
Skeletal Division SAT Solver 1

Skeletal Division Satisfiability Solver

CS2800: Logic and Computation

Prof. Jason Hemann

November 9, 2020

Skeletal Division SAT Solver 2

Abstract

This paper focuses on the encoding of a SAT solver for cryptarithmetic skeletal division puzzles.

We show how the solution to any given skeletal division puzzle can be represented by a

conjunction of propositional logic constraints. By considering a vast sample of skeletal division

puzzles, we write a program implementing a Z3 SAT solver in Python. We demonstrate how

arithmetic and domain constraints can be generalized for all possible problems. Ultimately, we

produce a satisfiability solver capable of solving any skeletal division puzzle if adequate time is

allotted to it.

Skeletal Division SAT Solver 4

General Problem Area

Background

Verbal Arithmetic (aka. Cryptarithmetic) puzzles are types of math games consisting of a

mathematical equation whose digits are represented by letters. These types of puzzles frequently

appear in recreational math books and are often used as exercises for teaching algebra in an

introductory capacity. There are a few variations on this puzzle, but the most common type is

alphametic; in an alphametic puzzle, there is a set of words with a simple mathematical operation

applied to them, usually addition. Each unique letter represents a decimal digit and there are no

leading zeros. The game dates to the late 19th century [2], but the most common example,

Figure 1, dates to 1924.

Figure 1: Oldest examples of a cryptarithm alphametic puzzle

The type of cryptarithmetic puzzle represented by Figure 1 has often been the study of

computer scientists since the puzzles provide a good example of brute force and backtracking

algorithms. Alphametic cryptarithms have also been studied within SAT since they can be

modeled as constraint satisfaction problems. Using modulo arithmetic, the puzzle can be written

as a series of equations using the sums in each digit place [1]. When the puzzle is solved in base

10, the number of possible solutions is limited to 10! / (10-L)! for L distinct letters less than or

equal to 10. This limit holds under the assumption that no two distinct letters represent the same

integer. However, in his paper on the NP-completeness of Cryptarithms, David Eppstein found

Skeletal Division SAT Solver 5

that when the puzzle is expanded to be in an arbitrary base determined by the constraints of the

equation, the problem quickly becomes NP-complete [3].

Rather than focusing on alphametic cryptarithms, this paper focuses on another, less

popular, variation of Cryptarithmetic puzzles called skeletal division. Instead of posing the

puzzle as a set of words with a mathematical operation applied, each letter in the puzzle

represents a digit in a long division problem. Unlike alphametic cryptarithms, in skeletal division

unique letters are permitted to equal the same value. However, each letter can only correspond to

a single digit. In other words, every instance of a given letter must be equal. Consider the

division puzzle in Figure 2.

Figure 2: Original skeletal division example

Notice that every letter of the puzzle in Figure 2 is unique, but multiple letters can

correspond to the same digit. For instance, the solution to the example

(ABCDEFGHJKLMNPQRSTUV = 14975136512105987070), has the letters A, F, K, and M

equal to 1.

Since distinct letters do not necessarily have to correspond to unique digits, the letters are

often treated as place holders rather than variables. Furthermore, in some division puzzles the

Skeletal Division SAT Solver 6

letters are replaced with a single symbol to avoid possible confusion surrounding repeated digits.

A popular example of such a puzzle is Feynman’s Problem given by Figure 3.

Figure 3: Feynman’s Division Problem [8]

As seen in Figure 3, Feynman’s Problem replaces letter variables with periods. The only

letter not replaced was A, to indicate that the numbers at the locations of A were equivalent.

Approach

 Verbal Arithmetic is classified as a constraint SAT problem (CSP). In CSPs there is a set

of variables, Xi, each with a respective domain of values, Di, and a set of constraints C on the

variables [4]. In an alphametic cryptarithm, each letter in the puzzle is a variable, with its own

respective domain of 0-9 (or 1-9 if it is a leading digit) and a set of constraints based on the

modulo mathematical operations being applied to the digits.

Similar Problems

Other more well-known CSPs include the eight queens puzzle, the map coloring problem,

and sudoku with its multiple variants. The general approach to CSPs is to use constraint

Skeletal Division SAT Solver 7

programming to encode the problem into the set of variables, domains, and constraints, then pass

those into a combination of SAT and SMT solvers. The oversimplification of what the solver

does is loop through propagating values then guessing and backtracking if needed. When the

solution for a variable can be found using the constraint expressions and previously assigned

variables, the solver propagates that value and continues to check if any more can be found.

When the solver reaches a point where the next variable is unknown, it guesses for that value and

repeats attempting to propagate values. If an expression is reached where all the variables are

assigned and the Boolean expression is false, the solver backtracks to its last guess, changes it,

then repeats the process. The propagation of values is based on the heuristics of the problem

being solved. In the example of sudoku, the constraints would be that there are no repeated

numbers in a box, row, or column. Therefore, a heuristic to propagate values in a sudoku board

would be that if a box, row, or column has only one blank, the blank must be the one non

repeated digit.

Utilizing Modern SAT and SMT Solvers

 Since SAT solvers take a set of clauses in CNF, modeling arithmetic purely in SAT adds

a second layer of difficulty to the encoding of the skeletal division problems. Therefore, using a

modern SMT solver significantly simplifies the encoding process for skeletal division problems.

SMT solvers provide theories about arithmetic with bitwise operations, allowing the encoding to

take unbounded integers, real numbers, bit vectors, arrays and more [7].

