
Length of a Powerlist

December 2020

1 Introduction
A powerset P (S) of a set S is the set of all subsets including the empty set
and S itself. We adapt powersets to work with lists. We define the powerlist
of a list L to be a list of all sublists of L, where a sublist is a list that only
contains elements that appear in the original list, and these elements appear in
the same order as they do in the original list. As an example, the powerlist of
(1 2 3) is ’(() (1) (2) (3) (1 2) (2 3) (1 3) (1 2 3)).

A well known property of powersets is that for powerset P (S), |P (S)| = 2|S|.
In this project, we aim to prove an analogous property of powerlists. Namely,
if the length of a list is n, then length of that list’s powerlist is 2n.

2 Overall Structure
We started off by contextualizing the proof by defining the relevant functions
required to generate a powerlist in ACL2s.

2.1 Contextualization of the Proof
We first started off by implementing the functions required to generate a pow-
erlist in ACL2s. Along with the len2 and app2 functions we defined previously
in class, we created two new functions: expt2 and cons-each.

;; raises x to the y
(definec expt2 (x :nat y :nat) :nat

(if (zp y)
1
(* x (expt2 x (1- y)))))

;; Conses x onto each element in l
(definec cons-each (x :all l :tl) :tl

(if (endp l)
l
(cons (cons x (car l)) (cons-each x (cdr l)))))

1

The expt2 function takes in two natural numbers x and y and returns xy as
a natural number. For example, (expt2 2 5) would return 32, or 25. The
cons-each function takes in any argument x along with a list l and returns a list
with x "consed" onto each element of l. For example, (cons-each ’x ’((1 2) (2 3)))
returns ’((x 1 2) (x 2 3)). Using cons-each allowed us to implement the
function powerlist that takes in a list l and returns a list of all the sublists of
l.

;; Returns a list of all the sublists of l.
;; If you think of l as a set, this function returns the powerset of l.
(definec powerlist (l :tl) :tl

(if (endp l)
(list nil)
(let ((ps (powerlist (cdr l))))

(app2 ps (cons-each (car l) ps)))))

Finally, we contextualized our proof in ACL2s:

(thm (implies (tlp l)
(equal (len2 (powerlist l))

(expt2 2 (len2 l)))))

We tackled this proof by using induction on l.

3 Proof
Like any proof by induction, we started off by writing down the rudimentary
proof obligations.

1. (implies (not (tlp l))
(implies (tlp l)

(equal (len2 (powerlist l))
(expt2 2 (len2 l)))))

For proof obligation 1, the contract case, we show that the proof holds
when l is not a true-list.

2. (implies (and (tlp l)
(endp l))

(implies (tlp l)
(equal (len2 (powerlist l))

(expt2 2 (len2 l)))))

For proof obligation 2, we show that the proof holds when l is an empty
list.

3. (implies (and (tlp l)
(not (endp l))

2

(implies (tlp (cdr l))
(equal (len2 (powerlist (cdr l)))

(expt2 2 (len2 (cdr l))))))
(implies (tlp l)

(equal (len2 (powerlist l))
(expt2 2 (len2 l)))))

Then, for proof obligation 3, we show that the proof holds for a nonempty
list l under the assumption that the proof holds for (cdr l). To do so,
we require two lemmas. The first lemma aims to establish that if two lists
x, y are appended, the length of the resulting list is equal to the sum of
the lengths of x and y. The second lemma aims to establish the length of
the list produced by cons-each is the same length as that of the original
list.

3.1 Lemma 1: app-list-len
Lemma 1 establishes the relationship between app2 and len2. Namely, if two
lists are appended together, the length of the resulting list is equal to the sum
of the lengths of the original two lists.

