been.enterefi inconsis-
tently because it is not a typed language, so a great deal of care is required.

1156

116 LOGIC AND DECLARATIVE LANGUAGE

A database of information such as the facts above may be written into a text file
then a Prolog system is instructed to “consult” that file. After consultation, Prolog
is ready to answer queries presented at the query prompt. For example, a query
might ask if the depositor relation contains an entry with the following specific
arguments:

?-depositor (123,smith,500) .
yes

Here the user supplies a goal at the question-mark prompt, and to achieve this goal,
Prolog systematically attempts to match the goal name with a procedure name then
to match the goal arguments with database arguments. This form of matching is a
particularly simple form of a process called unification that checks goals against
information in the database. If a goal can be unified with a clause in the database,
the answer “yes” is obtained; otherwise the response is “no”.

In practice the user is more likely to want to find information from a query
rather than confirm known facts; this program finds the name and balance corres-
ponding to a particular account number:

?-depositor (123, Name, Balance) .
Name = smith

Balance = 500

yes;

no

Here a goal contains numeric constant 123 together with two variables distin-
guished from symbolic atoms by leading capital letters. Prolog again attempts to
unify the goal with a fact in the database and, as before, matches the relation name

and the first argument with constants. Since a variable can take any constant value,
a unification is possible by setting Name = smi th and Balance = 500 and this
satisfying instantiation of the two variables is reported. Any further depositor facts
for account number 123 will be shown when the goal is resatisfied by typing a
semicolon after the first result. As there is none, the system simply responds with
the word “no”.

Attempts at unification take place in order from the top to the bottom of the text
ﬁlf: containing the clauses and satisfactory unifications are reported to the user in
this order. A query with three variables, e.g. the query depositor (X,Y,2),
would return all three arguments in the depositor clauses, producing three satisfactions
in the order in which they occur in the text file.

. Pr?log can satisfy goals requiring more than one procedure, allowing questions
like, “Is there anybody who is both a borrower and a depositor?”
?-depositor (4, N, B)

,borrower(L,N,S) :
N = patel

A comma between the two parts of the goal acts as a logical *

i i ‘and”, requiring truth
in both relations: there must exist a triple A, N, B in the de

positor relation and a

PROLOG 117

triple L, N, S in the borrower relation. Since N is the same variable in both rela-
tions, it is said to join the two procedures and only situations where the same name
occurs in both are reported. One problem with the query above is that, in addition
to reporting the name patel, Prolog also provides substitutions for 2, B, L and S
even though they are probably not required. A goal is only ever matched with facts
having the same number of arguments, so arguments cannot simply be left out of
goals. However, if some arguments are of no interest, they can be replaced by
underscores:

?-depositor (_,N,_),borrower (_,N,_).
N = patel

and only instantiations of the named variables are reported. Underscores represent
anonymous variables and might be seen as don’t care or wild card variables. A
semicolon represents logical “or” in a similar way to the logical “and” above, and
we can discover if a named person is a customer, either a depositor or a borrower,
with the following query:

?-depositor (_,smith,_) ;borrower (_, smith,).
yes

In reality this goal is equivalent to two separate subgoals, one for depositor and
one for borrower. It is true if depositor can be unified with a fact in the
database or if borrower can be unified with a fact in the database. It is also true
when both these subgoals are unified with clauses in their appropriate procedures,
Le. it is not an exclusive-or.

Rules may be added to the text file to provide a more permanant formulation of
queries. For example, a rule to supply the balance for a depositor with a specific
account number might be added to the facts in a database:

balance (AcctNo,Bal) :- depositor (AcctNo, _ ,Bal) .

This type of clause is divided into a head on the left and a body on the right by the
“if” symbol (: -) and the head of a rule is true if the body is true. When a text file
of facts and rules is modified, the file must be “reconsulted” before the modification
is incorporated. If the above rule is added to the initial database, the following
query is possible:

?-balance(123,X).

A =500

In practice this is very little help, except to demonstrate the use Qf arule. A slightly
more useful rule is possible for finding clients who are both depositors and borrowers:

both (Name) :- depositor (_,Name,_) ,borrower (_,Name, _) .

which, after reconsultation, allows the following interaction:

2=boethx):
X = patel

118 LOGIC AND DECLARATIVE LANGUAGHE

Rules become more useful as queries become more complex. In particular, thejr
usefulness increases when the heads of existing rules are used in the bodies of
further rules, building up a series of references to rules.

Prolog contains a number of built-in predicates (BIPs) to carry out standard
procedures such as numerical comparison. The “greater than” BIP may be used to
find those depositors with balances greater than a certain value, e.g.

s~ depositer(X,Y,Z), Z> 500.
X =345, Y = patel

No introduction to Prolog would be complete without mentioning the relation par-
ent and some of its family connections. Databases that include parent might
contain the following facts and some comments distinguished by the leading % sign:

parent (anne, bob) . %examples of the parent relation
parent (john, jane) .
female (anne) .
male(john) .

%¥some gender relations

They might also include rules to derive information from these simple facts, such as

mother (X) :- parent (X,Y), female (X) .

indicating that a mother is at once a parent and a female. A variable ¥ must be
instantiated with the same value within a rule, but the value used in this rule has no
connection with the use of the same variable name in another rule. Similar rules
might be written for father, son and daughter.

Relation grandparent can be formed by conjugating parent:

grandparent (X,7) :- parent (X,Y) ,parent (¥.:2) .

A single variable v now joins clauses i
same procedure. A goal grandpare
ent (fred, Y) and Prolo

n procedure parent to other clauses in the
nt (fred, tom) generates subgoal par-

& systematically attempts to unify this subgoal with every

dure. Each time it instantiates v to a constant, it searches the same

grocsdure from top to bottom for the clause parent (Y, tom) and might report
YEs~ zero or more times.

A rule such as this can be used in the body of a further rule as follows:

grandma (X, Y)

2o :‘grandparent(X,Y),female(X).
sibling (X, v)

‘- parent (z, X) «parent (zZ,v) .
EXERCISES 4.1

I. A small library maintains th

: ! e book number author, tit
1Items in two Prolog relation .

e and price of its stock
S such as

PROLOG 119

fiction (123, smith,dreaming, 14.54)
non-fiction (467, jones,databases,20.30)

Enter six clauses for each relation into an editor and make Prolog consult the

resulting file. Invent data for the relations, guided by the requirements of the

following queries, then carry out the exercises at the prompt.

a. Find the price of any non-fiction book written by patel.

b. Show the author and title of all fiction books costing more than 20 currency
units (cu).

Add rules to the file defining the following relations:

books (B, A, T, P), describing all books, both fiction and non-fiction
cheap (B, A, T, P), describing all books costing less than 10 cu
authors (A), listing the names of all authors

common (B1,B2) where B1 and B2 are fiction and non-fiction book num-
bers of books with the same title

Use these rules to show the following information:

¢. Names for the authors of all books costing less than 10 cu.
d. Author and title of books priced between 10 and 15 cu (inclusive).

e. Book numbers of fiction/non-fiction pairs with the same title when either one
of them costs more than 30 cu.

4.2 FLAT TABLES

A flat table is a relation containing only simple atomic objects as opposed to
structured objects such as functions and lists. Tables of this sort are used in rela-
tional databases together with a number of characteristic operations that define new
tables or procedures from existing ones. For example, tables describing under-
graduates, courses and their links can be written in Prolog as follows:

ugrad(123,wendy,) . %students
ugrad(234,bill,m).
ugrad (345, norma, f) .

course (c204,1lisp,2,15). gcourses
course (c213,database, 1,15) .
course (c234,prolog,2,8).

link (123,c204,12). sthe connections
link(345,€213,10) .
link(345,¢234,11) -

120 LOGIC AND DECLARATIVE LANGUAGH

A ugrad relation contains arguments describing student number, name and gen-
der, whereas a course relation has arguments for course number, title, semester
(1 or 2) and credit value (15 for a full course, 8 for a half-course). A 11ink relation
contains student and course numbers from the previous two relations together with
a grade point result (a figure between 0 and 16) for that combination of student and
course. In relational database language the first two procedures are called entity
relations and the third is called a relationship relation because its purpose is to
connect other relations. Each of the procedures ugrad, course and link is
equivalent to a base table of information in a relational database and is sometimes
called the extensional database in Prolog.

A projection operation extracts arguments from one procedure to form a new
procedure of fewer arguments. For example, a procedure of student names may be
formed from the ugrad relation with the following rule:

names (Sn) :-ugrad(_, Sn, _).

so that a user can find the names of all undergraduates by typing names (). A
very important point follows from this query: a user would never know whether the
information obtained by typing names (X) had been obtained directly from facts
or indirectly through rules. Instead of adding the rule above, we could have added
a new procedure called names that contained only name facts. A virtual database
obtained by adding rules in this way is called an intensional database.

A selection operation chooses tuples from a procedure on the basis of the values
of its tuple arguments. Thus, instances of female undergraduates can be extracted
from the ugrad procedure with the following rule:

f_ugrad(s,N, f) :- ugrad(S,N, f) .

and the resulting f_ugrad relation has the same number of arguments but might
have fewer instances. Since

the third argument of f_ugrad must be f, it makes
sense to combine the projection and selection operations, selecting females and
projecting just the student number and name in one rule:

f_ugrad2(s,N) :- ugrad(S,N, f) .

Only those tuples in which the third
f_ugrad? relation. A selection bas
made explicitly in the rule instead of
example, student number and course
than 12 are revealed by the followin

argument of ugrad is equal to £ appear in the
ed on a relation other than equality has to be
placing the value in an argument position. For

number combinations with grade points greater
g rule:

high_marks(S,C) :- link(s,C, p) P12,

4.2.1 Cartesian products and joins

The Cartesian product of two relations
combinations of the arguments in the sma
formed from the ugrad and 1ink relat

is a further relation containing ordered
ller relations. A Cartesian product can be
ons through the following rule:

PROLOG 121

cprod(S1,N,G,S2,C,P) :-ugrad(Sly,NiG)IEnki(S2,c B)f:

Remembering that Prolog works on a top-to-bottom and left-to-right basis, we
should expect the ugrad variables’ subgoal to be unified initially with the first
ugrad fact appearing in the script file. The 1ink subgoal is similarly unified with
the first 1 ink fact appearing in the script, leading to a first satisfaction of the initial
goal. Prolog then resatisfies the 1ink subgoal as many times as possible before
moving on to further instantiations of ugrad. Since there are three facts of each
kind (in this example), the Cartesian product contains 3 X 3 = 9 entries, the first
three of which are equivalent to

123,wendy, £,123,c204,12) .
cprod(123,wendy, £,345,c213,10).
123,wendy, £,345,c234,11).

In practice a Cartesian product produces many more instances than are useful in
any application. Two of the instances above contain information on different stu-
dents, 123 and 345, and are unlikely to be useful. Placing a common variable in
the student number positions of both subgoals produces a special subset of the
Cartesian product:

cprod2 (S,N,G,S,C,P) :-ugrad(S,N,G),1link(S,C,P).

but we now recognise that the duplicate copy of the student number in this relation
is not necessary. When relations are joined through one or more attributes and
duplicate copies of these attributes are removed from the resulting relation, a nat-
ural join is obtained. A join based on the student number is written as

join(s,N,G,C,P) :- ugrad(S,N,G),1link(S,C,P).
A combination of this rule with the extensional database is equivalent to

join(123,wendy, f,c204,12).
Jjoini(345, norma,; £, c213,10) .
join(345,norma, f,c234,11) .

but the rule is far more flexible. If the content of an extensional database changes,
the rule uses modified data.

Joining operations are often accompanied by selections or projections. For ex-
ample, the student numbers and names of female students who achieved more than
11 grade points in any course can be found with the rule

fover1l(S,N) :- join(S,N,f,_,P),P>11.
A join of the three relations in the extensional database may be written as

join2 {s,N,G, C, P/T, L, V) 1=
join(S,N,G,C,P),course(C,T,L,V).

122 LOGIC AND DECLARATIVE LANGUAGE

facts
relations
rules y
symbolic
i <
atoms
numeric
terms variables
functors
structures
lists

Figure 4.1 The parts of a Prolog program

A joined table can then be used to answer questions where information is spread

over all three relations. For example, given a course title, provide the names of all
students following that course:

members (Title,Name) :- join2(_,Name,_,Title,

SR

Such a rule could have been written directly in terms of the extensional database

relations with just enough variables to link the subgoal relations and produce the
required results:

members2 (Title,Name) :- course(C,Title,_),1link(S,C,_),
ugrad (S, Name, _) .

VA

form is restricted as described in Chapter 3 to give the language its operational
features. Figure 4.1 shows that the objects making up a Prolog program are derived
from the logic structure and are subdivided in much the same way. A program is
composed of terms and relations: terms are subdivided into constants, variables and
functions. Notice, however, that term constants are atoms in Prolog
are further subdivided into symbolic and numeric forms. Functions
tures and are subdivided into functors and lists. Functors look m
the functions described earlier and lists are a special functional notation. Terms are

not evaluated and replaced by their denotations. as they would be in a functional
lan.guage. s functors and lists have the more limited role of binding together other
objects. Thus, the value of a fi

: unction such as square (4) cannot be computed
and 1ts‘denolation 16 used to replace the function, because Prolog has a simple
syntactic definition of equality. Nevertheless, functors are useful for binding
together collections of objects into a single object, as in the date of birth functor
d_Ob(12 / ju_rle, 1967) orin the list structures (1,2, 3] or [mary, john,4].
Slr'lce Prol.og IS not a typed language, a list may contain arbitrary atomic or structured
9b]§cls, Similarly, any term May occur as an argument in a clause, but since we are
limited to first-order logic, no clause can appear as an argument in another clause.

Prolog has the general form of first-order logic described in Chapter 2, but this

parlance and
are called struc-
uch the same as

PROLOG 123
4.2.2 Tables with complex terms

Relational database systems accept the limitation to atomic terms in flat tables
because this allows efficient implementation. Prolog allows more complex terms
and therefore more expressive relations, but is rather less efficient in execution.
However, some progress has been made in implementing databases that allow more
complex terms and such systems could become commercially viable in the future.
Consider as an example an extensional database containing information on winners
of the Wimbledon men’s singles tennis competition, with entries such as

mens_singles (player (stefan, edberg,dob(19,1,1966)),
[1988,1990], [becker, becker]) .

Here a relation called mens_singles contains three arguments: a functor de-
scribing the player, a list of the years in which he won the title and a list of the
defeated finalists in those years. A player functor contains the first name, surname
and a further functor recording the date of birth of the player. Both lists are of vari-
able length, depending on the number of times the player has won the competition, but
the two have the same length. Entries only occur in the database when players have
won the competition, so these lists cannot be empty. The mens_singles rela-
tion is still composed of symbolic and numeric atoms, but these atoms are gathered
together into structures that allow them to be treated as a single entity when it would
be useful to do so. For example, a simple query to the above database might be

?-mens_singles (X,Y,2).

X = player (stefan, edberg,dob(19,1,1966))
Y =[1988,1990],

Z = [becker, becker]

and we see that complex terms rather than atoms have now been substituted for the
variables. Complex terms might equally be substituted for anonymous variables, as
in the following query that finds the years in which Borg won the men’s singles
competition:

?-mens_singles (player (_,borg,_) . X,_) .
X=[1976,1977,1978,1979,1980]

If we wish to know who won the competition exactly three times, we might write
?-mens_singles (player (Fname, Sname,_), [T)

Built-in predicates such as “greater than” may be included in a query to find sur-
names for all title winners born after 1950:

?-mens_singles (player (_, Sname,dob (_, . YT) oo L #1950

Obviously the use of complex terms makes the language far more flexible and
expressive in comparison with relations limited to atomic terms.

124 LOGIC AND DECLARATIVE LANGUAGE

Prolog terms may be tested for equality with the special built-in equality predic-
ate, represented by the equals sign (=), e.g.

?-person(tom,13) = person(tom, 13).
yes

If two terms can be unified, the appropriate substitution is made and reported:

?-player (stefan, edberg, X) = player (stefan, edberg,
dob(19,1,1966)).

