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Pascal’s Triangle in ACL2s

Introduction

In this project, we are working with theorems and proofs surrounding Pascal’s triangle in
ACL2s. Pascal’s triangle consists of rows of numbers, where the first row has a length of one,
and each subsequent row in the triangle has one more number than the previous row, thus
forming a triangular shape, as shown in figure 1 below. The values in each row begin and end
with 1 Each nth value of a row is the sum of the nth and (n 1)th value of the previous row

We have two functions that generate Pascal’s triangle with » rows: one that uses an
accumulator and one that is purely recursive. Using ACL2s, we prove two properties of Pascal’s
triangle and the relationship between the two functions Firstly, we show that the second diagonal
of Pascal’s triangle represents the counting number sequence. Secondly, we verify that the result
of the function is always in a triangle shape -- each row one longer than the previous starting
from 1. The last theorem proves that both the purely recursive and accumulator versions of the
function are equivalent
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Figure 1 - Example of Pascal’s triangle with 8 rows

Overall Structure

We do not use any special data structures for these proofs — Pascal’s triangle is
represented as a /lon where each row is its own /on (list of nats). In our representation of Pascal’s
triangle, the list is ordered such that the bottom-most, or newest or longest, rows are first in the
list. The only other special ACL2s features we use are in the second theorem, where we use hints
to force ACL2s to use a certain lemma to prove a subgoal in another lemma. There are two main
functions that create Pascal’s triangle with n rows with the signature nat — /lon One is purely

recursive, called _ and the other, _has the same signature but



wraps an accumulator helper Both these functions also utilize the functions with
signature //on — lon which gets the next row of a given triangle, and with signature
lon — Ion that creates the next row of a given triangle given the previous row. The structure of

the purely recursive and accumulator functions are similar to that of the fibonacci functions from
Homework 10.

Walkthrough 1: Second Diagonal

The second diagonal of a Pascal’s triangle, or by our definition, the second value of every row, is
the counting sequence. The second value of the nth row in the triangle is equivalent to n-1 for all
rows except the first, as shown by the first theorem
(defthm second-diagonal
(implies (and (natpn) ( n 0))
(equal (nth 1 (car (pascal triangle (1+ n)))) n))) (Thm 1)

Since each value in Pascal’s triangle is a sum of two values from the previous row, we first
proved a - that the second value in a row is specifically the sum of the first and second
values from the row below. Since the first value in each row is always 1 by definition of the
new-row function, ACL2s can prove this lemma by induction.

Walkthrough 2: Triangle Shape

Pascal’s triangles are always in a format such that the last row in the list 1s length 1, and each
successive tow 1s one element longer, which is the property proven in our second theorem. We
wrote a function that checks for the triangular shape of a given /lon,_ and use this
function in the second theorem

(defthm triangle is triangle
(implies (natp n) (is-pascal-shape (pascal-triangle n)))) (Thm. 2)

For ACL2s to accept this theorem, we first prove two lemmas: one to show that the longest row
mn a Pascal’s triangle is equal to the number of rows in the triangle as a whole ) and
another regarding the length of the row-helper output which was needed for a subgoal of that
lemma (-). This theorem holds true for a Pascal’s triangle of any size, including if

mput 7 1s zero

Walkthrough 3: equal-pascal with Accumulator

For this theorem, we prove that pascal-triangle and pascal-triangle-acc are equivalent:
(defthm equal-pascal
(implies (natp n)
(equal (pascal triangle n) (pascal triangle acc n)))) (Thm 3)



The definition of pascal triangle acc, accumulator wrapper function, is simply a call to the
actual function whose signature includes the accumulator, which stores the triangle created so
far: _ Thus, in order to prove this theorem, we must first prove that
pascal triangle is also equivalent to pascal triangle acc h

(equal (pascal triangle n) (pascal triangle acc hn “())) (Lemma 3 17)

In pascal-triangle-acc-h, the accumulator stores the rows of the triangle that have been built
already, while the parameter » serves as a counter for how many more rows to add to the
accumulator Therefore, to build a triangle with » rows, if there are ¢ rows left to add, then the
accumulator 1s a pascal triangle of n - ¢ rows. A generalized lemma of Lemma 3.1 is needed to
relate the accumulator to pascal-triangle:
(defthm equal-pascal-acc
(implies (and (natp n) (natp ¢) (>=nc))
(equal (pascal-triangle n)
(pascal-triangle-acc-h ¢ (pascal-triangle (- n ¢)))))) (Lemma 3.1)

After accepting Lemma 3.1, Thm 3 is also successfully proved by ACL2s.

