Magnetic Tower of Hano1 in ACL2
|

Northeastern University, Boston, MA



Introduction

Similar to Latin Square puzzles, which were the focus of our previous project, the Tower
of Hanoi puzzle is an easy to understand mathematical game that has a rich logical and
algorithmic underpinning. The Tower of Hanoi puzzle works in the following way: there are
three rods, and a given number of disks are initially stacked on one of the rods. The disks are
stacked in such a way that each disk is smaller than the disks below it. The goal of the game is to
move the stack of disks from the starting peg to one of the other two pegs while maintaining the
mnvariant that no disk is placed on top of a disk that is larger than it.

As has been proven before, the Tower of Hanoi puzzle is solvable for any number of
disks, n, in 2" — 1 moves (Leighton 1-6). Additionally, the algorithm to solve the Tower of Hanoi
puzzle has been implemented in ACL2 with an associated proof that the puzzle can be solved in
2" — 1 moves (Young)

However, like Latin Square puzzles, there are variations of the Tower of Hanoi puzzle
that introduce additional restraints and complexities One such variation is called the Magnetic
Tower of Hanoi puzzle that was coined by Uri Levy in 2010. As the name suggests, each disk in
the Magnetic Tower of Hano1 puzzle is magnetic and thus has a north and south pole. Like the
traditional Tower of Hanoi puzzle, the Magnetic Tower of Hanoi puzzle starts off with a stack of
n disks on one of three pegs, with the constraint that no disk can be placed on a disk that is
smaller than it.

Additionally, in the Magnetic Tower of Hanoi puzzle, each disk must be flipped when it
1s moved, and the player has to ensure that no two south poles or two north poles are touching.
This is because if two south poles or two north poles were to face each other, the force of
magnetism would push the two disks away So, in addition to maintaining correct size order, the
Magnetic Tower of Hano1 puzzle must be solved while obeying the laws of magnetism

This project has a two-fold goal. The first goal is to implement a robust Magnetic Tower
of Hanoi algorithm in ACL2, and the second goal is to prove that the algorithm uses 3"7_1 moves,

which is the accepted lower bound on the number of moves needed to solve the Magnetic Tower
of Hanoi puzzle for » disks (Levy 1). The first goal of this project will be accomplished by using
a Magnetic Tower of Hanoi algorithm devised by Levy, and the second goal of this project will

be accomplished through a proof on the algorithm’s corresponding measure function.




Overall Structure

Our project consists of two sections the first being the code for the Magnetic Tower of
Hanoi solver which prints out all the moves needed to solve an » disk game, and the second
section comprising of our proof that our solution for the Magnetic Tower of Hanoi will use -’%‘L
moves. Our Magnetic Tower of Hanoi solver calls a function called solver which, by using a
boolean flag, recurs between two patterns to generate the solution for our puzzle. Solutions to
Magnetic Tower of Hanoi can consist of many different pairs or groups of patterns, but in our
solution, we will use the algorithms developed by Levy called “The RBB1000 / RRB1000
Optimal Algorithms” (Levy 12). These two algorithms involve multiple recursive calls to
themselves as well as to the other function to create the full solution for the puzzle. In our
program we denote the RBB1000 algorithm as the North South South pattern, and the RRB1000
algorithm as the North North South pattern Our overall Magnetic Tower of Hanoi1 function
begins with using the North-South-South pattern which we indicate by passing in 7 for the
boolean flag input. Then in the second section of our project, our goal is to prove that our solver

uses Lz‘l moves for the full solution.

Walkthrough

Our proof begins by creating a function called solver-moves which acts both as a measure
function for solver but also counts the number of move function calls. The function mirrors the
form of the solver function except instead of appending the recursive calls, we add the recursive
calls and replace the move call with a 1, which 1s added to the total number of calls Then our
goal 1s to create a theorem which shows that solver moves is equal to 3"7_'- for any given mput »
However when ACL2 attempts to prove this theorem, it requires a sub-lemmata to be proven.
That sub-lemmata that we want to prove is that solver-moves returns the same value for a given
n regardless of which boolean flag is given, meaning that whichever pattern is used, NSS or
NNS, the same amount of moves are used. With a theorem for this sub-lemmata created, our
overall theorem passes and we therefore have indirectly proved that our Magnetic Tower of

- n
Hano1 solver makes 371 moves.