X =dob(19,1,1966)

yes

Essentially the equals sign represents a special relation that is true when its two
arguments are the same string of symbols or can be made the same by instantiation.
A special strict equality is available (==) and this makes no attempt to unify the
two terms; if they are not the same without unification, it fails.

EXERCISES 4.2

1. A small library contains the details of its stock and loans in the following
relations:

book(l23,smith,dreaming, 14.54) .
reader(894,palmer,ﬁnance) .
serial(123,894,date(12,5,97))

Book details remain as in Exercise 4.1 and the reader relation contains a
reader number, reader name and reader department. Any book out on loan is
connected to a reader number through the serial relation and is due back by
the date shown in that relation.

Enter six clauses for each relation into a file through an editor and make
Prolog consult this extensional database. Check the database by carrying out the

following queries at the prompt:
. Show names of all readers who currently have a book out on loan.
b. Show the book numbers and return dates of books on loan to jones.

Go back to the editor and d

: efine a relation that Joins book and reader relations
through the serial relation, t

hen use this rule to answer the following queries:
c. Show title and price for all books currently on loan.

d. Show title for books currently on loan by evans.

e. Show title and return date for books on loan to sales_dept.

Define a relation called later

second date is later than the firs
date(l,4,94))

that has two date arguments and is true if the

1a t. Thus the goal later (date(29,3,94),
elicits a “yeg” response from the program.

PROLOG 125

f. Write a rule that allows a user to input a date and receive in return the reader
names and titles of books on loan but due back by that date.

4.3 RECURSIVE QUERIES AND OPERATORS

The simple route diagram from the previous chapter is shown again in Figure 4.2
and used here as an example to illustrate recursive rules. Paths between various
locations are shown in the form of a directed acyclic graph, a diagram of one-
directional paths without any loops. Exactly the same information may be stored in
a Prolog database as follows:

path(a,b) .
path(a,c) .
path(b,d) .
path(d,e) .
path(c,e).

and a query of the type “where can I go from d?” is an easily answered goal:

?-path(d,X) .
X=e

/ b —>» d \
> = G
Figure 4.2 A directed acyclic graph

a

Single-step queries of this kind are not likely to be very useful. More often the user
will want to know if a journey can be made between two points, perhaps with
intermediate stages. Imagine that a user wants to know if a journey from b to e is
possible and makes the following first attempt:

?-path(b,e).
no

followed by

?-path (b, X) ,path(X,e)
X =1d

in which satisfaction is obtained. It might have taken many attempts with increas-
ing numbers of intermediate points before a given goal succeeded. But some help
could be provided by route rules such as

126 LOGIC AND DECLARATIVE LANGUAGE

routeA(Start,Finish) :- path(Start,Finish) .
routeB(Start,Finish) :- path(Start, X) +Path(X,Finish) .
routeC(Start, Finish) :- path(Start.X) spath (X,¥)

path(Y,Finish).

so that a user might try each rule in turn until one succeeds:

?-routeB (b, e) .
yes

A more general approach follows from observing that a route consists of one path

alone or one path followed by a further route, properties that are expressed in the
rules

route(Start,Finish) :- path(Start,Finish) .
route (Start,Finish) :- path(Start, X), route (X,Finish).

Suppose that the query ?-route (d, e). is presented to Prolog with these rules
and the above database. Goal route(d,e) is unified with the first clause of the
route procedure, instantiating variables St oyt and Finish to constants d and
e. Thus route (4, e) is true if path(d, e) is true and a systematic attempt to
unify this subgoal with a database clause begins. Attempts to match goal against
database fact proceed from the top of the text
Prolog to respond with the word “yes”.

Suppose, however, that a query for a route with intermediate stages such as
?-route (b, e). is presented. This goal is again unified with the head of the first
rule and a systematic attempt to match subgoal pat h (b, e) with a database clause

begins. This attempt fails, so variables Start and Finish
instantiated to b a

file and eventually succeed, causing

in the second rule are
nd e, producing the following instantiation:

route(b,e) :- path (b, X) ,route (X, e) .

Two subgoals now have to be satisfied, and Prolog works from left to right through
the body of the rule attempting to unify subgoals with database clauses. Working
from top to bottom through the text file, several attempts at unification are required
bef.or.e fact path (b, d) is unified with goal path (b, x) by instantiating ¥ to d.
This instantiation is transmitted to the following subgoal, and systematic attempts
‘ with a database clause begin. Searching again begins at

1le, leading to the first route rule and an instantiation of d and e
h. A search for path(d, e) takes place and success is

PROLOG 127
4.3.1 Operators and functors

Clauses might contain atoms, variables or functors as arguments, but Prolog functors
serve a quite different purpose compared to the functions of a functional programming
language. Although the two forms look the same, they behave differently because
equality in Prolog means syntactic equivalence rather than denotational equival-
ence. Two terms are equal in Prolog if they are represented by the same string of
symbols, whereas they are equal in a functional language if they can be reduced to
the same canonical value. However, it is possible to define operators and provide
Prolog rules that allow Prolog to discover canonical terms for complex terms ex-
pressed as relational arguments. As a particularly simple example, consider the fact

valOl (and(true, true) ,true).

in which a fact of a relation called val0 contains a functor and its denotation as
first and second arguments. There is no difference in the form of a relation and a
functor, so Prolog has to distinguish the two by their positions, thus in the example
above, the and atom must be a functor because it occurs as an argument within a
clause. Three more relations could be added to the one above, and the resulting
procedure would completely define the effect of the and functor on two Boolean
atoms. A particular functor may then be evaluated as

?-vall (and(true, false) ,X).
X = false

but queries that can be evaluated are limited to the four defined facts. However,
four facts defining functor and in terms of constants may be replaced by just two
rules using variables and taking advantage of Prolog’s built-in operations, as in the
val relation:

val (and(X,Y), true) :- val(X, true) ,val (¥, txrue) .
val (and (X,Y), false) :- val(X,false);val(Y, false).

These rules express what we already know about the meaning of conjunction: the
function and (¥,) is true if X and Y are both true, but false if either X or ¥ 1s
false or if both are false. If a database contained the rules above in a file together
with facts

val (p, true) .

val (g, false) .

the following query response would be obtained:

?-val (and(p, q) ,X) .

X = false
Relation val has the advantage over val0 that it allows recursive references to
decompose subterms within goal relations. A query in which a functor appears as
an argument in another functor is possible:

128 LOGIC AND DECLARATIVE LANGUAGE

?-val (and (p,and(qg,r)) ,X) .
X = false

allowing the evaluation of arbitrary Boolean expressions. Although this notation is
perfectly correct, it suffers from two problems: the prefix use of and can become
cumbersome in large expressions and it does not provide the usual precedence rules
for propositional operators, i.e. it does not give conjunction priority over disjunc-
tion. Prolog allows users to define functions to be operations through operator
definitions and, in the case of conjunction above, we could define an operator
labelled & as follows:

:-op(600,xfy, &) .

An operator declaration, sometimes called a directive, must precede any attempt to
use the operator in a program. It consists of the atom name op with three argu-
ments, the last of which is a symbol for the operator being defined.

The first argument is a number (usually between 1 and 1200) that defines a
precedence level for the operator, lower numbers representing operators that bind
most tightly to their arguments. For example, a Boolean expression p v q & r is
assumed to represent p v (g A 7). To ensure that the & operation is applied first, it
is defined with a lower precedence number (giving it a higher precedence) than the
V operation.

The second argument of the operator definition defines the position of the opera-
tion symbol in relation to its own arguments. Operator
by the letters x and v, and the operator itself is represented by the letter f. Prefix,
infix and postfix operators are then defined with the notations fxy, xfy and xyf.
Argument x has a lower priority than v, so an operator defined in this way associ-
ates to the right when the arguments are themselves functors. Notice that an oper-
ator definition tells us nothing about the “meaning” of an operator, i.e. what it
denotes, so this information has be be added with rules:

arguments are represented

val(X & Y, true) :- val (X, true),val (Y, true) .
val (X & Y, false) :- val (X, false) ;val (Y, false) .

Except for the replacement of the

rules are the same as those above,
the prompt:

prefix and symbol by an infix & symbol, these
but now the abbreviated symbol can be used at

?=vali{p& @i 7 .
Z = false

Operator definitions for negation, disjunction and implication can be made in the
same way:

= 0D (500, £y, ~) .
1= 0p(700,xfy,v) .
:-0p(800,xfy,-5) .

PROLOG 129

Since all these symbols have to be typed on a normal keyboard, they are slightly
different from equivalent symbols used earlier. Conjunction is represented by the
symbol & because the usual A is not available on keyboards, though it would be
possible to define A with two keystrokes. A negation function is represented by the
tilde ~, disjunction by a lower case letter v and implication by a combination of a
minus sign with the chevron ->.

Rules can be written for disjunction and implication using the operators defined
above:

val(XvY,true) :-val(X,true);val(Y,true).
val (X v Y, false) :-val (X, false),val (Y, false).
val(X -> Y, true) :- val (X, false);val(Y,true).
val(X -> Y, false) :- val (X, true) ,val (Y, false).

The valuation of a disjunction is true when either X or Y is true; itis false
only when both arguments are false. Implication is slightly more difficult to
follow; its valuation is t rue when the first argument (the antecedent) is false or
when the second (the consequent) is t rue, or when both situations occur together.
Only a true antecedent with a false consequent makes an implication false.
Negation is expressed as a simple inversion:

val (~X, true) :- val (X, false).
val (~X, false) :- val (X, true).

Having entered these rules in the database, it is instructive to follow the evaluation
of a query. Suppose that the following goal is presented to the database:

?-val((pv~qg) & (~pvQg),true).

This proposition was written earlier as (p v —=¢) A (=p Vv ¢) and its semantic
tableau is shown in Figure 1.3. A trace of the way in which Prolog attacks this
problem follows the form of the semantic tableau and provides some insight into its
search mechanism. The goal above is matched with the head of the true & rule, so
that both subgoals have to evaluate to t rue in order to make the goal itself true.
Since both have to be t rue, they are shown one directly below the other, leftmost
first, in Figure 4.3. It is important that the leftmost subgoal of the rule appears
highest in the diagram because subgoals are discharged in order from top to bottom.
The goal in line 2 is now matched with the head of the true v rule, creating two
further subgoals that have to be satisfied. A split in the diagram indicates that only
one of these subgoals has to be satisfied in order to satisfy the parent ggal. Now
subgoal val (p,true) has to be satisfied, but it cannot be unified with a rule
head, so the following possibilities arise:
a. No matching fact occurs in the database, so Prolog “backtracks™ to its parent
clause in order to check alternatives, in this case it would try val (~q, true).

b. A matching fact does occur and Prolog continues with the current sequence of
satisfactions, in this case unifying the subgoal in line 3 with a rule.

130 LOGIC AND DECLARATIVE LANGUAGE

1% val((p v ~q) & (~p v q), true)
|
2% val(p v ~q, true)
|
3. val(~p v q, true)
4. ¢ val(p, true) val(~q, true)
5. val(~p, true) ¢ val(q, true) & val(q, false)
6. ¢ val(p, false) val(~p, true) ¢ val(q, true)

¢ val(p, false)
Figure 4.3 A Prolog search tree: backtracking points are marked with a diamond

Each backtracking point is marked with a diamond in the diagram; they are the
make or break points where Prolog either finds a suitable fact in its database or
it does not. Hopefully, val (p, true) and val (p, false) would not occur
together in the database, so Prolog would have to backtrack from one of them. If
the database contains both val (p, true) and val (g, true), the bottom of the
search tree is reached and the original goal is satisfied.

Whenever a branch occurs in a diagram such as Figure 4.3, it is the left-hand
side that is explored first. If the system is unable to match
arule or a fact, it backtracks to the point where it branched
route. This is called a depth-first strategy because the tip of the leftmost branch is
reached before any alternative routes are explored. If the database contained facts
val(p, true) and val (q, true), the tableau would be explored to the left-
hand tip, but val (p, false) would fail, causing backtracking to line 4 and an
attempt to match the subgoal val (q,true) with a fact, which succeeds. Prolog

reports this success, but continues to look for further matches. backtracking at each
of the marked points.

An exclusive-or operation labelled @
instructions:

a goal with the head of
and tries the alternative

might be defined by the following program

:-op (700, xfy, @)
val (X @ X, true) .
val (X @y, false) :- X \== Yo

EXERCISES 4.3

1. Create a database of parent facts of the type parent

(john, mary). Write a
procedure called ancestor that succeeds if the pers

son in the first argument

PROLOG 1131

position is ancestor of the person in the second argument position. Add a rela-
tion female to the database that includes all the females in either argument
positions of the parent relation. Write a modified version of ancestor called
maternal that relates a person in the second argument position through a
series of female parents to a female in the first argument position.

(3]

. Declare operator symbols and write procedures that implement the nand (1),
nor (L) and imp operations described in Chapter 1. Enter atomic valuations
val (p, true),val (g, false) and val (r, false) into the database, then
evaluate the following expressions, in which @ is niff (exor) and — is not; both
will have to be translated to keyboard symbols.

plg@rir
pl(/l—q)lr

3. Draw diagrams similar to Figure 4.3, showing the search path when the follow-
ing goals occur at the prompt:

val(p & ~gv ~p & g, true)
val((p & ~q) ->r ,true)

4.4 OPERATORS AND ARITHMETIC

In the logical expressions above, we chose to write function and (X,Y) in the
form ¥ & v, having defined an infix operator & with a specific precedence level.
Remember that the operator definition did not explain how the result of the opera-
tion is deduced from its arguments. Similar considerations apply to the arithmetic
operators used in Prolog except that both the operator definitions and their mean-
ings are predefined in a standard environment.

Armed with the knowledge that the necessary operator definitions are built into the
Prolog system, a naive user might attempt the following calculation at the prompt:

= R=2 %3 % 4

X=2+3*4

Such a user might have hoped that Prolog would evaluate the expression on lhe
right then report an equivalent value for X. Unfortunately, the concept Qf equality in
Prolog is that of simple syntactic equivalence, not of denotational equivalence, and
in this light the response above is perfectly correct. The user has asked Prolog what
sequence of symbols a variable 3 would need to represent in order to be equal to
2 + 3 * 4 and the system has obliged with the appropriate sequence.'Prolog. re-
cognises arithmetic symbols as syntactic infix operator symbols and instantiates

variables to make expressions equivalent:
X+2=3+Y:
X =3
¥=2

132 LOGIC AND DECLARATIVE LANGUAGE

Arithmetic operations are so useful that they are allowed and activated by special
symbols. In particular, the calculation intended above could be carried out with the
is operator at the ? prompt:

?-Xis 2 +3 * 4,
Xii=r it

Operator is represents a form of denotational equality that causes the evaluation of
the arithmetic expression on its right-hand side and the substitution of the result
into the variable X. In fact, the is keyword evaluates the expression then unifies
the result with the term on its left. If the other atom is a variable, the unification
amounts to a simple substitution, as in the example above; but if it is a numeric
constant, the operation amounts to an equivalence test. For example, the following
query results in a successful unification:

21 g0 "3k
yes

All atoms in a numerical computation must be numeric atoms. The available range
of arithmetic operations varies between implementations but always includes the
familiar operations: +, —, *, /, mod, div. Arithmetic operators associate from left to
right, so the expression 4 — 3 — 2 evaluates as (4 — 3) — 2 rather than 4 — (3 - 2).

This is a direct consequence of the x and v arguments in the operator definition of
the subtraction symbol:

ep(500,vfx, —)..

The keyboard symbol for a minus sign is a hyphen (-). Arguments x and v can
themselves be expressions but the principal functor of x must have a lower pre-
f:edence than £, whereas the principal functor of v might be either lower or equal
in precedence to £. This means that only left association is allowed. Precedence

numbers also ensure the usual evaluation priorities, i.c. an expression of the form
2 +a * b is understood to represent 2 + (a * b).

