Black Box Consistency with SAT

CS 2800
November 9, 2020

Abstract

This paper explores the consistency of a board game called
Black Box, in which players attempt to locate a number
of atoms hidden within a square grid by observing the be-
havior of rays shot into the board. These rays give rise to
“hints,” which players can use to deduce the location of
the atoms. We have written a program in Java which takes
a set of these hints and determines if there exists a cor-
responding atom configuration that satisfies them. These
encodings are individually generated with a recursive al-
gorithm that identifies all possible ray traversals that lead
to hint satisfaction. Unsurprisingly, the memory usage of
this algorithm quickly balloons as a function of the board
size. Going forward, the generation algorithm should be
optimized to reduce the workload on the SAT solver and
improve efficiency.

1 General Problem Area

Black Box is a fairly obscure single-player board-game
that was created in 1976 by mathematician Eric Solomon,
who was inspired by the invention of the CAT scanner
in the previous decade [1]. The game is played with a
square grid, the namesake “blackbox”, in which a number
of atoms are hidden. Players can probe the locations of
the hidden atoms by shooting imaginary rays of light into
the blackbox from the border of the grid. Rays will travel
in their given direction until they are either deflected to a
new direction by an atom, or until they are absorbed by
an atom upon a direct collision (Fig. 1).

In practice, players “shoot” rays into the blackbox by
revealing cells around its perimeter that contain informa-
tion, called hints, about if and how the ray shot from that
cell exits the blackbox. A ray may either directly hit an
atom and never leave the blackbox, or it may exit the
blackbox at some position, possibly after undergoing a se-
ries of deflections. In Fig. 1, the cell that R1 originated
from would contain a Hit hint, and the cells for R2, R3,
and R4 would all contain Exit hints that specify where
the ray exits the blackbox. Using these hints in conjunc-
tion, players can deduce the locations of atoms, winning
the game if they can successfully locate all atoms.

This paper explores the consistency of Black Box
boards. A board is consistent if there exists a set of atoms
that satisfies every hint. If there is some contradiction in

Figure 1. Four different examples of ray travel through
the blackbox.

the set of hints such that no set of atoms can satisfy every
hint, then the board is inconsistent. Our goal is to algo-
rithmically determine whether or not a given set of hints
are consistent with one another by encoding each hint as
a boolean expression and SAT-solving them together.

2 Approach

Overall, the game of Black Box has not been extensively
studied through the lens computational theory. One of
the only papers we have found that studies the game was
written by student researchers at UC Irvine [2], who de-
scribe two algorithms that can be used to determine the
locations of all atoms in a given Black Box board. In this
paper, we take a novel approach by encoding Black Box
boards as propositional logic statements that can be SAT-
solved to determine board consistency. Our approach can
be divided into two main steps. First, we generate a
boolean expression for each hint on the board that rep-
resents whether or not the hint is satisfied. Then, we take
these expressions in conjunction to form an expression
that represents the consistency of the entire board. This
larger expression is automatically converted into CNF and
SAT-solved.

Generating the expression for each hint is done recur-
sively by tracing out all possible paths a ray can take. At
each position, the ray can continue straight, deflect 90°
clockwise or counterclockwise, or reflect 180°. Each of

these four moves arise only from particular atom configu-
rations (Fig. 2).

Figure 2. FEzamples of ray deflection. Rl travels in a
straight line in the absence of any deflecting atoms. R2 is
deflected clockwise by collision with the edge of an atom,
and R3 counterclockwise. R4 is deflected by two atoms
simultaneously, causing it to turn 180° and exit the black-
box from its original cell.

At each cell, we can assume each of these deflections
and find the next position of the ray in each case. The
boolean expressions generated by each hint in this fash-
ion can be used in conjunction to create a formula that
represents the board.

We used a Java library called LogicNG to handle CNF
conversion and SAT-solving. LogicNG is a publicly avail-
able repository which includes tools for memory-efficient
boolean formula manipulation. An implementation of
MiniSAT comes bundled with LogicNG. As such, we pri-
marily focused on implementing the boolean encodings for
Black Box boards that allow us to determine hint consis-
tency, using LogicNG to handle the raw formula produced
by our encoding.