Personal Progress

After proving the third theorem for equivalency between the recursive and accumulator
functions, we initially attempted to prove the property of the third diagonal in Pascal’s triangle as
a triangular sequence. This ultimately was quite difficult to do (the remnants of these attempts
are i the commit history), but in the process, we were able to prove the properties shown by the
first and second theorems instead Throughout the process of trying to prove a theorem, we tried
to come up with different lemmas based on the output of a failed proof attempt by ACL2s. These
outputs were often very verbose, and since our functions for creating Pascal’s triangle required
many helper functions, and in cases of checking some nth value in the triangle, some of the
lemmas we tried were complex, with many car and cdr calls. Sometimes, we misinterpreted
these complex statements and spent time trying to prove something that was actually untrue
before realizing the error.

In other cases, we would encounter roadblocks in proving theorems due to the structure
of the functions we had written. For instance, our first iteration of the is-pascal-shape function
called a helper function with a counter argument that made it difficult for ACL2s to prove Thm
2 We had to take a step back from trying different lemmas and rewrite the function instead as the
solution to ACL2s accepting the theorem.

Conclusion and Next Steps

This project topic came from a discussion following Homework 10 with Fibonacci
numbers We wanted to work with an interesting mathematical concept and prove properties



related to that concept, settling on Pascal’s triangle The theorems we proved certify different
properties of the triangular shape and values of Pascal’s triangle and compare the equivalency of
accumulator and non accumulator versions of the same function.

Our proofs for the property relating to the second diagonal of Pascal’s triangle and the
associated relation about the values in a row as a sum of other values could serve as the basis for
a future theorem relating the third diagonal to a triangular sequence in ACL2s. The third
diagonal of Pascal’s triangle comes partially from summing values in the second diagonal, so
having a theorem for the values of the second diagonal would be useful in proving the third



Appendix- ACL2s file

(set gag mode nil)
tbrr t

#1

Pascal's triangle is a symmetric triangle of nats, where each subsequent

row of the triangle has a length of one longer than the row below it Each row
starts and ends with a 1, and each value in the triangle is the sum of the two
numbers below it, as described here:
https://www.mathsisfun.com/pascals-triangle.html

In our representation, Pascal's triangle is represented as a list of list of
nats,

for instance: (pascal-triangle 4) => ((1 3 3 1) (1 2 1) (1 1) (1))

| #

(defdata lon (listof nat))
(defdata llon (listof 1lon))

Jiiiiiiiiiiiiiiiiiiiiiiiiiii: PASCAL'S TRIANGLE ;:iiiiiiiiiiiiiiiiiiiisiiiiis

;7 Helper for new-row. Generates the next row of a pascal's triangle given the
previous row,
;7 without the leading 1. Each value is the sum of the the two values "below"
it in the previous row
(definec row-helper (prev-row :lon) :lon
(cond ((endp prev-row) nil)
((endp (cdr prev-row)) '(1l))
(t (cons (+ (car prev row) (cadr prev row))
(row-helper (cdr prev-row))))))

;7 Creates the next row of pascal's triangle given the triangle so far, where
the row starts
;7 and ends with 1s, and each value is the sum of the the two values "below"
it in the previous row
(definec new-row (triangle-list :1lon) :lon

(cons 1 (row-helper (car triangle-list))))

;77 Creates a Pascal's triangle with n rows as a list, where each element is a
list
;7 representing the numbers in one row of the triangle. The first item is the
;7 bottom most (longest) row of the triangle
(definec pascal triangle (n nat) 1llon
(cond ((zp n) '())
(t (let ((rest-triangle (pascal-triangle (- n 1))))
(cons (new-row rest-triangle) rest-triangle)))))

(check= (row-helper "(1 3 3 1)) '"(4 6 4 1))

(check= (row-helper '(1)) '(1))

(check (new row ' ((1 1) (1 1) (1 1) (1))) "(1L 4 6 4 1))
(check (new row "((1))) '"(1 1))

(check= (pascal-triangle 0) '())
(check= (pascal-triangle 1) '((1)))