4.4.1 Relational operators

An intended numerical comparison of the type

2-4E*X 3=2 * g
no

again fgils because the strings of symbols are different. Prolog is concerned with
syntactic equality, so it does not recognise the fact that 4 * 3 and 2 * 6 denote the
same value. However, numerical comparisons of arithmetic expressions are so use-
ful that they too are included in the language by adding some special relational
symbols. Operations of this kind employ a different equality symbol:

PROLOG 133

Pl %R —nm QEE NG,
yes

This new symbol causes the numerical evaluation of the two sides before a com-
parison is made. Several other numerical relation operators are defined such that
they force the evaluation of two arguments then perform the numerical comparison,
reporting “yes” and “no” as though the answer were a Boolean result:

> greater than

< less than

=< less than or equal to
>= greater than or equal to

\= numerical inequality
:= numerical equality

Built-in relational operators are very useful in writing a procedure to find the larger
of two numbers ¥ and ¥:

max(X,Y,X) = X>=Y.
max (X, ¥,¥) (=¥ >X.

allowing the following interaction at the prompt:

?-max(2,5,B).
B=5

Although Prolog is a syntactic reasoning language “without equality”, it uses a
suprisingly large number of different equality symbols and we need to be sure
of their meaning. Predicates = and \ = represent syntactic equality or inequality re-
spectively, allowing substitutions to achieve a result. Predicates == and \ == repre-
sent strict equality and inequality respectively: they do not permit substitutions in
order to obtain a result. Finally, Prolog’s numerical comparisons force evaluations
of the arguments then compare the values denoted by the arguments.

4.4.2 Arithmetic in recursive procedures

Distances could be incorporated into some facts derived from Figure 4.3 as follows:

path(a, b, 8) .
path(b,d,7) . etc.

A rule could then be written to show not only that routes are possible, but also to
provide the distance of a given journey:

route2 (X,z,D) :- path(X,Z,D). .
route2 (X, 7Z,D) ;-path(x,Y,Dl>,routeZ(Y,Z,D2>/DlSDl*D2-

1 &y

134 LOGIC AND DECLARATIVE LANGUAGHE

Procedure route2 works in the same way as route itself, but adds the path
distance of each individual step to the distance of the remaining route.

The factorial of a given natural number is the product of that number with all
natural numbers smaller than itself; factorial 5 is equal to 5 x4 x3x2x1=120.
In order to express a factorial in recursive form, we note that the factorial of any
number 7 is equal to n multiplied by the factorial of n — 1. From this simple
observation comes the following recursive Prolog program:

faci(d 1),
fac(X,Y) :- X1 is X - 1, fac(X]l,¥1),Yis X * ¥1l.

and factorial 1 is easily found to be 1 by pattern-matching the goal fac (1, R) with
the first clause. Goals containing larger integers such as fac (4,R) can only be
matched with the second clause, the number being instantiated into variable ¥ and
the result R sharing with rule variable v. It is instructive to follow the steps required

to produce a result from the goal ?-fac (4,R) when it is unified with the rule
head:

fac(4,R) :—3is4—l,fac(3,YlJ,Ris4*Yl
faci(i3, ¥i1) :—2is3—l,fac(2,Y2),Y1 is 3 * Y2
fac(2,Y2) :—lis2—1,fac(l,Y3),Y2 is 2 * y3
fac(1,Y3) s=faei(l, 1)

at which point the series of recursive references is terminated. The first arithmetic
subgoal is satisfied and produces a decremented integer that is shared with an
argument in the second subgoal, a recursive call to the factorial procedure. Fresh
variables are introduced in each step but they cannot be assigned values until the
final terminating stage is reached. Even then it is only the last variable (Y3) thatis
assigned a value of 1. This allows v2 to be calculated, then v1 and finally R as

follows:
fac(22) :—lis2—1,fac(1,1),2 is2 *1
fac(3,6) :—2is}—l,fac(2,2),6 is3 *2
fac(4,24) :-3 is4~l,fac(3,6), 24 is 4 * ¢

An alt§mative approach to the traditional factorial computation is provided by the
following accumulator procedure:

fac2 (N,R) :- faux(N,l,R).
faux(1,v,v).
faux(N,A,S) :- N1 isN-1,A1 igp * A

of the final result as it proceeds, av

o s it | oiding the need to return to previously unsatis-
fied subgoals. Again it is instructiy

e to follow the steps required to find factorial 4:

fac2(4,R) :- faux(4,l,R).

faux(4,1,R) .- 3 Iisrd =g is 4 * 1, faux(3,4,R)

PROLOG 135

faux(3,4,R) :-21s3 -1,12 is 3 * 4, faux(2,12,R)
faux(2,12,R) :=1is 2 - 1,24 is2 *12; faux(El j1247R)
faux(1,24,24)

fac2(4,24)

Euclid’s method for finding the greatest common divisor of two numbers is im-

plemented by the following Prolog procedure and is by nature an accumulating
algorithm:

gcd (X, X,X) .
gedilX, ¥, Z) (= X=x ¥, ¥l is Y = X, gecdi{X,¥1,2) .
ged (X,¥,2Z) :=X>¥ X1 18X - Y, gcdi(x1,Y,2) .

If the two numbers are the same, then the largest number that divides into both
without remainder is the number itself. If the numbers are different, the larger
number is reduced by the value of the smaller number until the two are equal, and
the greatest divisor is that number. The accumulative nature of this procedure is
shown in the following trace:

gcd(12,15,R) :- 12 < 15, 3 is 15 - 12,gcd(12,3,R)
gcd(12,3,R) :- 12 >3, 9is 12 - 3, gcd(9,3,R)
gcd(9,3,R) :-9>3, 6is 9 -3, gcd(6,3,R)
gcd(6,3,R) :-6>3, 3is 6 -3, gcd(3,3,R)

ged. (3,3 ,.3)

EXERCISES 4.4

1. Define a procedure that takes a pair of numbers and returns a number expressing
the first as a percentage of the second, e.g.

?-percent (3,4,X)
X =75.00

2. Write a procedure that accepts the radii of two circles on the same centre and
calculates the area of the space between the two circles.

3. Simple and compund interest are calculated from the formulas p(1 + ry/100) and
p(1 +7/100)" in which p is the principal (the amount of money invested), 7 is the
percentage annual rate of interest and integer y is the number of years of the
investment. Write Prolog procedures to calculate the simple and compound
interest of money invested. Use both procedures to calculate the value of 500
currency units invested at 5.5% per annum for seven years. (The ISO standard
symbol for the exponential in Prolog is **.)

4. Define procedures div60 and mod60 that reveal the number of times 60 will
divide into a given integer and the remainder when this is done. (The standard
symbols for mod and div are mod and //.) The interaction at the prompt
should appear as follows:

136 LOGIC AND DECLARATIVE LANGUAGE

2div60(150,X)
Xi=r2

?mod60 (150, X)
X=30

5. Define a procedure that converts a whole number of seconds into a triple of
hours, minutes and seconds:

?-convert (4350, X)
X =thms (1,12,30)

6. Define an infix, arity-two operator symbol # that always yields the smaller of its
two arguments:

R =RV T (AN ERN) Y]
Xa=14

7. A directed acyclic graph such as that described in Section 4.3 might carry cost
information as follows:

path(a,b,20)
pathila,c,35).
path(b,d, 43).
path(d, e, 26)
path(c, e, 44)

Write a Prolog procedure that finds the total cos
point to another in the gra
sible routes from a to e.

tof each possible route from one
ph. Test this routine by finding the costs of two pos-

4.5 LISTS

Lists are structures provided to hold sequences of data objects, though in Prolog

these objects do not have to be of the same type. Prolog is not a typed language, so

a single list might contain any mixture of atomic and structured objects. An empty

list appears simply as a pair of square brackets [] lists with increasing numbers of

elements are represented in one of these forms:
] (1]

al -(a, 1)

b,a] -(b,.(a, [1))

c,b,a] (c,.(b,.(a,[1)))

regular form cons form

I
(
(
[

Lists are commonly used in the re

: r r gular form shown in the left column, so it is not
immediately obvious that they co

nsist of a series of functors applied to an empty

PROLOG 137

list. A list of one element is really that one element bound to an empty list by the
constructor (cons) functor, shown as a dot in the prefix position. Larger lists consist
of further elements each added by an application of cons so that every list ex-
pressed in regular form has an equivalent functor form. A small goal presented to
the system confirms the equality of the regular and cons forms of a given list:

?-[a,b) = .(a,. (b, [1)).
yes
This small query shows not only that Prolog accepts both forms of the list as equiv-
alent, but also that it can test pairs of lists for syntactic equality, because the query
?-[a,b] = [b,al.
no

is equivalent to the comparison of two complex functors

2= (A« dB, [1))« = . B; b, [0

Variable substitutions are allowed to achieve a unification

2-[2,%;6] 4,72].
X=2Y=4

yves

= [X,
Z =6

Lists are often processed by repeatedly removing the leftmost element, the head, for
examination or computation, reversing the action of the cons operator. This process
is aided by a special notation [H|T] in which the head element H is shown
separated from a list of all the remaining elements by a vertical bar. Two relations

hd([H|T],H) .
el ([HIT) T e

could be placed in the database and would allow the following queries:

?-hd([4,6,3]1,X).
X=4

?-tl([mary, john, tex],h X).
X = [john, tex]

Notice that the head is an element whereas the tail of a list is itself a'list. The sum
of all the elements in a numeric list is computed by the following recursive procedure:

addup ([],0).
addup ([H|T],X) :- addup (T, X1) X is X1+H.

which implements two obvious truths: the sum of the elements in an empty list add
up to 0; the sum of any other list is found by adding the value ofA(he hgad element
to the sum of its tail elements. The following trace of an invocation might help to
show the recursive nature of this procedure:

138 LOGIC AND DECLARATIVE LANGUAG

addup ([3,4,51,R) :- addup([4,5],R1) ,Ris Rl + 3
addup ([4,5],R1) :- addup([5],R2),R1 is R2 + 4
addup ([5],R2) :- addup ([],R3),R2 is R3 + 5

at which point the repeated calls are terminated because addup ([1, R3) can be
unified with the first clause, setting R3 to 0. Variables R1, R2 and R3 are fresh
variables created for each recursive call, and they acquire values as the process
returns to the top level:

addup ([5],5) :-addup([]1,0),51is 0+ 5
addup ([4,5],9) :- addup([5],5),9 is 5 + 4
addup([3,4,5],12) :- addup([4,5],9),12 is 9 + 3

b

A similar but simpler procedure can be used to count the number of elements in
a list:

llen (i8]0 .
len([_| T]1,X) :- len(T, X1),X is X1 + 1.

Any empty list has a length 0 whereas every non-empty list has a length one greater
than the length of its tail. The second clause is applied until the list is empty, incre-
menting a counter every time a head element is removed, then the recursive proced-
ure is terminated by the first clause. A goal could then be presented at the 2 prompt:

?-len([tom,dick, 34,harry],X).
X=4

A specific element is a member of a list if it is the head element of that list or it
occurs in the tail, leading to the following pair of rules:

member (X, [X |_]) .
member (X, [_|Y]) :- member (X,Y) .

Conversely, a list is free of a certain element if that element is not the head element

and the element does not occur in the tail:

free(X,[]).
free(X, [HIT]) :- X N== H, free (X, T).

A procedure such as addup can be written in an alternative accumulator form
described earlier in connection with the factorial evaluation. The new procedure

includes an auxiliary accumulator relation addacc:

addup2 (L,N) :- addacc (L, 0,N) .
addacc ([1,a,A).

addacc ([HIT],A,N) :- Al is A + H,addacc (T, 21,N) .

Using this procedure, the trace of our addition example is

addacc([3,4,5],O,N)

=303 addacc([4,5],3,N)
addacc([4,5],3,N) :

= T is Bngd addacc([5],7,N)

PROLOG 139

addacc([5]1,7,N) :-12is 7 + 5, addacc([],12,N)
addacc ([1,12,12)

Two lists can be checked for a common element by systematically checking whether
elements of the first list are members of the second:

common ([X|L],M) :- member (X,M) .
common ([X|L],M) :- common (L,M) .

Prolog allows more than one element to be placed on the left of the vertical bar so
that the lists [c,b| [a]] and [c| [b,a]] are equivalent. This feature is useful
in a procedure to discover whether two given symbols occur side by side in a list:

next (X, Y, (X, Y1T]) -
next (X,Y,[HIT]) :-next(X,¥,T) .

4.5.1 List-producing procedures

Each of the above procedures produces a single number or Boolean result from the
inspection of a list of items. Now we examine a number of procedures that both
accept and produce lists. First of all, an operation called append combines (con-
catenates) two lists into one through the following procedure:

append([],L,L).
append ([X|L1],L2, [XIL3]) :- append(L1,L2,L3).

Given two lists, append concatenates them together as follows:

?-append([a,b,cl, [p,qa,r],R)
R=[a,b,c,p,q,r]

but it will also accept a list in the third argument position and return each of the
possible sublists that could be concatenated to produce that list:

?-append(L1,L2, [a,b,c,d]).
Ll =[al]l, L2 = [b,c,d];
Il = [a; bl L2 = [e;d] ; ete

Non-deterministic behaviour of this kind is sometimes seen as a major feature of
the Prolog language, but in practice not many procedures behave in this way.

Operation append may be used as a subrule in a procedure to reverse B
elements of a list:

1o =0 I [P 1 [18
rev([X|L],M) :- rev(L,N),append (N, [X],M).

Elements are repeatedly detached from the head of a list and append§d to the right
of a reversed tail list. An accumulator approach that does not require the use of
append might have been used to achieve the same result.

140 LOGIC AND DECLARATIVE LANGUAGE

Two important procedures called map and filter are used in Prolog in the
same way that they are used in many other languages: map repeatedly applies some
operation to every element of a list; fil ter selects specific sublists from an initial
list. An operation called oper might simply multiply numbers by 3 as in

oper(X,¥Y) :-Yis X * 3.
then procedure map applies this operation to every element in a list;

map ([], [])
map ([H1|T1]), [H2|T2]) :- oper (H1,H2) ,map (T1,T2).

Similarly, a filtering condition might simply choose values over 12:

cond(X) :-X>12.

then a sublist of elements that satisfy this condition is selected by procedure filter:

filter((1,[1]).

ﬁlter([HITl],[HITZ]) :-cond(H),filter(T1,T2).
filter ([HIT1],T2) :- filter (T1,T2)

4.5.2 Ordering and sorting list elements

List sorting has to be based on some defined element order, but it is desirable to
write sorting procedures independently of the test for element order. Thus a simple
relation called less might be defined as the simple numeric relation

less (X,Y) HED A

or perhaps as an ordering based on two date of birth functors:

less(dob(Dl,Ml,Yl),dob(DZ,MZ,YZ)) =¥l < Y2 i

Y1l =Y2,M1l <M2;
Y1l =Y2,M1 =M2,D1 < D2.

?-split (12, [9,16,3,14,7],X,Y)
X=1[9,3,7] v= (16,14]

PROLOG 141

and the definition making this result possible is as follows:

split (N, [1,01,01).
split (N, [HIT], [HIA],B) :- less(H,N),split (N,T,A,B).
split (N, [HIT],A, [HIB]) :- less(N,H),split(N,T,A,B).

An empty list divides into two empty sublists whereas a non-empty list shares its
head element with one of the two sublists; the choice of sublist depends on the
relation of the head element to number N. Repeated applications of the two recur-
sive clauses eventually produces a tail depleted to an empty list and the first clause
then applies.

This split procedure clearly goes some way towards sorting a list of elements
and could be used as an auxiliary definition to partially sort elements in a single list.
The two sublists obtained from split could be rejoined with append to give a
rule called partsort:

partsort ([H|T],R) :- split(H,T,A,B) ,append (A, [HIB],R) .

If the original head element was either the largest or smallest element in the list,
then the result of partsort is the same as the original one, so nothing will have
been achieved. In all other situations some degree of sorting will have occurred,
though the elements of the two sublists remain in the same order as in the original.
If partsort is used on a list similar to the one above, we obtain

?-partsort([(12,9,16,3,14,7],X)
X=109,3,7,12,16,14]

so the original head element separates elements smaller and larger than itself. If
unsorted lists either side of the head element are themselves partsorted in this way,
and the algorithm repeated for further sublists until empty lists are obtained, a fully
sorted list is obtained. This technique of sorting lists is called a quicksort and is
defined in Prolog as follows:

gsort ([1,[1).
gsort ([H|T],R) :—split(H,T,A,B),qsort(A,Al),qsort(B,Bl),
append(Al,[HlBl],R).

