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Abstract 
In this paper, we focus on building a SAT encoding for the game of Lights Out, a 

single-player game in which the player must “turn off” all tiles on a board. We will first describe 
the gameplay, specifically how moves can be made and how they affect the board. Then, we will 
discuss a traditional strategy to mathematically solve the game using linear algebra and then 
suggest our approach to obtaining a winning solution via a SAT solver. In our solution, we 
integrate the Z3 SAT solver library in a program written in Java that prompts a game 
configuration described with two parameters, one of which is ​k ​, the number of moves to solve 
the game in. If a solution exists, the program outputs a visual of the solution. Otherwise, it notes 
that there is no such solution. See ​ for the source code.  
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I. Introduction 

There exists a wide breadth of single-player games with SAT encodings developed by 

SAT enthusiasts and researchers. The foray of the SAT community into game encodings around 

the early 2000s commenced with a focus on classic games such as Sudoku and Eight Queens. 

These encoding problems are now known as ‘Constraint satisfaction problems’ (Wikipedia), or 

encodings that are built off of constraints based on the structure of the games and their rules. A 

wave of constraint-based encodings for a myriad of other similar games soon followed such that, 

even games offered primarily on mobile apps now have their own encodings.  

In this paper, we offer what we believe to be one of the first encodings for Lights Out, a 

single-player game played primarily through internet game sites, in which the solution lies in the 

set of moves made by the player. To solve this game, we enumerate a set of constraints necessary 

to winning a Lights Out game and provide them to the Z3 SAT Solver Java library to evaluate. 

We will employ the SAT solver in a program that first prompts user input and outputs according 

to whether or not it’s possible to win the game specified by the user input. We determined that 

we would be successful in this project if we could develop a SAT encoding for a game of the 

given inputs ​n ​and ​k ​ that, when used with a SAT solver, could tell the player if such a game was 

winnable. 

II. Background 

Lights Out Rules and Gameplay 
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Figure 1 A. 3x4 Two-State Lights Out board with all tiles “on” 

 

Figure 2. A 3x4 Two-State Lights Out board with some tiles “off” 

 
We will now explain the configuration of a Lights Out game, how moves work, and how 

to win a game. A game of Lights Out consists of a board with ​m ​rows and ​n​ columns of tiles 

where ​m ​and ​n​ are positive integers. Tiles have a ​p​ number of states numbered [1, ​p​], in which we 

consider a tile that has reached the ​p-​th state to have been “turned off”. Tiles always iterate 

through states successively from the first state seen in the initial board-state to the ​p- ​th state. If a 

tile in the state ​p​ must switch states again, the tile goes back to state 1. In this paper, we focus on 

games with only two states in which we will denote the two states as a tile either turned “on '' or 

“off”. A move can be made on a certain tile by clicking on the tile, henceforth, we will 

interchangeably refer to moves as clicks within this paper. For example, clicking a tile of two 

states initially turned “on'' twice consecutively will leave it “on”.  

The game will start with all tiles in the “on” state, as depicted in Figure 1, in which the 

objective of the game is to turn “off” all tiles. Figure 2 depicts a board with some tiles turned 

“off”. Clicking a tile once will toggle its state, as well as the states of tiles adjacent to the clicked 

one. As a demonstration, if we click the tile at row 2, column 3 in Figure 2, the resulting board 

will be as depicted in Figure 3, where the white x-mark denotes the location of the clicked tile.  
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Figure 3. 3x4  Two-State Lights Out Board After a Move at the Marked Tile 

The tile to the immediate left of the marked tile is flipped from “off” to “on”. The other three 

adjacent tiles and the marked tile flip from “on” to “off”. Note that the number of adjacent tiles 

varies according to the location of the clicked tile. For example, while the marked tile has four 

adjacent tiles, a tile at the corner will only have two. 

SAT Encoding for Peg Solitaire 

We will now introduce an encoding for Peg Solitaire described by Do, Chuong of 

Stanford that we adapted to our Lights Out encoding (Do). With Lights Out, all final board states 

are the same because the board must have all tiles turned “off” by the end of the game. This is 

similar to Peg Solitaire in which a player can only win a game when all spaces on the board but 

one are empty. Thus, encoding constraints for Peg Solitaire must rely on validating a sequence of 

moves using board-states resulting per move. Boards consist of spots represented by boolean 

values where ​true ​ means the spot has a peg and ​false​ means the spot is empty.  