Our main metric for success was program correctness,
which was tested by using a set of home-made boards and
a set of boards sourced from online Black Box implemen-
tations. Efficiency was a secondary objective, something
that we had to sacrifice for the overall correctness of the
algorithm. As a result, our testing data was limited to
5-by-5 and smaller boards only.

3 Methodology
3.1 Board Conventions

The convention we use sets the top left cell in the blackbox
as position (0,0), with z increasing when travelling east
and y increasing when travelling south. Each cell in the
blackbox is assigned a boolean variable P, ,, which is true
if there is an atom in the cell at position (z,y) and false
if not. Cells immediately around the blackbox are of par-
ticular interest to our encoding scheme since we are con-
cerned with where rays enter and leave the blackbox, but
these border positions are not assigned boolean variables
because no atom can be present outside the blackbox.

Figure 3. Position Validity. The 4-by-4 square grid gives
some examples of positions and variables corresponding
to the marked areas. Notice that C and D have positions
outside of the board, and therefore do not have variables.

H Cell Position Variable H
A (2,1) P271
B (2,3) P273
C (4,2)
D (-1,0)

3.2 Rules for Hint Satisfaction

Our program models two types of hints: Hits and Exits.
A Hit hint is satisfied if the ray it generates directly strikes
an atom. An Exit hint is satisfied if the ray it generates
manages to travel out of the board at a certain position,
specified upon instantiation. Reflections are a special case
of Exit hints in which the specified end position is the same
as the start position.

With these conventions, we can outline a set of rules
to determine whether or not a given Hit hint is satisfied:

1. If there are any atoms denying the ray’s entry into
the board, the Hit is immediately unsatisfied.

2. At every position during the ray’s travel, the Hit is
satisfied if

(a) an atom occupies the ray’s next position, or

(b) travelling further (continuing in the same di-
rection, getting deflected clockwise, or getting
deflected counter-clockwise) results in a Hit.

3. A reflection reached at any point in the board im-
mediately means the Hit is unsatisfied.

4. If the ray travels out of bounds, then the Hit is im-
mediately unsatisfied.

A similar set of rules can be used to determine the
satisfaction of any given Exit hint:

1. If there are any atoms denying the ray’s entry into
the board, the hint is satisfied iff the Exit is a reflec-
tion.

2. At every position during the ray’s travel, the Exit is
satisfied if

(a) an atom does not occupy the ray’s next posi-
tion, and

(b) travelling further will result in an Exit at the
correct position.

3. If reflection occurs at any point during the ray’s
travel, the hint is satisfied iff the Exit is a reflec-
tion.

4. If the ray travels out of bounds, then it must have
exited at the correct position for the hint to be sat-
isfied.

The process of algorithmically generating boolean ex-
pressions to correspond to these rulesets is discussed in
further detail in the following sections.

3.3 Encoding Hits into Boolean Expressions

The algorithm to generate a boolean expression for a Hit
is based on the idea that Hits are satisfied if there is an
atom in the next cell that the ray will travel to, or if there
is an atom somewhere else in the ray’s path. The core
of the method used to generate the boolean expression is
based on the following two rules defined in the previous
section:

Rule 2a: For the Hit to be immediately satisfied by a
direct collision, P, ; must be true, where a and b are the
coordinates of the ray’s next position.

Rule 2b: For the Hit to be satisfied somewhere else
in the ray’s path, rule 2a must be satisfied for some later
position. Satisfaction by rule 2b is determined by consid-
ering each of the four deflection cases recursively.

For each of the four deflections types (no deflection, 90°
clockwise deflection, 90° counterclockwise deflection, and
180° reflection), the ray will travel to a different position.
Each new position can be evaluated for Hit satisfaction
by the same process: checking if its next position contains
an atom, or if there is an atom somewhere later down the
path of any of the four new deflections. This case analysis

for each type of deflection is captured in our boolean ex-
pression by a recursive conjunction of implications. Each
antecedent represents one of the four possible deflection
cases, and each corresponding consequent represents the
appropriate condition for Hit satisfaction given that de-
flection.

A conjunction of these implications is an appropriate
form for case analysis on the four types of deflections be-
cause exactly one antecedent will be true at every posi-
tion. The three false antecedents will immediately cause
their respective implications to evaluate to true by con-
stant propagation, so the only relevant expression in the
conjunction is the one that represents the actual deflection
case, as desired.