A procedure called divide produces two sublists of equal or nearly equal size
from a list in the first argument position:

?-divide([a,b,c,d,e],X,¥Y).
X=la,c,e)
Y = [b,d]

and the fact that the resulting sublists contain alternating elements from the original
list indicates how the procedure has been defined:

divide([1,[1,01).
divide ([X], [X],[1) . ‘
divide ([X,YIL], (XIM], [YIN]) :- divide(L,M,N).

142 LOGIC AND DECLARATIVE LANGUAGHE

The first two elements of a list become the head elements of two result lists, and the
rest of the initial list is divided between the two sublists. This recursive removal of
pairs of elements eventually generates a call to divide with an argument list con-
taining either one or no elements and the series of recursive calls is terminated.

Suppose we have two ordered lists that have to be merged into a single ordered
list as follows:

ZeMmergeiii2),5 81 [35/7.,971) W) .
We=2l[24,:35, 5,778 .9

so the lists in the first and second argument positions are merged to give the
ordered list in the third position. Five defining clauses seems generous:

merge([],L2,L2).

merge (L1, [],L1).

merge ([X|L1], [XIL2], [XIL]) :- merge (L1, [X|L2],L).

merge ([X|L1], [(YIL2], [XIL])) :- less(X,Y) ,merge (L1, [Y|L2],
L).

merge ([X|L1], (YIL2], [YIL]) :- less (Y,X) ,merge ([X|L1],L2,
).

but the first two just define the result of merging an empty list with another list. The

other three clauses are related to the three ways in which head elements ¥ and ¥
may be related:

a. If the head elements of the two lists to be merged are the same, one copy of the
element is “consed” onto the result list and the other is passed to the second
argument in a recursive call.

b. If the head element of the first i
list, it is “consed”
second list.

stis less than the head element of the second
onto the result list and its tail is merged with the whole of the

c. If the head element of the se

‘ cond list is less than the head element of the first
list, the head of the second li

st is taken and its tail is merged with the first list.

Thg ability to merge two ordered lists into a larger ordered list could be used as the
basis of a list-sorting routine. Lists containing just one element are certainly in
order, so merging two such lists must produce an ordered list of two elements.
These lists may in turn be merged to give ordered lists of four elements, and so

forth, until a list of any desired size is obtained. The procedure to sort a list with

this approach is guite simple: just break down a given list into single-element lists

by repeatedly using divide, then merge the resulting single-element lists:
msort ([],[1]).
msort ([X], [X]).

msort ([X,Y|L], M) :~divide([X,Y|L],L1,L2),

msort (L1,M1) ,msort (L2,M2),
merge (M1,M2,M) .

PROLOG 143

Two clauses specify the obvious truth that single- or zero-element lists are already
sorted. A third clause contains an argument [X,Y |M] that can only be unified with
a goal argument containing at least two elements, which explains why this style of
list description is used in the head of the rule. A list presented as a goal is divided
into sublists until each sublist has fewer than two elements, then merge is invoked.

4.5.3 Sets implemented as lists

Sets are powerful, high-level constructs but they are difficult to implement in pro-
gramming languages. One solution to the difficulty is to use lists to carry a repre-
sentation of the set, disregarding the order of the elements in the list. Although list
(a,b,c] is strictly different from list [b, ¢, a], we can write procedures that are
independent of the ordering of the elements. However, sets should not contain mul-
tiple occurrences of the same element and, as a first step towards defining set opera-
tions, we need a procedure to delete every occurrence of a given element from a list:

delete(X,[1,0[1).
delete (X, [XIT],2) :- delete(X,T,2).
delete (X, [HIT], [HIY]) :- X \==H,delete(X,T,Y).

Deleting a specified element from an empty list leaves an empty list. If the list does
contain elements then either the element to be deleted occurs as the head element or
it does not. In one case the list element is included in the result list and in the other
it is not.

Armed with a procedure that deletes all copies of a specified element from a list,
we then use it to delete all duplicate copies of the head element in a given list:

mkset ([], [1]).
mkset ([HIT], [H|X]) :- delete(H,T,Y) mkset (Y, X).

Here the head element of a list presented as the first argument is made the head
element of the second list, but all further occurrences of this element in the tail are
deleted to produce a new list . The head of this list is in turn subjected to the same
procedure to produce list ¥. Recursive applications terminate when every head
element has been treated in this way. In use this procedure is very simple:

?-mkset ([a,b,a,c],X).
X=[a,b,c]

Set union is an operation that produces a result set containing every distinctive
element from two set operands, but with only one copy of any element that occurs
in both operands. In the following procedure two lists in the first and second argu-
ment positions have a union given by the list in the the third position:

union([],S2,S2). .
union ([X|S1],S2,R) :_member(x,sz),umon(Sl,S2,R>.
union ([x181],S2, [XIR]) ;—free(X,SZ),umon(Sl,SZ,R).

144 LOGIC AND DECLARATIVE LANGUAGE

Each head element from the first argument list is made the head element of the thirg
list, unless it is also contained in the second list, in which case it is left off the thirg
list. One head element is removed from the first list with each recursive call untj]
that list becomes empty, then all elements of the second list are transferred to the
third list. An interaction at the ? prompt might now proceed as follows:

?-union((a,g,w,y], [w,a,d, f],X).
X=[g,y,w,a,d,f]

and the order of the elements in this resulting list can be related to the procedure
above. Elements of the first list that do not occur in the second list will appear first,
followed by all the elements from the second list.

Intersection is a set operation that extracts just the common elements from two
set operands; it may be implemented as follows:

intersect ([1,S2,[1).

intersect ([X]S1] +S2, [XIR]) :- member (X, S2) ,intersect (81,
S2,R).
intersect([X[Sl] #S2,R) &= free(X,S2), intersect (51.,82,R).

Members of the first set are now included in the result set only if they also occur in

the second set, and it is clear from the first clause that the second set itself is not
copied over when the procedure terminates.

EXERCISES 4.5

- Write a Prolog procedure that relates a list of individual character symbols and
a number indicating the number of symbols

in the list that are vowels. The pro-
gram may give further irrelevant answers aft

er giving an initial correct response.
- Write a Prolog procedure that accepts a list cont

tive numbers and returns a lis
numbers.

aining both positive and nega-
t of absolute numbers obtained from the signed

3. Define a procedure that relates a list of positive and negative integers to another
list ini

st containing the same integers, but jn which all positive numbers appear in the

list before any negative number. Both positive and negative sublists should retain
the order of the numbers in the original [ist.

. Write a Prolog procedure that accepts a list of lists

indicati : and returns a list of numbers
indicating the lengths of each sublist in the origina

1 list.

3. \l’:’rlltfe a procedure that takes a Jjst of integers and produces an average value for
the list.

- A functor contains the name of 3 child, his or her date of birth and a list of

scores out of 10 for the workbooks completed. A list of such functors is contained

PROLOG 145

in a relation called kids and identified by the first argument as a list of details
for a first group of childen, groupl:

kids (groupl, [f{tom,deb(14,3,89),.[4,7, 51
f(lee,dob (7,12,88),[3,6), ... 1)

Create a relation kids containing the details of six children and define pro-
cedures that produce the following lists:

a. Functors containing name and date of birth, without the grades.

b. Functors containing name and number of workbooks completed for each
child name.

¢. Functors containing the name and average mark for each child.

d. Functors containing name and age of each child when the current date is
included in the query.

e. Names of children who are older than the average of the list.

f. Names of children in increasing order of total marks in the list.
Create a second relation that contains information for a second group
kids (group2, [(jill,dob(14,12,87),(8,3,5,7)), ... 1)

g. Use the quicksort procedure to produce a list of girls in order of date of birth.

h. Define a procedure that produces a single list of both groups in order of date
of birth.

i. Define a procedure that produces a list of names of children who have com-
pleted a specific workbook.

4.6 PROCEDURAL MATTERS

Prolog programs are statements in a restricted form of first-order logic; viewed in
this way, they are said to have declarative semantics. A program defines the rela-
tionship of data objects to each other without committing objects to be either inpul
or output. Ideally a logic-programming system would be presented with a relangn
containing both known and unknown objects and would report suitable values t‘or
the unknown objects. Prolog does indeed do this for many simple relations, but for
reasons connected with practical implementation, it is not generally the case. Wgrse
still, we find that a particular order of clauses in a file or an order of su‘bgoals in a
rule body might prevent a result being obtained at all. Prolog operates in a tgp—to—
bottom, left-to-right direction through text files, and the outcome of a particular
query is heavily dependent on this procedural behaviour. As a result, the lgnguage
has a procedural semantics that depends on the layout of facts and rules n a Fext
file. It is sometimes helpful to think of declarative semantics as lheltrue specnﬁca-
tion and procedural semantics as the result actually obtained by a particular ordering.

146 LOGIC AND DECLARATIVE LANGUAGE

To explore the difference between declarative and procedural semantics, we
consider again the problem of finding routes through the directed acyclic graph of
Figure 4.2. Recall that procedure route decides if there is a route between two
points:

route(Start,Finish) :- path(Start,Finish) .
route(Start,Finish) :- path(Start,X), route (X,Finish).

Now we define procedure route2; it is similar to rout e except that the route and
path conditions in the body of the rule are interchanged:

route2 (Start,Finish) :- path(Start,Finish) .
route2 (Start,Finish) :- route2 (Start, X) ,path(X,Finish).

The original version first found a path from a starting-point to position ¥, then
called the route procedure to find a route from that point to the finish. Now a route
is found to ¥ and the database is searched to find a final completing step. The
existence of a route between points a and d in the graph is confirmed by the query

?-route2 (a,d).
yes

but when presented with a query about a route that does not exist, such as

?-route2 (e, a) .

the procedure fails to produce the expected negative result or indeed any result at
all. The first clause initiates a search forpath (e, a) that results in failure, then the
second clause makes an immediate recursive call to route2 (e, X). Since there is
no fact in the database with arguments that could unify with path (e, x), this
clause fails and a further successful unification occurs with the head of the second
clause. This cycle never terminates, so the system eventually runs out of memory.

If the order of the rules themselves is changed in addition to this reordering of
the conditions, the following procedure results:

route3(Start,Finish)

i~ route3(Start,X),path(X,Finish).
route3 (Start,Finish)

:- path(Start,Finish) .

This version places the recursive relation first in the body of the first clause, so the
first thing the procedure does is to make a recursive call to itself. If we now pose
Fhe sarpe query ?-route3 (a,d) . that worked previously for route2, no result
is .optzflned. An initial goal route3 (a,d) results in a subgoal of route3 (a,X),
Initiating a series of non-terminating recursive calls.

These revised versions of route have the same declarative semantics as the

PROLOG 147

T
\c/ \d
4N

Figure 4.4 A directed cyclic graph

does not change the declarative semantics and does not therefore change any result
that is obtained. What it can do is to prevent any result being obtained at all, i.e. it
might prevent program termination.

Even when we accept that route has to be written in a particular way to get a
result, the earlier working version has a number of deficiencies. This procedure
applies only to directed acyclic graphs, and we might wish to find routes through
directed graphs that include cycles or even through undirected graphs. Rather than
extend the original procedure, we first look at a different way of holding the graph
information as a list of path functors:

graph(one, [p(a,b),p(b,e), ..., 1).

This style of presentation has the advantage that it names a particular graph, so
a database could contain several graphs, allowing references to be made to any
required graph. A path exists between two points X and ¥ in a list of paths L if it
is a member of the list

path(X,Y,L) :- member (p(X,Y),L)

and a further procedure may be defined to use the path relation
route4 (S,F,L) :- path(S,F,L).
routed (S,F,L) :- path(S,Z,L),routed(Z,F,L).

then a search is related to a particular graph through the rule
findrt (X,Y,G) :- graph(G,L),routed(X,Y,L).

Procedure route4 does much the same job as route and is equally restricted to
directed acyclic graphs. The existence of a cycle ina graph such as Figurg 4.4 causes
the routine to follow a path in a circle without ever reaching the finishing-point.

One way of avoiding termination problems is to accumulate a list of nodes as
they are encountered and to check this list as the route is extended. A check of th]S
kind is easily carried out with the £ree (non-member) procedure descrlbed efarlner.
One advantage of accumulating a trail of used nodes for checking in thls' way is that
the list itself may be produced, informing the user not only of the existence of a
route, but also its intermediate stages. If L is a graph expressed in the list form
above, S and F are starting and finishing nodes and T is a trace of the route between
S and F, these objects are related as follows:

148 LOGIC AND DECLARATIVE LANGUAGE

route5(L,S,F,T) :- racc(L,S, [F],T).

race (LS, [SIT], [SIT]).

racc(L, S, [Y|Sofar],R) :- member (p(X,Y),L), free(X,Sofar),
race (LS, [X,Y|Sofar] ,R) .

Unlike the previous version, this procedure takes the finish as its starting-point and
attempts to work backwards towards the start of the route. As a first step, the par-
ameters above are transferred to procedure racc, converting variable F to a list at
the same time. If the head of this third argument is identical to the starting-point,
a route has been found and is transferred to the fourth argument. If not, a path
p(X,Y) capable of extending the route backwards from the finish is chosen from
the list of paths L, and node X is checked to see if it has already been used. If it is
indeed free, the node is added to the accumulating list in the third argument posi-
tion of the recursive rule. A route may then be found in any graph with the rule

findroute (G, S,F,T) :- graph(G,L),route5(L,S,F,T) .

A surprisingly small modification of this program allows routes to be found between
nodes in an undirected graph, since the main problem of avoiding the repeated use
of a single node has already been solved.

4.6.1 Backtracking and the cut

The order of evaluation in Prolog is evident on running the following program:

const (true) .
const (false) .
Pair(X,¥Y) .- const (X) , const (Y) .

with the query ?-pair (A,B). Variable ¥ (shared with A) is instantiated first
because it is the leftmost predicate in the body of the rule and value true is taken
because this is the first matching fact, working from top to bottom. Variable Y is
then also instantiated to true because attempts to match this subgoal work sep-
arately from top to bottom. Since both subgoals have succeeded, Prolog reports
A=true, B=true. Backtracking now takes place from right to left, so the most
nd new ones attempted. Another search of the

resulting in the same two instant

The pair rule might be extended to three subgoals:

PROLOG 149

triple(X,Y,2) :- const (X), const (YY), const (Z) .

producing eight sets of instantiated variables. Again the order of the facts in the
database decides the order of the triplets, so (true, true, true) is followed by
(true,true, false) as backtracking first resatisfies the rightmost subgoal.

A special predicate called cut is provided to give Prolog programmers control of
the backtracking mechanism and is shown by the ! symbol as in the following
example:

pairb(X,Y) :- const (X),!,const(Y).

Cut acts as a valve that allows satisfactions to proceed from left to right, but
prevents any attempt to backtrack from right to left over the cut symbol. Instanti-
ated variables on the left of a cut symbol are committed to those values when the
cut symbol itself is satisfied, but those on the right can be resatisfied in the usual
way. A pair rule as modified above produces only two satisfactions, both of which
have ¥ instantiated to t rue. Moving the cut symbol to the right as in

pairc(X,Y) :- const (X),const(Y),!.

results in just one satisfaction with both X and ¥ instantiated to true.

A suitably placed cut can make a program run much more efficiently by prevent-
ing unnecessary work. Earlier we saw that the valuation of an implication is true
if the antecedent is false or the consequent true, but only one of these condi-
tions needs to occur. If both conditions occur, the rule succeeds on two counts and
the time spent evaluating the consequent is wasted. A suitably placed cut prevents
a further attempt at satisfaction after the first attempt succeeds:

val (X -> Y, true) :- val(X, false),!;val (Y, true)’.

If the first subgoal is satisfied, the cut is also satisfied and no further attempt is
made to satisfy the val relation.