For two board-states ​p ​ representing the board before a move and ​q ​representing the state 

after a move, we consider all possible moves on ​p ​, valid and invalid. We check if each possible 

move is valid from ​p​ to ​q ​ according to the following four constraints: A move is valid when the 

move was made from a ​true​ spot, the jumped over spot is ​false ​, the spot jumped to is ​true ​, and all 

other spots on the board are the same in ​p ​and ​q ​. We can find the single valid move for a ​p,q ​ pair 

by OR-ing all possible moves, and checking their validity in the context of ​p,q​. Then, we can 

proceed from board-state to board-state until we reach the ​(n-2)th ​ board-state where ​n ​is the 
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number of spots on the board. By the ​(n-2)th​ board-state, all but one spot will be ​false, ​or empty, 

and we win the game. Thus, we have a CNF encoding of Peg Solitaire. 

The Z3 Satisfiability Solver 

Our solution for the Lights Out game makes use of the Z3 Satisfiability Solver ​1​. If the Z3 

SAT Solver finds a given set of constraints satisfiable, it returns the set of boolean values that 

satisfies the constraints. Otherwise, the solver denotes that the given expression is unsatisfiable. 

Z3 represents boolean variable literals as the datatype ​BoolExpr ​, which we use to represent tiles 

of a Lights Out game. 

III. Methodology 

Our implementation of the Lights Out solver utilizes a ​k-turns ​algorithm in which we flip 

the state of each tile for successive turn according to the tile’s state in the previous turn (except 

turn 0, the initial board-state).  Coming up with an encoding was the most strenuous aspect of 

this project, particularly the parameterization of the problem. We initially found our particular 

parameterization not the most intuitive, so understanding how the encoding would look under 

this parameter was the most difficult part of encoding the game. In this section, thanks to the 

gratuitous help of Professor Hemann, we will discuss the steps we took to reach a functional 

k-turns​ implementation.  

Preconditions 

For this SAT encoding of Lights Out, we will focus on square boards as opposed to 

boards of differing width and height dimensions, such as the boards featured in Figures 1, 2, and 

3. All other rules of Two-State Lights Out apply. 

1 https://github.com/Z3Prover/z3 
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Parameters 

This SAT encoding is dependent on two parameters the player has to provide to our 

program, the first being ​n, ​the width and height of a Lights Out board, and the second being ​k​, 

the number of moves in which to win the game.  

Objectives and Outputs 

If it’s possible to win the specified Lights Out board in ​k ​moves, our program will output 

a 2D array of 0’s and 1’s where 1’s represent the set of tiles the player must click once, in no 

particular order, to turn all tiles “off” and 0’s represent tiles that the player doesn’t need to click 

to win the game. Otherwise, the program prints “Unable to solve board in ​k ​moves.” For 

example, if a user gives the program ​n = ​3 and ​k =​ 5 for a  Two-State Lights Out game3 × 3  

solved in 5 moves, the program prints the following 2D array:  

         0         1 1  

         1         00  

         0         11  

Figure 4.  Solution for a 3x3 Two-State Lights Out board with ​k ​= 5 

If the user gives a ​k ​< 5, the program outputs “Unable to solve board in 4​ ​moves.” 

Setup 

We represent a Lights Out board as a 2D BoolExpr array of size [ ​n​][​n​]. Since our 

implementation must keep track of the board state per ​k ​ move made, we declare a 3D BoolExpr 

array named ​grid​ of size [​k​][​n​][​n​], or an array of ​k ​boards:  

.oolExpr[][][] grid new BoolExpr[k][n][n]B =   
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We also need to implement an array of transitional arrays, ​move ​. Each BoolExpr in ​move 

represents the tiles that can be flipped for each of the ​k​ moves. Since every tile on the board can 

be flipped, the ​move​ array is identical to the ​grid ​ array: 

.oolExpr[][][] move new BoolExpr[k][n][n]B =   

If a ​m ​turn,row,col​ ​is true, then the flipped tile of the turn is ​p​turn,row,col​. 

As aforementioned, the starting state of all tiles is “on”, for which we will represent as 

false ​. Hence, all tiles in the board will be set to ​false ​. For tiles in the followingrid[0]g   

k - 1 ​boards of ​grid​, we represent each as the Boolean constant , ​where​ turn p turn, row, col  

represents the number of moves already made and ​row ​ and ​col​ represents the tile’s position 

within its board. For example, we represent the tile (0,2) on a board after one move with the 

constant 2​. Or, in technical terms, ​turn ​ denotes the position of a board within the ​grid p 1, 0, 2  

array such that a board representing one move made is the board at ​grid​[1]. We will represent 

every tile in ​move​ with a similar method, except we represent each tile in the board ​move​[0] as 

the constant  ​instead of ​false​. m 0, row, col   

Constraints 

Our encoding involves four constraints. First, for each move, we must keep track of the 

adjacent tiles that change states as a result of a move. To demonstrate, if we click tile (0,0) on the 

initial board-state, then the adjacent tiles (0,1) and (1,0) also switch states. This example can be 

alternatively expressed as: 