Combining Rules 2a and 2b yields an expression for Hit
satisfaction for a ray that is traveling in the blackbox. For
example, consider a ray at position (z,y) travelling east
(Fig. 4). The boolean expression that represents whether
or not this ray will satisfy a Hit is given by the function
h(z,y, E), which evaluates to:

Priiy 1 A—=Ppiiys1) = bz + 1y, E)|A

Popiy v ([(=

[(Pey1y 1 A —Peyiys1) = h(z,y+1,9)]A
[(

[(

r4ly 1A Px+1,y+1) - h(a:,y - 17N)]/\

Pri1y 1A Pryiy+1) = 0])

Figure 4. Example ray traveling east. The ray will undergo
one of four deflection cases depending on the values of the
variables for the cells marked CW and CCW.

The first term, P,11,, accounts for the Rule 2a case
in which the ray will collide with an atom in the next cell;
if the ray continues to travel east, its next position will be
(x + 1, y), so if an atom occupies that position, the hit is
satisfied.

The positions to consider for clockwise and counter-
clockwise ray deflections are functions of direction and
position. An atom that results in a clockwise deflection is
represented by Pow; its counterpart is Poow. In the ex-
ample above, Pow is Pry1,y 1, while Poow 18 Pry1,y+1-

For the no deflection case (i.e. —Pew A —Poow),
the algorithm recurs by calling h on the next position

reached by travelling in the same direction. In the case
that exactly one of the CW or CCW atoms exists, the ray
is deflected in a new direction (respectively S and N in
this example). The algorithm recurs by calling h on the
next position and direction resulting from the deflection.
Finally, if both the CW and CCW atoms are present (i.e.
Pow A Poew), the hit immediately becomes unsatisfied
by rule 3 — no recursion is necessary.

Our algorithm will keep recursively evaluating h in the
consequent of each implication until the ray reaches a pair
of coordinates that are out of bounds, at which point h
will return false by Rule 4. For a board of r rows and
¢ columns and a ray with the current position (z,y) and
direction D, the complete expansion of h(x,y, D) yields a
boolean expression in terms of the variables Py, through
P, 1. 1 that will return true if the Hit is satisfied for
a given set of atoms, and false if not. This expression
correctly represents the satisfaction of a Hit by this ray
only if (x,y) is a cell in the blackbox; for a ray starting
from outside the blackbox, there are certain initial cases
that must be considered (discussed further in Section 3.5).

3.4 Encoding Exits into Boolean Expressions

The algorithm generates boolean expressions for Hits and
Exits in a similar fashion, and in some ways, a Hit can
be thought of as “not an Exit.” After performing some
initial checks to ensure that the ray correctly enters the
board, the algorithm then moves into recursive steps that
map out all possible atom placements that lead to hint
satisfaction, just as with Hits.

Using the same abstract board in Fig. 4, the recursive
expression e(z,y, E) is constructed in much the same way
as h(z,y, E). The expression e(z,y, E) evaluates to:

—Pryiy A ([(0Pes1y 1 A= Pey1ys1) = el + 1y, E)|A
[(Perl,y 1N _‘Pa:+17y+1) - 6(33,9 + LS)]/\
[(_‘PaﬁLl,y 1N Px+1,y+1) - 6(5573/ -1, N)]/\
[(

Poiyiy 1 A Ppi1ys1) — isReflection?])

The next position must be unoccupied (signified by the
term —P,11,) so that the ray does not result in a hit.
Additionally, recursively calling e, using the same case-
switch scheme as for Hits, must result in an exit at the
correct location. Deciding whether a ray exits at the right
location is computed dynamically whenever the ray has
moved out of bounds.

Hits and Exits differ in their start and end behavior,
but as seen in the expression above, the core recursion
scheme has the same structure for both types of hints.

3.5 Entry Conditions

Before the recursion can begin, each ray must satisfy cer-
tain initial conditions. Black Box defines a special rule
for deflections that occur on the border: for atoms that
would ordinarily deflect rays 90°, the deflection is changed

to 180° if the ray is just entering the blackbox. In Figure
5, R1 is immediately reflected, and its end position is the
same as its start position. A Hit that is border reflected
is immediately unsatisfied (Rule 1). An Exit in the same
situation would only be satisfied if it was a reflection (i.e.
if its start position was the same as its end position, as
per Rule 1).