Multiple reports of success might be a problem in other situations. For example,
the familiar member definition finds satisfactions every time the required item
occurs in the list. A cut following the first satisfaction prevents any attempt to find
alternative satisfactions:

member (X, [(X|_]) = !.
member (X, [_|L]) :- member (X,L) .

Programs can also be made more efficient in situations where a number of muluglly
exclusive possibilities occur. For example, the max procedure given earlier requires
the use of two separate comparisons, though only one can be true:

max(X,Y,X) :-X>=Y.
max (X,Y,Y) :- X<Y.
A cut placed after the first comparison will be satisfied if the comparison itself is

satisfied, and no attempt will be made to instantiate the second clause. But if the
first comparison fails, it may be assumed that the second will succeed:

150 LOGIC AND DECLARATIVE LANGUAGE

max(X,Y,X) :-X>=Y,!.
max (X,Y,Y).

If the first comparison succeeds, the cut also succeeds and the following clause
is not attempted; but if the comparison fails, the second clause is the only other
option.

4.6.2 Input-output predicates

Interactions with the Prolog system have so far consisted of queries at the prompt
that are answered by a simple “yes” or “no” together with a possible instantiation of
variables. Thus, a database of the form

mother (jill, bob) .
mother (lucy, john) .
mother (mary, carol) .

could tell us the mother of a particular child through the following query:

?-mother (X, bob) .
VX =glatitl

An alternative interactive method of obtaining the same information is possible
through read and write predicates:

go :-write(‘input child’s name>>"’),
read(Child) P3all
mother(Mother,Child),
write(‘The mother of’) ,write (Chilq),
write(‘ig’) /Write(Mother) .

This rule consists of 2 head wit
of relations that are, as always,
predicate is satisfied when the

hout arguments and a body containing a number
satisfied from left to right. First of all, a write

the output, relation mother is accessed to provide the required information. Notice
that t.he write predicate substitutes values for variables if they are instantiated at
the txme', whereas text containeqd between quotes is printed literally. Instead of
exchanging information between the head and the body of a rule, a direct exchange
between the relations and input/output devices occurs. This rule is achieving its

result through the side-effects of read and write relations in the same way as an
Imperative language.

PROLOG 151

EXERCISES 4.6

1. Cost informaton may be included in a list of paths in much the same way as in
the facts of Exercise 7 in Exercises 4.4:

graph (five, [p(a,b,20),p(a,c,35),p(b,d,43),p(4d,e,26),
plc,e, 44)])

Define a procedure that calculates the cost of each possible route from one point
to another in a directed acyclic graph. Test the procedure by calculating the
costs of the two routes between nodes a and e.

2. Translate the graph shown in Figure 4.4 into a labelled list of edges similar to
that shown in the text for the earlier acyclic graph. Use the procedure route5
to find every possible route from node a to node d.

3. Cost information might also be included in directed graphs containing cycles,
e.g. Figure 4.4. Extend the list of edges in the previous exercise to include cost
information, and define a Prolog procedure that finds the cost of every route
between two possible points in the graph.

4. An undirected graph allows moves between nodes in either direction, but only
one direction is included in the list of edges. As a result, the presence of an edge
pla,b) implies the existence of a further edge p (b, a). A path between two
nodes is possible as follows:

path(X,Y,G) :- member (p(X,Y), G);member (p(Y,X) ,G)

Modify the route-finding procedure shown in the text so that it finds all routes
through undirected graphs.

5. The delete procedure of Section 4.5 requires relation ¥ \== H in the third
clause to prevent both the second and third clauses being satisfied when the head
element is the element to be deleted. Redesign the procedure using a cut pathcs
than this relation.

6. Remove relation free from the union and intersection procedures as defined in
the text and test the new procedure that results. Use a cut to remove the problem
that now arises when the procedure is used.

7. Write a small procedure without cuts that relates times of the day before 1200,
1700 and 2400 hours to the symbols good_morning, good_afternoon
and good_evening. An interaction at the prompt should then appear as
follows:

?greet (14.00,X) .
X = good_afternoon

Show that a more efficient procedure is possible when cuts are added.

152 LOGIC AND DECLARATIVE LANGUAGE

8. Write a procedure using read and write predicates that prompts a user for 3
starting-point and then for a finishing-point in a directed acyclic graph such as
Figure 4.2. Advise the user whether a route exists between the two points.

4.7 PROGRAMS FOR PROPOSITIONS

In this section the Prolog language is used to manipulate the syntactic form of a
proposition and to decide the truth of propositions in some or all valuations. Asa
first step in this direction, a small routine to check that a proposition is correctly
formed is provided, then a further program converts an arbitrary proposition to
negation normal form. An implementation of the Wang algorithm allows proposi-
tions to be tested as tautologies then a truth table program allows the evaluation of
contingent propositions.

A proposition may be a constant symbol £, one of a number of statement
symbols p, g, r, s or the application of a logical connective to other propositions.
Section 4.3 explained how the connectives ~, &, v, and -> are defined in the Prolog

operator notation, providing the usual precedence rules for propositional operators.
Given that those definitions have been made, the following

program checks a string
to see if it is a proposition:

check (F) :- member (F, [p,q,r,s, f])

check (~F) :- check(F).

check (F) :- (F=X&Y;F=XVY;F=X-> Y) ,check (X),
check (Y) .

Correctly formed formulas could then be checked at the prompt:

?-check (~p -> ~q&r).
ves

An extension of the above
three Hilbert axioms. Only
match with the functor patt

program informs the user if a proposition is one of the
a proposition having the form of the first axiom could
ern in the head of the following rule:

axioml(X -> v - X) :- check (X) «Check (Y) .

Provided X and v are correctl

. X y formed, a proposition that matches this pattern is an
axiom. Similar rules may be

written for the other two axioms.

4.7.1 Finding negation normal forms

cgation normal forms of Propositions contain a restricted number of logical con-

nectives, specifically the set {v, s, ~} in the notation used above. More important,
every occurrence of the negation symbol must stand directly before an atom, so the

PROLOG 153

scope of the operator is limited to that one atom. A conversion of NNF generally
proceeds in two stages: unwanted connectives are first replaced by equivalent forms,
then negation symbols are driven into the atoms by repeated applications of De
Morgan’s rule. Any unwanted connective may be removed in this way, but most
commonly it is the implication and mutual implication connectives that have to be
discarded; this is achieved by the following program:

impout ((A <-> B), ((A1 & Bl) v (~Al1 & ~B1))) :-
impout (A,Al), impout (B,Bl) .

impout ((A ->B), (~A1 v Bl)) :- impout (A,Al), impout (B,Bl) .
impout ((A & B), (Al & B1)) :- impout (A,Al) , impout (B,B1) .
impout ((Av B), (A1 vBl)) :- impout (A,Al), impout (B,Bl1) .
impout ((~A), (~Al)) :- impout (A,Al).

impout (A,A) :- member (A, [p,q,r,s,f]).

Unwanted logical connectives are replaced by acceptable ones, and functor argu-
ments 2 and B are replaced by arguments A1 and B1, free of such connectives.
Once consulted, the above procedure allows the following interaction:

?-impout ((p ->q) ->1r).
~(~pvqg) vr
returning a result free of implication symbols, but not yet in negation normal form.

Negation symbols with scope greater than a single atom are then moved inwards by
these mutually recursive procedures:

nnf ((A & B), (Al & B1)) :- nnf(A,Al),nnf (B,Bl).
nnf ((Av B), (Al vBl1l)) .- nnf (A,Al) ,nnf (B,Bl) .
nnf (~A,Al) :- dual (A,Al).

nnf (A,A) :- member (A, [p,q,r,s,f]).

dual ((A & B), (Al vBl1l)) .- dual (A,Al),dual (B,Bl).
dual ((Av B), (Al & B1)) .- dual (A,Al) ,dual (B,Bl).
dual (~A,Al) :- nnf (A,ALl).

dual (A, ~A) :- member (A, [p,q,r,s,£]).

which may be combined in a single rule that converts a formula F to its equivalent
negation normal form R.

transform (F,R) :- impout (F,X),nnf (X,R)

4.7.2 The Wang algorithm

Wang’s algorithm is essentially an implementation of the propositional part .of the
Gentzen G proof system described earlier; it therefore depends on the reduction of
a sequent of form

antecedent = succedent

154 LOGIC AND DECLARATIVE LANGUAGE

to axioms. Although both antecedent and consequent are sets of propositions, a
Prolog program implements these sets as lists to be accessed from left to right. An
axiom is a sequent with a common atom contained in both antecedent and succedent,
a feature very easily recognised by the common procedure given earlier. G system
rules are fairly easily translated into Prolog rules and are applied to the sequent
until axioms are obtained or until no further applications are possible.

The first step in deciding if a formula is a tautology, i.c. is universally valid, is
to make that list the succedent of a sequent and to take an empty list as the initial
antecedent. These two lists are then made the arguments of a seq body:

valid(Formula) :- seq([], [Formula]) .

A sequent is true if its lists contain a common element or if applications of the rules
produces such sequents:

seq(Left,Right) :- common (Left,Right) .

seq(Left,Right) :- member (~A,Right),
delete(~A,Right,Newright),
seq([A|Left],Newright) .

seq(Left,Right) :- member (~A, Left),
delete(~A,Left,Newleft),
seq(Newleft, [A|Right]).

seq(Left,Right) :- member (A -> B,Right) ,
delete (A -> B,Right,Newright),
seq([A|Left], [BINewright]) .
seq(Left,Right) :- member (A -> B, Left),
delete (A -> B,Left,Newleft),
seq(Newleft, [A|Right]),
seq([B|Newleft] ,Right) .

seq(Left,Right) :- member (A & B,Right),

delete (A & B, Right,Newright),
seq(Left, [A|Newright]),
seq(Left, [BINewright]) .

seq(Left,Right) :- member (A & B, Left) 7

delete (A & B,Left,Newleft),
seq([A,B|Newleft] ;Right) .

?-valid((~aA -> ~B)

—> (B ->Aa)).
yes

PROLOG 155

and application of rules is easily followed. First an application of the right -> rule
produces the sequent

seq([~A -> ~B], [B ->A])
then a further application of the same rule produces
seq([B,~A -> ~B], [A])
Obviously there was a choice of rule at this point; a left implication was used

because it occurs before the right implication in the program text, not because it
avoids splitting the sequent. Now the left - > rule generates two subsequents:

seq([B], [~A,A))
seq([B,~B], [A])

and applications of the right and left negation rules then produce axioms.

4.7.3 Printing truth tables

Combinations of the Boolean values true and false are generated by the pair
and triple relations given earlier:

const (true) .

const (false) .

pair (X,Y) :- const (X),const (Y).
triple(X,Y,2) :- const (X),const (Y),const (Z) .

and these relations may be used to generate the inputs to the val relation described
in Section 4.3. Used in this way, the val relation requires two terminating clauses
in addition to pairs of clauses required for the evaluation of expressions with each
connective. Showing only the implication relation, this gives us

val (true, true) .

val (false, false) .

val (X -> Y, true) :- val (X, false),!;val(Y,true).
val (X -> Y, false) :- val(X,true),val(y,false).

A cut has been added to the implication relation to prevent val (fal§e Pl
true) being satisfied twice, and similar cuts would also have to be inserted in ‘the
disjunction and conjunction relations. Once Prolog has consulted these nlgdlhed
definitions, a query at the prompt could tell the user the result of evaluating an
expression for every input combination as follows:

?-triple(X,Y,Z),val(X->Y->Z,R).
X=true, Y = true, Y = true, R = true; and so forth

This works well enough, but the output style obscures any patterns that m?gh(
emerge from the computation and it would be much more helpful to see the familiar
Boolean table. Output of this kind is possible with table:

156 LOGIC AND DECLARATIVE LANGUAGE

table :-triple(X,Y,2),val(X->Y ->Z,R) +line(X,Y,Z,R), fail.
line(A,B,C,D) :- write(A),tab(3),write (B) (tab(3), |
write(C),tab(3),write(D),nl.

The first two subgoals of table generate values for ¥, V. 7 and R in just the
same way as if they were used at the prompt, but in table they are passed to
procedure 1ine for printing. Input and output predicates are only satisfied once on
each left-to-right pass, so a built-in predicate called fai1 is added to force back-
tracking. Predicate fail is simply a built-in predicate that always fails, causing
Prolog to backtrack and thus resatisfy the triple predicate. A t ab predicate outputs
a number of spaces indicated in its argument and a newline predicate nl causes
output to continue at the beginning of the next line, giving us the expected tabular
output.

We might add headings to each of the columns with a customised header pre-
dicate as follows:

header :—write('X’),tab(3),writ:e(’Y’),l:ab(B),
write ez 1) tab(3), write(’Result’),nl.

The table, complete with header, might be printed through the rule

show : - header, table.

Prolog systems have a built-in predicate that allows order comparisons between

terms, and this feature allows alphabetical comparisons between symbolic atoms.
Thus, queries at the prompt proceed as follows:

?-false @< truye.
ves

?-false @< false
no

Relational operations normall

Y cause their two numerical arguments to be com-
puted before a comparison is

made, but these special predicates compare individual
characters from left to right until a difference is obtained. Strings are tested for
alphabetical order in the same way that numbers are tested by the more familar

relations. Minimum and maximum relations on symbol strings may be defined
analogously to those defined on numbers:

mins (X, Y, X) -X@=<vy, !,
mins (X,v,v) .
maxs (X,Y, X)

’

maxs (X,Y,Y)

PSXi@s=1v),

PROLOG 157

If these two relations are restricted to the arguments true and false, they exactly
reproduce the behaviour of conjunction and disjunction operations. This allows the
valuation rules for these operations given earlier to be written simply as

vals(A & B,V) :-vals(A,Al),vals(B,Bl),mins (Al,B1,V).
vals(Av B,V) :-vals(A,Al),vals(B,Bl),maxs(Al,B1,V).

and an implication can be written in terms of the equivalent disjunction
vals(A ->B,V) :- vals(~A,Al),vals(B,Bl),maxs(Al,B1l,V).

As before, it would be necessary to add terminating clauses to the relation:

vals (true, true) .

vals (false, false).

vals (~X,true) :- vals (X, false).
vals (~X, false) :- vals (X, true).

Procedure vals produces the same results as procedure val, but has the advan-
tage that it may be used for the ternary logic described in Chapter 7 without change.

EXERCISES 4.7

1. Write procedures axiom2 and axiom3 that test propositions to see if they
match Hilbert axioms 2 and 3. The style of these procedures should follow the
style of axioml in this section.

(3]

. Write a routine that converts propositions containing the symbols ~, v, & and
~> 1o a proposition containing only negations and implications.

3. Enter and consult the first three sequent rules shown in the text then test that
they are working with the following query:

?-seq(([], [a,~a])
yes

Remember that the appropriate operator declarations have to be made. Add the
two implication rules, reconsult and test with the following formula:

(p->q) -> (~qg -> ~p)

Write left and right v rules in the style of the others shown in the text, then use
them to demonstrate the following tautologies:

PVQg->qVvp
(pv (g&r)) -> ((pvag) & (pvr))
4. Show that the vals procedure described in this section works equally well for

the ternary logic described in Chapter 7. Modify the constant facts to include a
null element, then produce truth tables for the ternary expression

158 LOGIC AND DECLARATIVE LANGUAGE

(pAq Vv (=pAar)

5. Write rules in the Wang style for the intuitionistic form of logic explained in
Chapter 9. Neglect the “thin” rule, even though this means the algorithm some-
times fails to produce a result.

6. Write a procedure based on the Wang algorithm that produces either CNF or
DNF forms from a deduction tree.

CHAPTER FIVE

Logic with equality

Chapter 1 emphasised a clear distinction between the syntactic forms of proposi-
tions and the semantic functions that provide interpretations for the propositional
symbols. Syntactic forms are decided by the order in which symbols appear in a
string of symbols whereas the semantics of that string of symbols is decided by the
interpretation, meaning or denotation given to the symbols. Many different inter-
pretations may be given to strings defining formulas and we have to be sure that the
denotations given are consistent with the syntactic form. This distinction between
syntactic and semantic forms might at first seem unfamiliar, but it has been with us
since our earliest days in primary school. If a child were asked whether 6 x 7 is
equal to 42, he might reasonably reply that it is not. The symbols 6, x and 7 on the
left are quite clearly different from the 4 and the 2 on the right, so the two expres-
sions are not the same. Two expressions are syntactically the same if they consist
of the same symbols in the same order. Later the child will learn that, although the
expressions are syntactically different, they denote the same value and are inter-
preted as equivalents.