(implies (and (tlp x)
(tlp y))

(equal (len2 (app2 x y)) (+ (len2 x) (len2 y))))

By using induction on x, we write down the three proof obligations here:

1. Contract Case:

(implies (not (tlp x))
(implies (and (tlp x)

(tlp y))
(equal (len2 (app2 x y)) (+ (len2 x) (len2 y)))))

2. Base Case:

(implies (and (tlp x)
(endp x))

(implies (and (tlp x)
(tlp y))

(equal (len2 (app2 x y)) (+ (len2 x) (len2 y)))))

3. Inductive Case:

(implies (and (tlp x)
(not (endp x))
(implies (and (tlp (rest x))

(tlp y))

3

(equal (len2 (app2 (rest x) y)) (+ (len2 (rest x)) (len2 y)))))
(implies (and (tlp x)

(tlp y))
(equal (len2 (app2 x y)) (+ (len2 x) (len2 y)))))

By satisfying the three proof obligations, we successfully proved that the
length of a list of two lists appended together equals the sum of the lengths
of the original two lists.

3.2 Lemma 2: cons-each-len
We then establish the relationship between cons-each and len2 in Lemma 2
by showing that the length of the list produced by the cons-each function is
the same length as that of the original list.

(implies (and (allp x) (tlp y))
(equal (len2 y) (len2 (cons-each x y))))

By using induction on y, we write down the three proof obligations.

1. Contract Case:

(implies (not (tlp y))
(implies (and (allp x) (tlp y))

(equal (len2 y) (len2 (cons-each x y)))))

2. Base Case:

(implies (and (tlp y)
(endp y))

(implies (and (allp x) (tlp y))
(equal (len2 y) (len2 (cons-each x y)))))

3. Inductive Case:

(implies (and (tlp y)
(not (endp y))
(implies (and (allp x) (tlp (cdr y)))

(equal (len2 y) (len2 (cons-each x (cdr y))))))
(implies (and (allp x) (tlp y))

(equal (len2 y) (len2 (cons-each x y)))))

By satisfying the three proof obligations, we proved that the length of a
list produced by the cons-each function is the same length as that of the
original list.

4

3.3 Usage of Lemmas
We get stuck at line 270, because we cannot simplify (len2 (let ((ps (powerlist (cdr l))))
(app2 ps (cons-each (car l) ps))) further without establishing a rela-

tionship between len2 of a list and app2 of two lists. Therefore, we need Lemma
1 to progress in our proof.

Then we get stuck at 275, because we haven’t established a relationship
between len2 and cons-each.

(+ (expt2 2 (len2 (cdr l))) (len2 (cons-each (car l) (powerlist (cdr l)))))

Lemma 2 advances the proof with the understanding that cons-each does not
change the length of the list. After replacing

(len2 (cons-each (car l) (powerlist (cdr l))))

with

(len2 (powerlist (cdr l))

the proof can then continue by applying the inductive hypothesis.

3.4 Automation
ACL2s initially failed to prove our theorem. After writing out a complete pen-
and-paper proof, we knew exactly what lemmas we needed. We began the
process of automating the proof by contextualizing these two lemmas in ACL2s
as rewrite rules using defthm:

(defthm app-list-len
(implies (and (tlp x)

(tlp y))
(equal (len2 (app2 x y)) (+ (len2 x) (len2 y)))))

(defthm cons-each-len
(implies (and (allp x)

(tlp y))
(equal (len2 y) (len2 (cons-each x y)))))

ACL2s managed to prove the two lemmas without any problems. Using these
rewrite rules, ACL2s successfully accepted our overall theorem.

4 Conclusion
We decided to use powerlists as seen in our Fundamentals 1 class to try and
automate a non-trivial, established proof in mathematics that requires the usage
of lemmas. Powerlists have numerous applications, including describing parallel
algorithms such as the Fast Fourier Transform and Batcher sorting scheme. By
contextualizing the proof using ACL2s and incorporating relevant lemmas, we
successfully automated the proof.

5

5 References
Misra, J. (1994). Powerlist: A structure for parallel recursion. ACM Transac-
tions on Programming Languages and Systems, 16(6), 1737-1767. doi:10.1145/197320.197356

6