If there are two atoms on the border such that one
would result in a hit and the other would result in a border
reflection, Black Box rules state that the hit should be
counted first. Therefore, R2 in Figure 5 would satisfy a
Hit, but not an Exit.

Figure 5. Ezxample of border reflection. Neither ray can
enter the board due to the border atoms. By definition,
R1 is an Exit (specifically, a reflection) and R2 is a Hit.

These reflections are easily resolved when constructing
the boolean formulas. For Hits, these can be accounted
for by including an extra sub-expression before generating
the bulk of the expression recursively:

(=Pccw A —Pow) A (Phit A h(z,y, D))

Exits are more complex, since the behavior is different
depending on whether or not the Exit is a reflection. For
reflections, Pcow and Pcow are valid atom placements
that satisfy the hint. However, the ray can still be ob-
structed by an atom directly in front of it. Therefore, the
expression that must be included before generating the
rest of the expression for a reflection Exit is:

—Phit A (Pew v Pocow) v e(z,y, D))
And for an Exit that is not a reflection:

(=Pcw A —Poew A —Prit) A e(x,y, D)

3.6 Border Cases

The generation algorithm is greatly simplified when rays
travel along the border, since it limits what kind of de-
flections can occur. A ray travelling along the border can
only move forward or be deflected out of the board; a de-
flection towards the center of the board would have to be

caused by an out-of-bounds atom. These scenarios allow
us to ignore conditions where deflections are caused by an
out-of-bounds atom, decreasing the number of recursive
calls made.

For example, if a ray were traveling south along the
left edge, it would be forced out of bounds by a clockwise
deflection (Fig. 6). If this ray were searching for a Hit, the
simplified expression for this border case would check that
no deflection out of bounds occurs and that the ray either
collides with an atom at the next position or at some later
position. Notice that only one recursion is necessary, as
opposed to the three recursive branches in Section 3.3:

r4ly+1 A (Pw,erl Vv h(w,y + 1’5))

Figure 6. Border travel. The southward travelling ray R1
cannot be deflected counter-clockwise, because any Poow
position would be outside the board. R1 is forced to keep
travelling southwards or exit the board by some Poyy .

3.7 Dealing with Cycles

Due to the exhaustive nature of our case-analysis method,
which considers all possible ray moves during recursion,
there is a possibility that one branch of the algorithm
reaches a cycle, trying to check a ray position that it had
earlier come across. Left unaccounted for, this can lead to
infinite recursion and stack overflow in non-trivial boards.
We got around this error by continuously updating a list
of "checked” cells that holds the positions that the algo-
rithm has already visited. If a cycle has been detected,
the recursion down that branch immediately terminates.

However, to maintain algorithm correctness, we found
that we had to let each recursive branch use and maintain
separate copies of the checked-squares-list to ensure that
they did not cause one another to prematurely terminate;
if each recursive branch referred to the same, centralized
list of checked squares, breaking out of cycles resulted in
incorrect solutions for some boards.

3.8 Considering Black Boxes

Individual hints are instantiated as objects of the abstract
AHint class, from which the Hit and Exit sub-classes ex-

tend. Hits are created with an initial position and di-
rection, whereas Exits are constructed with an additional
exit position. Initializing an AHint is all that is required
to be able to generate its characteristic formula. However,
considering individual hints will not yield any interesting
results; most Black Box games only become inconsistent
when multiple hints are in contradiction.

To determine the consistency of an entire game of
Black Box, a BBGame object can be created to encap-
sulate a list of hints. The BBGame constructor will en-
sure that it has received a well-formed array of AHints —
specifically, it checks that each hint has been initialized
with proper start positions and directions, and that the
list of hints has a uniform board size.

To check for consistency, the BBGame will combine
each individual hint expression with conjunctions to cre-
ate a single characteristic boolean formula for the entire
board. This formula is then passed to the LogicNG CNF
converter, and then into MiniSAT to check consistency.
If MiniSAT concludes satisfiability, one potential model
is recovered and parsed into a plain-text board depic-
tion showing empty and occupied squares. Our program
is therefore capable of acting as a solver for consistent
boards.