As a result of our early training, we accept a denotational or algebraic mean-
ing of equality. We place an equality symbol between two syntactically different
expressions if they denote equivalent values. and we feel free to replace arithmetic
expressions with equivalent values. In our daily lives we use the equality symbol
(=) to mean denotational equality. Although the Prolog language contains several
versions of an equality symbol, the preceding chapters have repeatedly wqmed that
it is a language based on logic without denotational equality. Equality in Prolog
means syntactic equality, 1.e. tWO Prolog expressions are equal when thgy are :syn—
tactically identical. In the following chapters we shall see that a denotauona.l tomlA
of equality allows a different style of computation from the SLD mechanism of
logic languages. From now on, we shall use the word equality to indicate algebraic

161

162 LOGIC AND DECLARATIVE LANGUAGE

equality. First of all we need a clearer idea of what equality involves and how the
concept extends the logic without equality described in the first four chapters.

5.1 EQUIVALENCE AND EQUALITY

Boolean expressions have the syntactic forms and semantic functions described
in Chapters 1 and 2. From a very early stage in Chapter 1, we used the concept of
equivalent Boolean expressions in much the same way that we use the idea of
equivalent arithmetic expressions. In fact, we have already employed the denotational
meaning of equality in the earlier evaluations of compound Boolean expressions.
For example, if statements p and ¢ are interpreted respectively as rrue and false, a
compound formula —p v g may be interpreted by the expression or(not true, false).

This expression is in turn evaluated by reference to the truth tables contained in
Chapter 1:

or(not true, true) = or(false,true)
= true

Clearly a meaning or semantics for each of the classical Boolean connectives is
contained in the truth table for that connective. Although this might seem quite a
trivial example, it is worth reminding ourselves of the justifications for each step.
First of all, the expression not true is replaced by the equivalent value false, then
the resulting expression or(false, true) is replaced by the equivalent value true. The
fragment not nrue denotes the same value as false and we are justified in replacing
one by the other. Similarly the fragment or(false, true) denotes the same value as
true and whenever the former expression occurs it may be replaced by the latter.

Two expressions denote the same value when they produce the same result in all
interpretations. For example, the equivalence

p—)qE—npvq

means that the two expressions denote the same value whatever the interpretations
of p and ¢. However, denotational equality signifies more than just equivalence: it
includes a justification for replacing any expression by a different but equivalent
expression. Fragments within expressions are usually replaced by equivalent sim-
pler forms until the simplest possible form is
reason why fragments within ex
large equivalent expressions
procedure of substituting equ
new method of computation
Boolean expressions must
false, so every Boolean expr
consider just the interpretati
expression constructed from
false. This simple observatio
equivalence sets:

obtained. In principle there is no
pressions should not be replaced by increasingly
» it is just less likely that this would be useful. The
ivalent terms is called term rewriting and leads us to a
based on term-rewriting systems (TRSs)

always reduce to one of the primitive values true or
ession is equivalent to one of these constants. If we
ons true, false and imp then every correctly formed
these constants must be equivalent to either rrue or
n allows us to partition all such expressions into two

LOGIC WITH EQUALITY 163

{true, imp(true,true), imp(false true), imp(false false), . .. }
{false, imp(true, false), imp(imp(true,true), false), . . . }

Here the first set contains all expressions equivalent to true, the second those equiv-
alent to false. Since every element in a given equivalence set denotes the same
value, any one expression may be used to replace another expression from the same
set. In practice a computation consists of a gradual reduction in the size of expres-
sions until one of the two simplest possible expressions is obtained. The Boolean
expression above was evaluated by replacing subexpressions with simpler equival-
ents until no further simplification was possible. The two equivalence sets are char-

acterised by these so-called canonical values, so the equivalence sets might equally
well be written as

(true] and [false)

Sometimes the elements in an equivalence class are said to be congruent or to
belong to a congruence class. As a result, the shorthand notations [rrue] and [false]
are also said to represent congruence classes.

5.1.1 Numerical equivalence

The process of evaluating arithmetic expressions by rewriting terms is already
familiar and needs no further explanation. This familiarity with the method perhaps
prevents us from seeing it as a term-rewriting system that might be extended to
more general computations outside the field of arithmetic. Looking again at the
process, an expression 3 * 2 +4 * 5 is evaluated by systematically rewriting terms
until a canonical value is obtained:

3¥2+44%5

6 +4%*5

6 + 20
26

Terms 3 * 2 and 4 * 5 are first replaced by the values they denote, then the resulting
term 6 + 20 is substituted by an equivalent value. Each subterm is replaced by a
simpler equivalent value until the simplest possible value, the canonical or no@al
value, is obtained. Each replacement is a term rewritten within a term-rewrting
system defined by arithmetic tables.)]]

Numerical expressions containing natural numbers and arithmetic 'operatlons
belong to numerical equivalence classes in the same way that the.ea‘rh.er expres-
sions belong to Boolean equivalence classes. There is, howeve_r, an 19hmle number
of numerical equivalence classes corresponding to the infinite _senes of natural
numbers 0, 1, 2, 3, ... and in the absence of any arithmetic operations these classes
contain just the canonical values themselves

164 LOGIC AND DECLARATIVE LANGUAGE

{[0){d {2 (30, .

If, in addition to the fundamental values of this type, we define an addition opera-
tion that makes certain expressions equivalent, each class contains more than just
the canonical value. For example, the standard definition of addition makes 7 + 2
equivalent to 9 and this expression appears in the equivalence class containing the
canonical value, i.e.

{9,6+3,7+2,8+1,3+3+3),...)}

Every numerical expression in this class denotes the same value and any one could
be replaced by another without changing the value of an expression in which it
occurs. One of the major advances in computer science in recent years is the rec-
ognition that types such as the natural numbers are more than just the fundamental
or canonical values. Operations defined on the fundamental values are equally import-
ant and have to be included in a definition of the type.

Many other equivalence classes may be defined, such as the infinite number of
equivalence classes of natural numbers with multiplication:

(42,6 x7,3x 14, ...}

If both addition and multiplication are defined in a type, then the number of equiv-
alent expressions is increased to include terms such as 3 + 4 * 3.

Fractions form similar equivalence classes and a series of expressions is clear
from the equivalents of numbers with division:

{1/2,2/4, 36, . .. |

Any one value in this equivalence class may be used to replace another in a larger
expression, but usually we are interested in reducin

g an expression to its simplest
possible value.

5.1.2 Automated reasoning

Logic languages do use an e
different from denotational
ing interaction might occur
?2-6+3=9
no

quality symbol, but its meaning in that context is quite
equivalence described above. For example, the follow-
at a logic language prompt:

and an unaware user might be surprised at this response. Logic languages use the

equallty symbol 10 represent syntactic equality, so the system is being asked if the
syntactic string 6 + 3 is equivalent to the symbol 9. Clearly it is not, and the lan-
guage responds accordingly. If an apparently similar question is put to a language
using a denotational form of equality, the interaction is

?6+3 =9

true

LOGIC WITH EQUALITY 165

Now the question being asked is, does the string 6 + 3 denote the same value as 97
In other words, do these two expressions belong to the same equivalence class? The
obvious answer is quickly returned. If an arithmetic expression alone is presented
to a term-rewriting language, it is evaluated and its denotation is returned:

?26 + 3
9

A logic language based on logic without equality should not be capable of doing
arithmetic, but in practice logic languages such as Prolog always have built-in
arithmetic features as “impure” additions to the language.

In order to compare the different approaches, a simple computation will be car-
ried out in two different ways, using the SLD logic-programming method and using
a term-rewriting approach. Programs are given for the evaluation of the Boolean
expression (p — ¢) — 1 for any valuation of the atoms p, ¢ and r. It is convenient
in this example to express an individual implication in the prefix form as imp(x.y),
50 the expression above is written as imp(imp(p.q),r). A double implication is then
evaluated by the following logic program:

CO Dimp(p.,q.rx) < Eval(imp(imp(p,q),).X)

Cl Eval(imp(a.c).false) < Eval(a,true),Eval(c,false)
C2 Eval(imp(a,c),true) < Eval(a,false)

C3 Eval(imp(a,c),true) < Eval(c,true)

C4 Eval(true true)

C5 Eval(false,false)

An individual implication evaluates to false if its antecedent is rrue and its con-
sequent false; otherwise it evaluates to true. The last two lines of this program are
especially interesting because they terminate the recursive calls and effectively
transfer a value from left to right.

Suppose now that we want to find the value of an expression such as imp(imp(true,
false).true) using the logic program above. A goal 2-Dimp(true, false true.x) is pre-
sented and is backward chained through the series of steps shown in the SLD tree
of Figure S.1. This process proceeds by finding every possible binding for the
arguments in the goal, leading to two failed branches and two successful branches
that each report an x value of true.

A logic program embeds the term to be evaluated in a relation and includes in
that relation a variable term that becomes unified with the result of the evaluation.
A goal containing variables might be instantiated in several different ways to pro-
duce a variety of possible answers. As a result, logic languages possess a strange
ability to start with an answer and find all possible questions that might lead to that
answer. For example, the goal Dimp(p,q.r.true) could be presented as a goal and
the SLD mechanism would find all possible combinations of p, ¢ and r that could
fit this pattern. This bidirectional nature follows from the fact that logic lgnguages
are built from relations as opposed to functions and are capal?le of produgmg myl-
tiple results for a single set of input arguments. Indeed there is no clear distinction

166 LOGIC AND DECLARATIVE LANGUAGE

=Dimp(true, false true x)

—Eval(imp(imp(true, false),true),x)

Cl{imp(true false)/a, truelc, true/x) \melx }

—Eval(imp(true false),true), Eval(true false) =Eval(true,true)
C2{truela, fa]sV \3{”_“() o falselo) C2{truelx)
—Eval(true,false) —Eval(false,true) —Eval(imp(true, Jfalse).false)
fail fail I Cl{truela, falselc)

—Eval(true true), Eval(false false)
| c4
—Eval(false,false)

O

Figure 5.1 An SLD tree

between arguments as input or output, and Prolog expressions are said to be
non-deterministic.

Computation by term rewriting requires a program that amounts to statements of
equivalences and our earlier example requires the following equivalences:

B0 dimp(p.q,r) = imp(imp(p,q),r)
El imp(true,false) = false

E2 imp(false,) = true

E3 imp(a,true) = trye

To carry out the computation of imp(imp(true, false)
values are now placed in dimp(p,q.r) and a series of t
to the program equivalences:

,frue) appropriate argument
erms are rewritten according

dimp(true, false true)

imp(imp(true, false), true)y EQ
imp(false,true) El
true E2

LOGIC WITH EQUALITY 167

A term-rewriting system uses only terms, substituting equivalent fragments within
an expression according to a program until the simplest possible value is obtained.
Most important, a term-rewriting system produces just one answer and there is a
very clear distinction between the initial input arguments and the final value denoted
by the expression, the result. If there is only one result, the computation is inher-
ently functional and term rewriting quickly converges on that single result. On the
other hand, the exhaustive searching mechanism of a logic language goes on search-
ing for further satisfactions because nothing in the language tells it that a particular
expression only has one result. A major difference between the two approaches is
that a term within a logic program relation is never replaced by an equivalent value
as the computation proceeds. The concept of replacing one term by another of equiv-
alent value simply does not exist in languages such as Prolog. A functional language,
on the other hand, does little else except compute equivalent values and replace
subexpressions by their denotations until a canonical value is obtained.

It would be wrong to assume that term rewriting is in some way better than logic
programming because the above computation is more compactly achieved as a ser-
ies of term rewrites. Some queries naturally lead to multiple answers, particularly in
the area of databases, and logic-programming techniques are then advantageous.

5.2 EQUALITY IN DEDUCTION TREES

The discussion above suggests that two forms of equality may be defined: the first
arising as a syntactic equivalence, the second as a semantic or denotational equiv-
alence. Logic languages such as Prolog are essentially animated forms of the logic
described in the first two chapters and admit the first form of equivalence, but not
the second. Since we generally accept equality to mean denotational equality, the
logic of the first four chapters (including the logic of Prolog) is described as “logic
without equality”. From the brief discussion above it is clear that a denotational con-
cept of equality is a very useful property, providing us with the ability to replace
terms by the values they denote, hence reducing an expression to its simplest form.
As a result, we now define an extension of the earlier logic that incorporates equi-
valence, giving us a “logic with equality”.

In fact, the extension of the earlier logic to include equality is straighlforwarq in
principle, but makes constructions such as semantic tableaux very large in practice.
All that is required is the addition of three equality axioms that may be added to a
tableau or deduction tree at any point:

X =i
XY A=Y AL AX, =Y, D fXX %) =fyp - oW
XNENAX=Y,A 00 AX Z Y A P(x, x5, .- X)) = POy - - »Yu)

Thus, if a term ¢ occurs anywhere in a tableau or G system proof we are penmttgd
t0 add the formula ¢ = ¢, asserting that a term denotes the same value as itself. This

168 LOGIC AND DECLARATIVE LANGUAGE

first equality formula is sometimes called the reflexive axiom. Each of the axioms
above should be read with an implicit universal quantification for each variable, so
the reflexive axiom should be interpreted as the formula

Yx(x = x)

The second and third axioms contain conjunctions of equal terms, x; and y,, that
Justify the equality of the same function with different arguments or the same pred-
icate with different arguments. Specifically, the second equality axiom tells us that
a function f applied to equivalent arguments denotes an equivalent value. Suppose
we have an arity-two function max that denotes the maximum of two numbers; this
axiom might take the form

2*8=16/\3*5=15—)max(2*8,3*5)=ma.x(|6,I5)

If a function is applied to syntactically different but equivalent arguments, it returns
the same value. Since 16 denotes the same value as 2 * 8 and 15 denotes the same

value as 3 * 5, function max(2 * 8, 3 * 5) denotes the same value as function
max(16, 15).

Axiom three states that if a certain predicate P is rrue for one set of arguments
X, it must be nue for an equivalent set y:- The quantifiers for this axiom can be

made explicit in specific examples such as the application to an arity-two predi-
cate P:

Vx, Vx,Vy, Yy, (x, = A=y A Px LX) > P(y,,y,)

An interesting special case of this last formula arises when the predicate P is
equality itself:
Vxlvxzv}'lv)'z(xl =

S ANN= Y NX =X =P =)

Making x,, x, and y, the same as X and renaming y, simply as y, we obtain the

formula
VXV_)‘(X:)‘/\X:X/\X:,\‘—)y:_x)

or removing the duplicated equality, we obtain the axiom
VaVyx =y Ax=x — y=y)

.This. axiom, together with the reflexive axiom, is shown by the Gentzen-style proof
in Figure 5.2 to entail the statement

VaxVy(x = Yo y=x)

LOGIC WITH EQUALITY 169

VaVy(x =y Ax=x—y=x), Vx(x =x) = VxVy(x =y 5 y = x)

VaVyx=yAax=x—oy=x),Vx(x=x)=a=b—ob=a 2 right V

a=bra=a—->b=aVx(x=x)=a=bob=a 2 left V
a=bra=a—-b=aa=a =a=bob=a left ¥V
a=b,a=brna=a—b=a,a=a=b=a right —
\ a=bb=a,a=a=b=a left —

X

a=b,a=a=(a=bara=a),b=a
a=b,a=a=a=b,b=a a=b,a=a=a=ab=a right A

X X

Figure 5.2 Proof of the symmetric property

A third well-known characteristic of equivalence is called the transitive prop-
erty. To demonstrate this, we again take the special case of the third equality axiom
where predicate P is equality itself:

VX VVy Vy, =y, A =Y AX =X 2 Y, =Y,)

We now set variables x, and x, to x, relabel y, as y and y, as z, obtaining a further
axiom

VaVyVzx =y Ax=zAx=x—>y=12)

Now we want to show that, together with the reflexive axiom Vx(x = x), this
formula entails the transitive axiom

VxVyVzx =y Ay=z > x=2)

If these three formulas are labelled as Axiom1, Axiom3 and Trans, the entailment
that we wish to prove is

Axioml, Axiom3 ¥ Trans

meaning that Trans is true whenever Axioml and Axiom3 are true. A semgmic
tableau proves this entailment by demonstrating that the formula Axioml A Axiom3
A =Trans is a contradiction; the detailed proof is shown in Figure 5.3. First of all, a
right universal rule is used to generate three constants a, b and c in a self-generated
(Herbrand) universe. Since the resulting formula has no quantifiers, it is then broken
down into subformulas using the familiar proposition rules. After .lhis has been done,
the constants already generated are used to instantiate the left universal formulas of
lines 1 and 2, resulting in further unquantified formulas that can also be decomposed
by propositional rules. A trace of the branches of the tableau then shows tha_t every
branch has a pair of conjugated formula, so the tableau is closed and lhg or}glnal en-
tailment is confirmed. As a consequence, the transitive condition of equality is proven.