 ( p  =  )  p =  ))m 0,0,0 ⇒ ( 1,0,1 / p 0,0,1 ⋀ ( 1,1,0 / p 0,1,0  

2 In the actual implementation, this constant would be displayed as “p102”. The usage of subscript and commas is to 
increase the clarity of such representation. 
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However, instead of ≠, we use XOR to ensure that the state of the tile in the next turn is different 

from its current state. For example: 

  p p 1,0,0 ⊗  0,0,0  

Thus, to represent multiple tiles flipping at once as the result of a single move, simply AND the 

XOR expression of each flipped tile: 

.p  p ) p  p )( 0,0,0 ⊗  1,0,0 ⋀ ( 1,0,1 ⊗  0,0,1 ⋀ p  p )( 1,0,1 ⊗  0,0,1  

Second, to ensure that no other tiles changed states, for all tiles excluding (0,0), (0,1), and 

(1,0), equate the current and next states of the tiles: 

 )  ) ..(p1,1,1 ⇔ p 0,1,1 ⋀ (p1,1,2 ⇔ p 0,1,2 ⋀ .  

Then, AND the two above constraints such that the resulting expression represents all tiles on the 

board. For example, clicking tile (0,0) on a board will result in the below constraint:2 × 2  

 p  p ) p  p ) p  p )  ).m 0,0,0 ⇒ ( 0,0,0 ⊗  1,0,0 ⋀ ( 1,0,1 ⊗  0,0,1 ⋀ ( 1,0,1 ⊗  0,0,1 ⋀ (p1,1,1 ⇔ p 0,1,1  

Note that the number of adjacent tiles differs depending on the position of the ​move ​tile, so 

distinguishing the constraints for corner and edge tiles from center tiles are necessary.  

Third, we will only allow one move per turn by XOR-ing each move such that only allow 

one board in the ​move ​ array is true for each turn: 

,     m 0,0,0 ⊗ m 0,0,1 ⊗ m 0,1,0 ⊗ m 0,1,1  

and so on for all other turns until after turn ​k​. We will discuss the fourth constraint in the 

following section. 

SAT Solver and Evaluation 

Once we provide the Z3 Solver our constructed constraints for all possible games of ​k 

moves, we apply our fourth constraint which finds a winning solution grid[i], where ​i ​is any valid 
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index of ​grid, ​ such that all tiles in its ​k​-th board-state are true. If this constraint is not satisfiable, 

our Lights Out solver will output the failing message stated in ​Objectives and Outputs ​. 

Otherwise, our implementation will access the combination of ​move​ tile values returned by Z3 

and count the number of times each tile evaluates to ​true ​. The program then assigns values to all 

spots in a 2D array  such that the given values denote the winning set of moves theesult[n][n]r  

user must play to win the game. Each tile will assume the value 1 if its respective ​move ​tile 

evaluates to ​true​ an odd number of times and 0 otherwise. To solve the game themselves, the 

user may click on all tiles in a game, in no particular order, whose respective location in the 

result ​ array contains a 1. 

IV. Conclusion 

In this paper, we have discussed our successful implementation of solving the Lights Out 

game using the Z3 SAT Solver Java library. We revealed that our program takes in two inputs, ​n 

representing the dimension of a square game-board, and ​k ​representing the number of moves in 

which to win the game. Our program then generates constraints that it provides to the Z3 Solver 

to evaluate and determine a winning solution to the user-defined game. According to our 

pre-defined measure of success stated in ​Introduction ​, we were successful in our project. Our 

implementation outputs the correct solution for the provided number of turns, as supported by 

solutions provided by other Lights Out solvers (Liste).  

However, our project parameterized the game using the number of moves in which to 

solve the game, which we chose to do to simplify the problem and allow us to complete the 

project by the deadline. Furthermore, our implementation has a time complexity of (n )O 2 × k  

such that, for all ​k​ > ​n ​,  our implementation becomes less efficient than traditional Lights Out 

solvers that run in time  Lastly, for boards larger than 5 , the program’s feedback time(n ).O 3 × 5  
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exceeds 2 seconds regardless of the input for ​k ​. Therefore, future improvements upon our 

program would focus on increasing efficiency and eliminating the ​k​ parameter to output the 

optimal minimal solution.​ ​As previously stated, our encoding should be one of the first 

developed specifically for Lights Out. While we don’t believe the results of this paper pose any 

implications for unsolved SAT problems involved in research, our results support the idea that 

amateur SAT enthusiasts of any level can encode almost any polynomial-time decision problems 

in the world with reference to existing encodings.  
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