4 Metrics

The algorithm outlined above was checked for correct-
ness using a set of four home-made boards and six boards
sourced from online Black Box games. These boards were
constrained to 5x5 and smaller to avoid efficiency con-
cerns.

Tests were conducted on a Windows 10 machine with
an Intel i5-6600k processor, running at 4.3 GHz, and with
16 GB RAM.

Runtime did not prove to be as big of an issue as mem-
ory usage, even though our recursive scheme added a lot of
bulk to our boolean formulas. For boards exceeding a side
length of 5, trying to run the formula generation algorithm
would sometimes run into JVM OutOfMemory exceptions,
due to how lenient the algorithm is when detecting cycles.
In the future, this algorithm can definitely be improved
from a memory usage perspective by only computing the
recursive analysis for each square once, and allowing fu-
ture recursive calls to access the already-computed result
rather than completely recomputing the recursion for it-
self.

The runtimes (in milliseconds) for each of the 10 ex-
amples are given in the table below.

Board Side Time (ms) Time (ms)
Length | fast-enabled | slow-enabled
unsatEx1 | 3 328 296
satEx2 3 212 218
bigGame | 5 11820 22734
bigUnsat | 5 2057 2960
onlinel 5 9480 17570
online2 5 12506 20895
online3 5 10840 21156
online4 5 10049 21498
onlineb 5 10103 19454
online? 5 11298 21721

The average fast-enabled runtime between the six on-
line boards was about 10713 ms, whereas the average slow-
enabled runtime was about 20382 ms. Anecdotally, these
runtimes varied greatly depending on machine specifica-
tions. For instance, on an Intel i7 processor @ 2.2 GHz,
16 GB RAM, solving the 5-by-5 online boards took about
2 to 3 minutes each.

For all 10 test results, the program returned board con-
sistency as expected. Because the online boards originate
from playable Black Box instances, all six of of them are by
definition consistent — they each have a valid configuration
of balls that satisfies all hints since they have solutions.
In addition to ensuring that our algorithm did return that
these boards were indeed consistent, using playable boards
as test data exercised our algorithm’s board-solving capa-
bility. For each of the consistent boards, our algorithm
gave a valid solution, but not necessarily the expected
one. Two examples of our algorithm recovering solutions
from consistent boards are are shown in figures 7 and 8
below.

Figure 7. Result of solving the onlinel Board. Our al-
gorithm found the exact solution expected for the 5-by-5
hint-set onlinel.

Figure 8. Result of solving the online2 Board. Our al-
gorithm did not find the exact solution, but the solution
depicted above was hand-checked with each of the hints
and determined to be equally valid under our ruleset. The
true solution only has three balls; it does not have balls at
positions (1, 1) or (2, 2). We verified by substitution that
the true solution does indeed satisfy the boolean formula
generated for this board, even if it was not the depicted
solution.

5 Summary

Black Box is an obscure puzzle game in which players
shoot rays into a square board and analyze the end be-
havior to guess the locations of atoms hidden inside it.
Abstracting the shooting mechanic as a “hint” for the lo-
cations of atoms in a board, we can analyze all hints for a
given board and determine if there exists a corresponding
atom configuration that satisfies it. We can naively com-
pute all possible ray traversals inside a board that lead
to complete hint satisfaction as a boolean expression and
SAT-solve the expression to determine the board’s consis-
tency. For consistent boards, we can recover a model that
depicts a valid set of atom placements, giving a solution
to the board.

Our algorithm was tested on a set of ten boards: four
home-made and six sourced from online Black Box games,
but all 5-by-5 or smaller. In all cases, our program reached
the correct conclusion regarding board satisfiability, and
returned valid solutions for all consistent boards. How-
ever, for large enough boards, we found that generating
the characteristic boolean formula led to an exorbitant
number of recursive calls and memory usage. In the fu-
ture, a better system to keep track of previously-computed
recursive calls should be implemented in order to optimize
the program’s memory usage and enable it to run on larger
board sizes.

6 Source Code

All our code is available _

References

[1] M. Barral, “Blackbox, the First Scientific Board
Game.”

[2] J. Shepard, A. Monji, and H.Tejeda, “Black Box: The
Ultimate Game of Hide and Seek,” , 2013.