170 LOGIC AND DECLARATIVE LANGUAGH

L. VxVyVz(x=yAx=zAx=x)>y=z
|
2: Vx(x = x)
I
35 VaVyVzx=yAy=z—>x=2)
|
4 —(a=bAab=c—>a=c) right V on 3
I
5 a=bnab=c right — on 4
|
6. —(a=c)
|
i a=b left Aon 5
|
8. b'=ic
I .
9. (b=anb=cAb=b)—a=c left V on 1
10. —(b=anb=cAb=b) a=c¢ left—son9
x
Il. =(b=a) =(b=0) —(b=b) right A on 10
X X |
12 b=b left ¥V on 2
X

Figure 5.3 The transitive nature of equality

5.2.1 Using equality axioms in a proof

The proofs so far have only derived modified
ity axioms. Now we want to use the ori
equality predicates.

Imagine that we have a relation P t
in which they play. Thus P(jones.re
redskins team. At the same time, we
tains; if smith is captain of the buffa
tain of a team must always be a pla
always be true. If now we find that
it follows that plays for a. Express

axioms from the three original equal-
ginal axioms to prove formulas that include

hat associates football players with the teams
dskins) tells us that jones is a player for the
have a function f that maps teams to their cap-
loes, then f(buffaloes) = smith. Since the cap-
yer in that team, the relation YxP(f(x),x) must
the captain of team is player b, i.e. f(a) =b,
ing this in the form of a proof, we might write

VxP(f(x).x) A fla) = b — P(b,a)

LOGIC WITH EQUALITY 171

1. = VX(P(f(x),x) Af(a)=b — P(b,a)

2. Vx(P(f(x),x) A f(a) =b = P(b,a) right -
3 Vx(P(f(x),x), f(a) =b = P(b,a) right A
4. P(f(a),a), f(a) = b = P(b,a) left V

5. fla)=b A P(f(a),a) > P(b,a), P(f(a),a), f(a) = b= P(b,a) EqAx 3

6. \ P(b,a), P(f(a),a), f(a)=b = P(b,a) left >
X

7. P(f(a),a),f(a)=b= P(b,a), f(a) =b A P(f(a),a)

8. P(f(a),a),f(a) =b = P(b,a),f(a)=b | right A
9. % P(f(a),a), f(a) =b = P(b,a), P(f(a),a)
X

Figure 5.4 A Gentzen proof using an equality axiom

Figure 5.4 shows a Gentzen-style proof for this formula that starts with three fam-
iliar inference rules to produce the following sequent in line 4:

P(f(a),a), fla) = b = P(b,a)

Intuitively this might seem quite obvious, but the proof is only terminated when iden-
tical atoms occur on both sides of the sequent. To achieve this, we have to introduce
the following version of equality axiom 3 into the antecedent of the proof:

fla) =b A P(f(a).a) — P(b,a)

Two further propositional steps are then required to produce axioms and thus prove
the original formula.

As a final example, we use a semantic tableau to validate the following formula
involving equality:

P(f(y)) = Vax(x = f(y) = P(x))

In words, if f(y) satisfies predicate P and all instantiations of x denote the same
value as f(y), then all x values satisfy predicate P. As usual, the tableau proof
follows from a demonstration that the negated formula is a contradiction, leading to
a tableau in which every branch contains a clashing pair of atoms. Although the
formula is fairly simple, its semantic tableau proof is large because the equ'allly
axioms introduce new formulas that require further decomposition. These axioms
are introduced in the three positions indicated in Figure 5.5, each of the equality
axioms being used once.)

A manual approach to the proofs of Figures 5.4 and 5.5 would be guided by
some insight into the form of the axioms necessary to conclude a p.roof. A me.chan-
ical theorem prover on the other hand would have to try every possnb.le axiom in the
relentless pursuit of a conclusion. It would be possible to add equality axioms to a

172 LOGIC AND DECLARATIVE LANGUAGE

1 =(P(f(y)) = Vx(x = f(y) = P(x)))
|
2 P(f(y)) right - on 1
|
3 —(Vx(x =f(y) > P(x)))
|
4 =(a=f(y) = P(a)) right ¥V on 3
I
5 a=f(y) right - on 4
|
6. —P(a)
I
75 f»)=anP(f(y) = P(a) EqAx3
8. =(f(y)=a A P(f(y)) P(a) left—>on7
/\ x
9. ~(fy)=a) —P(f(y)) right A on 8
~ X
e b=
"
10. a=f(yyrna=arna=a—f(y)=a EqAx2
11. —@a=f(yyAa=anra=a) fy)=a left—on 10
12 —(a=f(y)) —(a=a) —(a=a) right A on 11
X I |
13. a=a a=a EqAx1
X X

Figure 5.5 A semantic tableau involving equality

logic language like Prolog, but this would result in a massive increa<e in the search

space and an unacceptable loss of efficiency. This is why logic languages avoid
equality as though it were the plague.

EXERCISES 5.2

1. Repeat the proof of Figure 5.4 using the semantic tableau notation.

2. Repeat the proof of Figure 5.5 using Gentzen G system notation.

3. Show the following to be valid:

LOGIC WITH EQUALITY 173

a. F(a) » Ix(x =a A F(x))
b. Vx(P(x) = Q(x)) A P(a) Aa=b — Q(b)

4. If a and b are the only objects having property P then, for all objects x, the truth
of P(x) implies that x is either a or b. A further hypothesis is that there exists at
least one object having both properties P and Q. From these two statements we
reason that either object a or b has property Q as follows:

Vx(P(x) > x =a v x = b), Ix(P(x) A Q(x)) F Q(a) v O(b)

Prove this to be valid with a semantic tableau or with a G system diagram.
Remember that a new constant (say ¢) must be introduced when the left existen-
tial rule is applied and this could be reused for the left universal rule. Once this
has been done an equivalence axiom may be used, leading to a closed tableau.

5. Use a semantic tableau to demonstate the following theorem

P(a), VxVy(Q(x) A P(y) = P(f(x,y))),
Vx(Q(x) = f(x,a) = x) F Vx(Q(x) = P(x))

5.3 ABSTRACT TYPES

We now examine a system of “abstract” types introduced by Birkhoff in 1935 to
describe semantics through equivalences. In this context the semantics is also called
the algebra and the whole subject area established by Birkhoff is called universal
algebra. The importance of this work for computing was first recognised during the
early 1970s by several disparate individuals and groups, but the defining work in
the area seems to have been produced by Joseph Goguen and other members of the
mysteriously named ADJ group. The approach taken by the ADJ group has become
standard in computing and is adopted in the following examples. In particular, the
ADIJ notation has many advantages over Birkhoff’s original notation, particularly
for the examples of the following chapter. e

Abstract types are abstract in the sense that they take away the detail of specmc
instances, leaving just a bare structure of the objects being described. Taking an
informal analogy, we might think of a motor car as an abstract type because the
concept itself conveys a great deal of information without indicating a particular
vehicle. An object would be an acceptable interpretation of the abstract pre motor
car if it had four wheels, a metal body, windows and so forth. In short, if it looked
like the abstract picture of a motor car that is contained in our minds. An abstraFt
type defines a class of objects and any one of these objects might have‘featAures in
excess of that required by the abstract type. Thus a motor car with glectrlc windows
and four-wheel steering remains an object in the same class of objects because the
extras do not change its basic nature.

Abstractions are important in describing software systems peFause they Ci}P[UTC
the essence of what is required without the detail of how it is to be achieved.

174 LOGIC AND DECLARATIVE LANGUAGE

Abstract types may be used to specify the requirements for a particular piece of
software, then the specification can be checked for consistency and completeness,
If all is well, the specification is then implemented in some programming language,
preferably one which has built-in features that implement objects, i.e. one that is
object-oriented. A language such as Miranda, which is both declarative and object-
oriented, can be used to implement the abstract type directly. Machine-oriented
languages such as C++ require a careful transformation of the abstract type into the
machine-oriented code.

An abstract type may be “animated” in order to test that the operations specified
do in fact behave as required and this is the basis of the OBJ language described
in the next chapter. OBJ may be seen as a fairly inefficient declarative language
capable of acting as a test bed for software specifications. In this role it is often
described as a prototyping language. Computer scientists working on large-scale pro-
Jects have developed the idea of abstract type definitions, prototyping and program
transformations to provide powerful software production environments.

Chapters 1 and 2 showed how a meaning or semantics was given to defined
syntactic forms with the aid of specific interpretations, often supplied in the form of
a truth table. In what follows we shall see that this meaning is encapsulated in the
syntactic form of an abstract type and that it is the concept of equality that makes
this possible. It is the equations in the syntactic form of an abstract type that impose
on the type the same behaviour as the truth table. However, we should avoid think-
ing of the equations as an interpretation or as the semantics because the equivalence
statements are purely syntactic in their nature. Abstract types do not have to include
equations and a small example without them provides a good introduction to the
concept.

The simplest syntactic form or theory that we can describe is the abstract type
describing the two constants of propositional logic. An abstract type labelled bool0
is defined as follows:

bool0 =

sorts
bool
opns
L, T : = bool

Here a user-defined name introduces
and the operations (opns) of the type
and two zero-arity operations, | and

an abstract type bool0 by describing the sorts
- This particular type has one sort called bool

/ T, both of sort bool. Within the specification,
anopns line L, T : — boo] defines these symbols to be of zero arity by not show-

ing a s.on on the left of the arrow. This definition does no more than the syntactic
deﬁnlt}ons. at the beginning of Chapter 1, it Just introduces two constants. Every
Operation in a one-sorted abstract type must denote an object of that sort, hence
Birkhoff described them as homogeneous algebras. Many-sorted types have two or
more sorts defined under the appropriate heading and were described by Birkhoff as
heterogeneous algebras. Operations in a many-sorted type may denote any sort of

LOGIC WITH EQUALITY 175

the type, i.e. the result of applying the operation is one of the sorts defined in the
type. In a one-sorted type, such as the example above, the distinction between type
and sort is unecessary, but in many-sorted types it is essential. ADJ notation is used
here for consistency and in the knowledge that it provides elegant specifications for
many-sorted types.

Having defined the complete but very simple theory or specification bool0, we
now have to find interpretations for it. These interpretations might also be called
representations or, more commonly in computing, objects in the class of the abstract
type. A first object, which we label objl, can be written as follows:

objl = ({ false, true}, L = false, T = true)

This notation first shows a set of domain elements {false, true} that carry the
interpretation followed by a pairing of abstract type operations with interpretation
functions. In this particularly simple case, there are two domain elements that each
interpret one of the operations of the abstract type. Equality symbols may be left
out of this notation, so the interpretation objl might sometimes appear as

objl = ({false, true}, false, true)

In this notation the order of functions and relations in the interpretation is taken to
be the same as for operations and predicates in the abstract type. Three other inter-
pretations may be written as follows:

o0bj2:= ({0, 1}, L =0; T=.1)
obj3 = ({rrue}, L = true, T = true)
obj4=({0,1,2}, L =0, T =1)

Object obj2 feels similar to objl in that the two different constants of the theory
bool0 are mapped to two distinct domain elements, but interpretation obj3 maps the
two distinct theory constants to a single domain element. Although obj3 is a perfectly
legal interpretation, it is unlikely to reflect the intended semantics of the theory. An
interpretation in which distinct constants of the abstract type are mapped to a single
domain element is said to involve “confusion”. A different problem arises in inter-
pretation obj4, where there are more domain elements than constants in the theory.
When both constants are mapped to distinct domain elements, a spare domain ele-
ment (2) remains. This remaining element is called “junk” because it can have
no purpose in implementing the intended meaning of the theory. We shall see that
objl and obj2 are initial interpretations or, put another way, they provide an initial
semantics for the theory bool0; this is connected with the fact that objl and obj2 are
free of junk and confusion. !
Every abstract type contains a signature defining the sorts and operations defined
by the type, and this information also defines the Herbrand universe of the‘ type. l.n
addition to the signature there is usually a collection of equations deﬁm'ng equi-
valences between expressions in the universe. In a sense the equations build into a
syntactic form the semantics previously provided by an interpretation, but we should
avoid thinking of the equations as the semantics. Instead we should think of the

176 LOGIC AND DECLARATIVE LANGUAGE

abstract type as a syntactic form that enforces its behaviour on all interpretations,
To illustrate the effect of equations, we expand the specification bool0 to give the
larger definition booll:

booll =
sorts
bool
opns
1L, T:— bool
- : bool — bool
A : bool, bool — bool
eqns
x € bool
=T =1
X =X
HN =X
N ="

Two operations have been added. Their arities are different, one and two. but both
operations are of sort bool because this is the only sort declared. By following the
information given in the signature above, we can build syntactically correct expres-
sions in the same way as we did from the formation rules in Chapter 1. Thus L and
T are elements of sort bool and any syntactically correct application of functions —
and A results in further expressions in the Herbrand universe. Any examples of

correctly formed formulas in the universe are exactly those that might be deduced
from the formation rules in Chapter 1, e.g.

dE -1 (=L AT) etc.

Abstract type equations not only define equivalences, but also provide authority
for the replacement of one expression by another. This is a consequence of the sub-
stitutive nature of equality mentioned earlier. If the fragment ——T occurred in an
expression, it could be replaced by the equivalent term T. As a result, the equations of
an abstract type may be used in a series of term rewrites to give a simpler canonical

or normal term. For example, the expression —(

L A T)A =L may be reduced as
follows:

=l A T)Aa=lL

—;(.L) A=l €q 3
=T AL eq 1 (used right to left)
T A=l €q 2
T A=ST eq I (used right to left)
Tl €q 2
T eq 3

Any expression can be reduced to either T or L with the aid of the equations,

.jallowing us to partition all propositions in the Herbrand universe defined by booll
Into two equivalence classes:

LOGIC WITH EQUALITY 177

trueclass = { T, =L, =T, T A T}
falseclass = { L, =T, =—=—T}

Every element in trueclass is equivalent to T and is reduced to this canonical value
using equations of the abstract type. Since every expression in the class is equiv-
alent, only one of them has to be named in order to characterise the class. As a
result, the two classes above may be represented by the congruence classes [T] and
[L], and these two elements are said to represent the quotient algebra.