Personal Progress

Throughout this project, we had two main sources of inspiration that paved the way for us
to implement and make proofs about the Magnetic Tower of Hanoi. The first source of
mspiration was Young’s implementation of a Tower of Hanoi algorithm in ACL2, and the second
source was Levy’s research and algorithms for the Magnetic Tower of Hanoi. With the work of
these two individuals under our belt, we sought to draw from their work to implement Levy’s
algorithm in ACL2.

Initially, we followed Levy’s Magnetic Tower of Hanoi algorithm very strictly,
line-by-line. In his algorithm, there exists two mutually recursive functions called RBB and
RRB, so we went ahead and used mutual recursion in ACL2 to implement Levy’s algorithm
using two functions called NSS and NNS, which are analogous to RBB and RRB Afterwards,
we ran some manual test cases, and all seemed to work fine However, when we attempted to
develop generalized theorems, we ran into a dilemma: since the two functions were defined in
terms of each other, we could not make a proof about one of the functions without making an
additional claim about its counterpart. As a result, our thms for NSS and NNS ended up being
several hundred characters long and were very difficult to understand and to debug.

Ultimately, to reduce the complexity of our thms, we chose an alternate approach that
combines the NSS and NNS functions into one function that has an additional boolean flag as a
variable. If the flag is true, then the NNS pattern is performed, otherwise the NSS pattern 1s
performed.

Switching to an all in one approach not only eased the process of debugging our code
and proving theorems, but it also reduced the overall number of proofs that we needed For
example, whereas we had individual measure functions for NSS and NNS, an all-in-one function
enables us to use a singular measure function, meaning that we need fewer theorems relating to

functions and their measures.




Conclusion

As a result of the work we have done thus far, there are a few corollaries that are closer to
being solved The main proof that our work advances is a proof for the correctness of the
Magnetic Tower of Hanoi algorithm that we used. Although we implemented Levy’s RBB1000 /
RRB1000 Optimal algorithm and tested how many moves it generates, we did not prove that the
moves it generates are the right moves. Ultimately, we did not choose to prove the correctness of
the algorithm because we felt it would be 700 big of an undertaking for this project. Nevertheless,
we think 1t would be an interesting next step.

In order to make the jump from our proof to a correctness proof, three lemmas are
needed. The first lemma would be a proof that our algorithm maintains the disk size invariant
(1.e. a larger disk cannot be placed on a smaller disk). The second lemma would be a proof that
our algorithm maintains the disk polarity invariant (1 e no repelling magnetic forces) Finally, the
third lemma would be a proof that our algorithm successfully moves the » disks from one peg to
another. With these three lemmas, it would be fair to make the claim that our algorithm
successfully solves the Magnetic Tower of Hanoi problem.

That being said, in this project we also made significant progress towards the correctness
proof by developing a refined implementation of Levy’s Magnetic Tower of Hanoi Algorithm as
well as by proving the number of steps the algorithm produces for a given number of disks ». In
the future, we hope that the work that we did in this project will serve as a baseline for future
explorers in the same way that Young’s Tower of Hanoi implementation in ACL2 and Levy’s

Magnetic Tower of Hanoi algorithm served as a baseline for us.



Works Cited

Leighton, Tom, and Ronitt Rubinfeld. “Recurrences 1.” Massachusetts Institute of Technology,
Massachusetts Institute of Technology, 24 Oct. 2006,
web mit edu/neboat/Public/6 042/recurrences] pdf

Young, Bill. “TUTORIAL1-TOWERS-OF-HANOL.” The University of Texas at Austin:
Computer Science, The University of Texas,
www.cs.utexas edu/users/moore/acl2/v6-1/TUTORIATL1-TOWERS-OF-HANOLhtml.