(check (pascal triangle ) '((1 1) (1)))
(check= (pascal-triangle 5) "((1 4 6 4 1) (1 3 3 1) (12 1) (1 1) (1))

piiiiiiiiiiiiiiiiiiiis: PASCAL'S TRIANGLE WITH ACCUMULATOR ;i;iiiiiiiiiiiiiii

(definec pascal-triangle-acc-h (n :nat acc :1lon) :1lon
(if (zp n)
acc
(pascal triangle acc h ( n 1) (cons (new row acc) acc))))

;77 Creates a Pascal's triangle with n rows as a list, where each element is a
list
;7 representing the numbers in one row of the triangle The first item is the
;7 bottom most (longest) row of the triangle
;7 Is equivalent to pascal-triangle, but uses an accumulator
(definec pascal-triangle-acc (n :nat) :1lon

(pascal-triangle-acc-h n '()))

(check= (pascal-triangle-acc 0) '())
((1)))

(check= (pascal-triangle-acc 1) '
(check= (pascal-triangle-acc 2) '((1 1) (1)))
(check (pascal triangle acc 5) '"((1 4 6 4 1) (1 1) (1 1) (1 1) (1)))

(check= (pascal-triangle-acc 6) (pascal-triangle 6))

siiiiiiisiiiiiiisiiiiiisisiir: THEOREM: SECOND DIAGONAL ;iiiiiiiiiiiiiiiiciisiiiiiyd
#1

The second diagonal of pascal's triangle is the counting number sequence.
Specifically in per this data definition, the second element of each row will
decrease by 1

and therefore, the second element of each nth row is the value n 1

Only triangles with at least 2 rows will have a second diagonal.

(defthm second-diagonal
(implies (and (natp n) (> n 0))
(equal (nth 1 (car (pascal triangle (1+ n)))) n)))
| #

;77 Lemma 1.1: prove that the second element in a row of Pascal's triangle is
(defthm second diagonal sum
(implies (and (natp n) (> n 0))
(equal (cadar (pascal-triangle (1+ n)))
(+ (cadar (pascal-triangle n))
(caar (pascal-triangle n))))))

;7 Thm 1: the second value in each row of a pascal's triangle is one less than
;7 the row number it is in (there is no second diagonal for row 1)
(defthm second-diagonal
(implies (and (natp n) ( n 0))
(equal (nth 1 (car (pascal-triangle (1+ n)))) n)))

siiiiiiisiiiiiiisiiiiriss: THEOREM TRIANGLE SHAPE ;iiiiiiiiiiiiiciiiiiiiiiiiiiiyd
;7 Determines whether the given llon is in the shape of a triangle--



;7 each element in the list (each row) has length one longer then the next
element
;7 ending at length 0
(definec is-pascal-shape (tri :1lon) :bool
(cond ((endp tri) (equal (llen (car tri)) 0))
(t (and (equal (llen (car tri)) (llen tri)) (is pascal shape (cdr
tri))))))

(check= (is-pascal-shape (pascal-triangle 0)) t)
(check (is pascal shape (pascal triangle 4)) t)
(check= (is-pascal-shape "((1 4 1) (1 3 3 1) (1))) nil)

77 Lemma 2.1: the row-helper function returns a row of the same length as the
input
(defthm row helper len
(implies (lonp 1)
(equal (llen (row-helper 1))
(1len 1))))

;77 Lemma 2.2: the length of the longest row in a triangle is the same as the
number of
;7 rows in the triangle

(thm

(implies (natp n)

(let ((tri (pascal-triangle n)))
(equal (llen (car tri)) (llen tri))))
thints (("Subgoal *1.1/5" :use row-helper-len)))

;7 Thm 2: a pascal triangle is always in triangle shape
(defthm triangle-is-triangle
(implies (natp n)
(is pascal shape (pascal triangle n))))

iiiiiiiiiiiiiiiiiiiss: THEOREM: PASCAL VS ACCUMULATOR ;iiiiiiiiiiiiiiiiiiiiiii
#1

THEOREM: two functions that generate Pascal's triangle, one purely recursive
and one

using an accumulator, are equivalent.

(defthm equal-pascal
(implies (natp n)
(equal (pascal-triangle n) (pascal-triangle-acc n))))
| #

;77 Lemma 3.1: Relating the accumulator to the recursive pascal triangle
function
(defthm equal-pascal-acc
(implies (and (natp n) (natp c) ( n c))
(equal (pascal-triangle n) (pascal-triangle-acc-h c
(pascal-triangle (- n c))))))

;7 Thm 3: equal-pascal as described above
(defthm equal pascal
(implies (natp n)
(equal (pascal-triangle n) (pascal-triangle-acc n))))