Two different objects might be offered as interpretations of booll as follows:

objl = ({rrue, false}, L = false, T = true, =~ = not, A = and)
obj2=({0, 1}, L =0, T =1, = =flip, A = min}

and it would be useful to know how the operations of each representation behave in
relation to the abstract type. Take as a simple first example the equation =T = L
and replace each symbol in this equation with the symbol allocated in each object
to give the two equations

not true = false
flip1=0

Two symbols on the left of the abstract equation are replaced by their interpreta-
tions and, when reduced, produce a result that represents the right-hand symbol.
Thus the behaviour of each operation in an interpretation is dictated by the equa-
tions of the abstract type. Similarly, the abstract type equation ——T = T leads to
two interpretation equations

not not true = true
flip(flip(1)) = 1

Moving on to the arity-two operation, we convert the abstract type equation T A L

= L into the interpretations

and(true,false) = false
min(1,0) =0

Suppose now that we want to simplify the expression =(=T A —.1), according to
the equations of the abstract type. The simplification proceeds as follows:

—(=T A=)
—\(L/\ﬁL) -T =1
(L AT -1 =T
et xXAT=x
T -1 =T

Notice that the equation — L = T does not occur explicitly in the abstract type and
has to be obtained from equations —(—T) = T and =T = L. A representation of
this proposition in objl has the form not(not true and not false) and might be
simplified as follows:

178 LOGIC AND DECLARATIVE LANGUAGE

not(not true and not false)

not(false and not false) not true = false
not(false and true) not false = true
not false x and true = x

true not false = true

At each step, equations of the abstract type have been recast in the form of the
interpretation, allowing a series of reductions to the interpreted equation. The im-
portant point to be observed is that whenever an abstract expression evaluates to L.
an interpretation of that expression in objl must evaluate to rrue. Similarly, an
abstract expression that evaluates to | must have a representation in objl that
reduces to false. A cynical observer might note that all we are doing here is using
different symbols or names for the same things, and this would be perfectly correct.
Initial representations are intended to capture an underlying structure, so the exact
symbols used to represent that structure are unimportant. It does not matter whether
we simplify an expression before converting it to a specific representation or after:
the same answer is always obtained. A similar chain of reasoning allows us to
deduce that the canonical value of a related expression in the second object flip(flip
1 min flip 0) is the value 1.

Both interpretations of booll provided above are initial interpretations because
they define one domain element or domain operation for every operator in the
abstract type. The words used to describe the abstract type are unimportant; it is
the underlying structure defined by the operations and equations that matters.

Every initial object in a class defined by an abstract type is said to be isomorphic -
from the Greek meaning the same shape —
structure.

because it has the same basic internal

A non-initial interpretation in which both T and L are mapped to rrue may be
written as follows:

obj3 = ({true}, L = true, T = true, — = not, A = and)

but every expression now evaluates to true.
the formal sense, but is unlikely to reflect the intention of the original specification.
It allows a total collapse of the domain space and is an example of a final inter-
prelatﬁon as opposed to an initial interpretation, which allows no collapse of the
domain space. Initial and final semantics are the limiting forms of interpretations;

aqything in between is described as loose semantics. We will only be concerned
with initial semantics.

This is an acceptable interpretation in

5.3.1 Inheriting an existing specification
Since the intended inte
obviously like to add
connectives. One way

rpretation of a Boolean theory is Boolean algebra, we would
Opergtlons that would be interpreted as the usual Boolean
of doing this would be to write down a new theory with the

LOGIC WITH EQUALITY 179

extra operations included, but a better option is to recognise that all the previous
theory is included in the new one and only the additions need to be described. An
abstract type can inherit all the operations and equations of a preceeding definition

simply by including the name of the previous type in the new heading. Thus, an
extended Boolean type bool2 includes booll as follows:

bool2 = booll +

opns
v : bool, bool — bool
- : bool, bool — bool
eqns
X,y € bool

XV Yy=-=(—x Ay
X—>y=-xVvy

Theory bool2 includes all of booll and this is indicated in the opening line bool2 =
booll +, then the extra operations and their equations are given in a style similar to
the original. This form of addition to an existing abstract type is called an enrich-
ment and is obviously a time-saving device. Since our intended interpretation is
Boolean algebra and negation and conjunction connectives are an adequate set for
the algebra, we should expect that every other connective can be expressed in terms
of these two. The added equations do not have to be defined in terms of the pre-
vious ones, so we could have chosen to define operation v directly as

xNVT=T

xv . l=x

In summary, an abstract type — sometimes called a theory, a presentation or a
specification — has the following general form:

name =

Sorts s

opns
fis"—>s
pas

eqns
variable declarations
Li=R

First of all, a name is given to the theory so that it becomes an identifiable unit
binding together a number of operations and their properties into useful modules.
Large specifications might consist of collections of such theories. Keyword sorts
opens the theory, listing the sorts or types of objects being defined in the abstract
type. In this chapter we are concerned only with single-sorted, homogeneous ab-
stract types and this line only occurs because it is necessary in the many-sorted,
heterogeneous theories of the next chapter. Next we have keyword opns followed
by one line for each of the operations or predicates being defined in the abstract

180 LOGIC AND DECLARATIVE LANGUAGE

type. These lines describe the sorts of the arguments required by each function or
predicate and the sort resulting from the evaluation of an operation. By definition a
single-sorted theory has only one sort, so in this case the lines tell us just the arity,
L.e. the number of arguments, required by the function or predicate. Constants are
seen as zero-arity operations, so they appear as follows:

(e T

Each operation name has to be different from every other operation and predicate
name in the abstract type. The top part of the definition, consisting of sorts and
opns declarations, is called the signature of the abstract type and might be followed
by a number of equations. If there are equations, they define equivalences between
strings of symbols in a Herbrand universe constructed according to the signature.

EXERCISES 5.3

1. Use the abstract type bool2 to reduce the following expression to its simplest
(canonical) value:

_\(—I(T A L) A% ﬁT)

2. An operation called max may be defined on symbols 0 and 1 as follows:

xmax 1 =x
xmax 0 =0

and this operation has the same relation to v as that of min to A in bool2.
Evaluate the following expression:

Aip(fip(1 min 0) max 0)

. Define an abstract type called booln with a signature consisting only of the
constants T, 1, — and —. Add equations to the abstract type that force objects

of the type to behave as indicated by the interpretations of rrue, false not and
implication as described in Chapter 1.

4. Define an abstract type called boolm
should include the o
Chapter 1.
above.

as an enrichment of booln. The enrichment
peration <> with the meaning defined in the truth tables of
It should also include operations A, v with the meanings defined

5.4 A NATURAL THEORY

A first attempt at a theory to describe n

umbers begins with a fundamental abstract
type called nat0 as follows:

LOGIC WITH EQUALITY 181

nat0 =
sorts
nat
opns
zero : — nat
suc : nat — nat

Any theory that consists of a signature without any equations is said to be funda-
mental because it generates all possible strings of symbols without defining any
equivalences between the strings. In this particular case the signature contains an
arity-zero operation called zero and an arity-one operation called suc. These oper-
ators generate the following infinite series of expressions:

zero, suc(zero), suc(suc(zero)), suc(suc(suc(zero))), . ..

in the Herbrand universe of the type. As usual, the elements of this universe are all
those strings of symbols constructed in accordance with the arity rules of the
abstract type. The only well-formed applications of these operators are the constant
zero itself or successive applications of the suc function beginning with zero. The
Herbrand universe is sometimes called the Herbrand domain, but in the context of
abstract types it is often also called the word algebra. Since there are no equations
in this theory, every element is distinct and we obtain an infinite number of one-
element equivalence classes.

One very obvious interpretation for the possible elements of the abstract type
nat0 is the series of denary numbers {0, 1, 2, 3, ... }, setting zero equal to 0,
suc(zero) equal to 1, and so forth, but it is not the only possible choice. Number
systems may be developed from any base number in just the same way that the
denary system is developed on the base number 10, and the binary and hexadecimal
systems based on numbers 2 and 16 are widely used in computer science. The
relationship of these possible interpretations with increasingly large strings of the
word algebra are then shown as follows:

Word algebra Denary Binary Hexadecimal
zero 0 0 0
suc(zero) 1 1 !
suc(suc(zero)) 2 10 2
suc(suc(suc(z))) 3 11 3
suc(suc(suc(suc(z)))) 4 100 4
suc(suc(suc(suc(suc(zero))))) 5 101 3
suc™(zero) 20 10100 14

Each term in the word algebra corresponds to distinct terms in each of the qlher
three interpretations, so there is no confusion. At the same time, there are no junk
elements in any of the interpretations, i.e. there are no symbols that do not correspond

182 LOGIC AND DECLARATIVE LANGUAGE

to an element of the word algebra. Since there is no junk or confusion, each of the
three interpretations can be considered an initial interpretation of the abstract type.

Fundamental abstract types have no equations hence no method of making strings
of symbols equivalent. The following extended presentation is a first step towards a
more useful theory:

natl =
sorts
nat
opns
zero : — nat
suc : nat — nat
add : nat, nat — nat
eqns

X,y € nat
add(zero,x) = x
add(suc(x),y) = add(x,suc(y))

An extra operation called add has been added, increasing the word algebra
to include strings such as add(zero, suc(zero)), but the equivalences relating to
this operation allow it to be simplified through term rewrites. Consider a term
add(suc(suc(suc(zero))), suc(suc(zero))) and a series of term rewrites following the
abstract type equations above:

add(suc(su('(suc(zero))), suc(suc(zero)))

add(suc(suc(zero)), suc(suc(suc(zero)))) eq 2
add(suc(zero), suc(suc(suc(suc(zero))))) eq 2
add(zero, suz'(su('(suc(suc(su('(:em)))))) eq 2
su('(suc'(suc(suc'(su('(:ero))))) eq 1

ASCLIES UL €L 1ewl ey UNIIE CYUAUULL £ UL UIC dOSUTACL LYPC grauuatty 11oves Suc
operators from the left to the right argument. Eventually the left argument becomes
zero0, equation 1 becomes applicable and the series terminates with a canonical
value. It is clear from this reduction that the original expression is equivalent to the
term su(‘(su(’(su('(suz'(sm‘(:ero))))). Otherwise stated, the term belongs to this equiv-
alence class. Of course, additions may be applied to any pair of expressions and

the one-element equivalence classes of the fundamental type are increased to include
these expressions:

{zero, add(zero,zero), aa’d(:ero,add(:ero.:ero)). ssw
{suc(zero), add(:ero,sm'(:em)), add(su('(:em).:('m)I
{sm'(suc(zero)), add(zero,su('(sm'(:c'ro)), add(suc(zero),suc(zero N}
etc.

Denary, binary and hexadecimal numbers e
vide initial interpretations for
three interpretations

quipped with an addition operation pro-
the specifications above. As a result. we defined the

LOGIC WITH EQUALITY 183

objl = ({nat} zero = 0, add =+)
obj2 = ({bin} zero =0, add = 0)
obj3 = ({thex} zero =0, add = &)

in which {nat}, {bin} and {hex} each represent an infinite series of natural numbers
expressed in the appropriate base. The usual + symbol represents denary addition,
and in common practice this symbol would also be used for binary and hexadecimal
addition. Since we are interested in comparing the operations, and the base will not
always be obvious from the context, two new symbols (0 and) are used to repres-
ent binary and hexadecimal addition. Note carefully that operator add in the abstract
type is defined as a prefix operation whereas we shall use each of the others in the
more familar infix style.
The result of the term rewrites above confirms the following equivalence:

add(suc(suc(suc(zero))),suc(suc(zero))) = suc(suc(suc(suc(suc(zero)))))

and when the operations of this equation are mapped onto the three interpretations,
the following representations are obtained:

B4 D= §
11010 =101
a2 =3

When the appropriate addition operator is applied to the arguments of a particular
representation, the result is the image of that obtained in the abstract equation. Each
of the three interpretions above is initial, so each reflects exactly the operations of
the abstract type. More importantly, the three interpretations are isomorphic and are
in effect three different notations for a common underlying structure. If two denary
numbers are added together using denary addition and the result converted to bin-
ary, the result is the same as if the numbers had first been converted to binary then
subjected to binary addition. It is the isomorphism between the representations that
permits this form of interconversion.

5.4.1 Homomorphisms between objects

We now wish to extend the abstract type natl with just one additional equation to
give new type called mod3:

mod3 = natl +
eqns
suc(suc(suc(zero))) = zero
The effect of this extra equation is to reduce the infinite number of equivalence

classes of natl to just three, because large strings now reduce to much simpler
ones; for example

184 LOGIC AND DECLARATIVE LANGUAGE
suc(suc(suc(suc(zero)))) = suc(zero)
suc(suc(suc(suc(suc(zero))))) = suc(suc(zero))

Every string of symbols in the Herbrand universe then falls into one of the three
equivalence classes

{zero, suc(suc(suc(zero))), . .. |
{suc(zero), suc(suc(suc(suc(zero)))), ... |}
{suc(suc(zero)), suc(suc(suc(suc(suc(zero))))), ... |

This abstract type should be recognisable as an abstraction of the natural numbers
modulo 3, more familiar in the interpretation

objl = ({0, 1, 2}, add = ®)

The single equation of the abstract type may be stated in the form 3 = 0 and the
derived equations below as 4 = 1 and 5 = 2. but representations of numbers greater

than 2 are not necessary in the interpretation. Modulo 3 additions never produce
numbers larger than 2, for example

202 =1
3iDi5I=2

One way of working out a modulo 3 result is to perform the calculation in denary,
then convert the result according to Figure 5.6. We just divide by three and take the
remainder.

The relationship between denary and mod3 numbers revealed in Figure 5.6 is
quite different from that between the three representations of natl given earlier.
Given a number in any one of the three representations. denary, binary and hexa-
decimal, it is possible to find the unique equivalent number in either of the other

representations. Given a denary number it is possible to find a unique equivalent
modulo 3 number from the graph of Figure

. 5.6, but the reverse process is imposs-
ible. For example, the modulo 3 number 1 co

uld be traced back to any infinite series

?\

0
2
3
4 1
S
6 2
7

Figure 5.6 Mapping denary to mod 3

LOGIC WITH EQUALITY 185

of denary numbers 1, 4,7, ... rather than to a unique number. This is an example
of the confusion property mentioned earlier. A relationship of this kind is called a
homomorphism.

A homomorphism is a structure preserving mapping from one object or algebra
to another in one direction only. If we write down a small denary expression

5+46=11

this could be easily be converted to the mod3 equivalent

200=2

However, it would not be possible to first convert the denary numbers to mod3,
carry out the addition in mod3, then convert the answer back to denary. The result
2 could be mapped to any one of an infinite series of numbers. On the other hand,
it 1s possible to carry out a denary addition first then convert the result to mod3, as
opposed to first converting to mod3 then applying the mod3 addition.

Generally, if /1 is the homomorphism function that maps the domain elements of
one interpretation onto another and if f is some operation, then

h(f(a,a,a,) = (f(ha)ha), ... ha,))

For example, a homomorphism mapping the calculation from denary to mod3 is

h(3+2)=h(3)® h(2)
=0:®'2

=2

but there is no homomorphism in the reverse direction. An isomorphism essentially
consists of homomorphisms working in both directions.

A relational operation may be added to a specification in order to allow compari-
sons between elements of the type. For example, the specification nateq (natural
with equality) allows comparisons between naturals:

nateq = natl + booll +

opns

eq : nat, nat — bool
eqns

X, y € nat

eq(zero,zero) = true
eq(zero,suc(x)) = false
eq(suc(x),zero) = false
eq(suc(x),suc(y)) = eq(x.,y)

This extension simply says that the successors of two numbers are equa! to each
other when the numbers, x and y, are themselves equal. Thus strings with equal
numbers of successor functions are equal, whereas those with differing numbers‘ of
successor functions are unequal. A similar set of equations might be used to define
the less than (/1) relation as follows:

186 LOGIC AND DECLARATIVE LANGUAGE

lt(zero,suc(x)) = true
lt(zero,zero) = false
lt(suc(x),zero) = false
It(suc(x),suc(y)) = lt(x,y)

EXERCISES 5.4

1. An abstract type may be defined as follows:

integer =
sorts int
opns
zero : — int
suc :int — int
pred : int — int
eqns
X,y € int
pred(suc(x)) = x
suc(pred(x)) = x
a. List the equivalence classes of this specification.
b. Simplify the expression suc(pred(pred(suc(zero)))).
- Children sometimes do multiplications by repeated addition. i.e. to work out
8 X 4 they compute 8 + (8 + (8 + 8)). Use this

tion in terms of an addition o
multiplied by 0 is 0.

technique to define multiplica-
peration called add. Remember that any number

	Downward-1
	Downward-2
	Downward-3
	Downward-4
	Downward-5