Levy, Uri “The Magnetic Tower of Hanoi and their Optimal Solutions ” ArXiv, Cornell
University, 5 Aug. 2010, https://arxiv.org/pdf/1011.3843 pdf.



Appendix

; Magnetic Tower of Hanoi Solver and Proof by: Dylan Huang and Sean Kelly
; Function to create a list describing
; a move made from peg 'x' to 'y'
(defun move (x y)
(declare (xargs guard t))
(list 'move 'from 'peg x 'to 'peg y))
#1
NOTE The 'start', 'inter', and 'dest' inputs for the following functions
act as tags for each of the three pegs, with the 'start' and 'dest' tagged pegs
indicating from where and to where we are moving the n amount of disks
| #
(set termination method measure)
(set well founded relation n<)
(set defunc typed undef nil)
(set defunc generalize contract thm nil)

(set gag mode nil)

#1

Looking at the recursive formula of solver, we create a measure function
solver-moves which mimics solver in form, and instead of appending the outputs,
adds the number of calls to move.

pattern - boolean flag to indicate which pattern is being used

start - tag for the starting peg

inter - tag for the intermediate peg

dest - tag for the destination peg

n - number of total disk that all begin

stacked on the starting peg
| #
(defun solver-moves (pattern start inter dest n)
(declare (irrelevant start inter dest))
(if (zp n)
0
(if pattern
(+ (solver-moves pattern start dest inter (1- n))
1
(solver-moves (not pattern) inter dest start (1- n))
(solver-moves pattern start inter dest (1- n)))
(+ (solver-moves pattern start inter dest (1- n))
(solver-moves (not pattern) dest start inter (1- n))
1

(solver-moves pattern inter start dest (1- n))))))



#1

For our solver, when (equal pattern t) refers to the North-South-South Pattern

and the (equal pattern nil) refers to the North-North-South Pattern.

pattern
start -
inter -
dest -

n —

I #

- boolean flag to indicate which pattern is being used
tag for the starting peg

tag for the intermediate peg

tag for the destination peg

number of total disk that all begin

stacked on the starting peg

(defun solver (pattern start inter dest n)

(declare (xargs :measure (solver-moves pattern start inter dest n)

(if (zp n)

nil

:guard (natp n)))

(if pattern

(append (solver pattern start dest inter (1- n))

(cons (move start dest)
(append (solver (not pattern) inter dest start (1- n))

(solver pattern start inter dest (1- n)))))

(append (solver pattern start inter dest (1- n))

#1

(append (solver (not pattern) dest start inter (1- n))
(cons (move start dest)

(solver pattern inter start dest (1- n))))))))

Main function to solve a MToH puzzle

start tag for the starting peg

inter tag for the intermediate peg

dest tag for the destination peg

n number of total disks that all begin

stacked on the starting peg

| #

(defun mtoh (start inter dest n)

(if (zp n)

nil

(solver t start inter dest n)))



#1

Number of moves for n amount of disks:

1
2
3
4
5
n

disk

disks
disks
disks
disks
disks

| #

r

r

r

1

370
4 : 371 + 1

13 : 372 + 3”1 + 370
40 : 373 + 3"2 + 371 + 370
121 : 374 + 373 + 372 + 371 + 370

(3*n - 1)/2

Proves that starting at either pattern will result in the same number of moves

alo proves that there is no difference in the number of moves whether you

use the NSS or NNS pattern.

(defthm solver—-moves-equal

(defthm num moves solver

(implies (natp n)

Proves that our solver moves method returns (3”n

(equal (solver-moves t 'a 'a 'a n)

(solver-moves nil 'a 'a 'a n))))

(implies (natp n)

(equal (solver moves t 'a 'a 'a n)

(/ (1

(expt 3 n)) 2))))

1) / 2 moves for n starting disks