 In this paper, the source code element utilizes z3, an open source SMT solver released by

Microsoft Research. Z3 is available in a variety of interfaces including C++, Java, and Python.

The source code is written using a Python wrapper for z3. By utilizing an SMT solver rather than

Skeletal Division SAT Solver 8

a purely SAT solver, the encoding for CSP problems can be written as a CNF of constraints on

natural numbers rather than having to encode the bitwise operation of Boolean values ourselves.

Contributions

Given the general roadmap previously presented, our contributions are as follows. We

present a novel encoding for the constraints of a lesser known variant of a previously studied

game. Taking into account the encoding of alphametic cryptarithms: we identify the unique

requirements of skeletal division puzzles, find an encoding to the constraints of all variables, and

utilize a modern SMT solver which takes the encoding and determines whether the puzzle is

satisfiability and returns the solutions if any exist.

Metric for Success

The metrics for success are based on whether the source code can take the example

skeletal division provided in Figure 2 and correctly identify the single valid solution.

Methodology

In order to encode the problem of skeletal division, it is important to understand the

encoding of alphametic cryptarithms. In alphametic cryptarithms, the variables in the expression

must first be identified, then domain of variables specified, and finally, constraints about the

problem must be written. The first two are straight forward. When given a cryptarithm, the

variables are the letters in the equation and their domains are the decimal digits (0-9). The

constraints on a cryptarithm can be found using the rule that there are no leading zeros and the

modulo arithmetic of the puzzle. In the example from Figure 1, SEND + MORE = MONEY,

since there are no leading 0’s, the domain of M and S are reduced to the digits 1-9. Then, using

modulo arithmetic, constraints for each place value in the addition problem can be written, i.e. D

Skeletal Division SAT Solver 9

+ E = Y % 10, N + R = E % 10, etc. and the final constraint is whether the original addition

problem also holds.

Encoding the Problem

The process to encode skeletal division cryptarithms follows similar steps as alphametic

cryptarithms but, given that the puzzle is not a simple addition problem like in alphametic

cryptarithms, the arithmetic constraints are drastically different. Ultimately, the skeletal division

problem can be constructed with a combination of domain and arithmetic constraints, but first,

the data of the inputted puzzle must be organized into usable data types. The elements of the

inputted string are added to a dictionary, words, along with each element of the inputted array.

From the elements in words, letters is defined. Letters is a dictionary of every distinct letter

present in the elements of words. For each value in words and letters the associated key is an

integer variable in Z3 of the same name as the value. In the case that the puzzle includes

predefined numbers, the key of each such number is set to the integer value of the number rather

than creating a new integer variable in Z3. In doing so, the predefined numbers are kept constant

throughout the solving processes. In contrast, the values of the integer variables are adjusted by

the solver with respect to the domain constraints.

Domain Constraints

Domain constraints dictate every variable’s range of possible values. Our program

contains three vital domain constraints: lettersToNum, wordsToNum, wordNotZero. The encoded

definition for lettersToNum is as follows,

lettersToNum = [And(0.0 <= v, v <= 9.0) for l,v in letters.items()]

The code above applies a constraint on the range of values a letter’s key can have. The

lettersToNum constraint restricts a letter’s value to an integer between zero and nine, inclusively.

Skeletal Division SAT Solver 10

For the example in Figure 2, the series of propositional logic statements that make up the

lettersToNum constraint is as follows:

[And(F >= 0, F <= 9),
 And(G >= 0, G <= 9),
 And(H >= 0, H <= 9),
 And(J >= 0, J <= 9),
 And(A >= 0, A <= 9),
 And(B >= 0, B <= 9),
 And(C >= 0, C <= 9),
 And(D >= 0, D <= 9),
 And(E >= 0, E <= 9),
 And(K >= 0, K <= 9),
 And(L >= 0, L <= 9),
 And(True, True),
 And(M >= 0, M <= 9),
 And(N >= 0, N <= 9),
 And(P >= 0, P <= 9),
 And(Q >= 0, Q <= 9),
 And(R >= 0, R <= 9),
 And(S >= 0, S <= 9),
 And(T >= 0, T <= 9),
 And(U >= 0, U <= 9),
 And(V >= 0, V <= 9),
 And(True, True)]

These propositional statements define the range of each unknown letter, A – V, and verify that the

predefined numbers, 0 and 6, also follow the constraint. Since all the domain constraints of the

variables are in CNF, if even one of the variables is set to a value outside its specified domain,

the entire clause returns false. This means a possible solution to the puzzle cannot hold unless all

the values for the variables are within their specified range.

The second constraint, wordsToNum, defines the domain of a word’s value.

wordsToNum = [v == Sum(*[letter_symbol * 10.0**index

 for index,letter_symbol in enumerate(

 reversed([letters[l] for l in list(w)]))])

 for w, v in words.items()]

Skeletal Division SAT Solver 11

The code for wordsToNum states that the value, or key, v, of each word in words must be

mathematically equivalent to the integer parsing of the corresponding integer variable. Once

again considering the example in Figure 2, the logic statements for wordsToNum are

 FGHJ == J*1 + H*10 + G*100 + F*1000,
 AB == B*1 + A*10,
 CD == D*1 + C*10,
 E == E*1,
 KL6 == 6 + L*10 + K*100,
 MNP == P*1 + N*10 + M*100,
 QR == R*1 + Q*10,
 ST == T*1 + S*10,
 UV == V*1 + U*10,
 0 == 0

The logical equivalence statements above demonstrate the application of base-10 convergence to

determine the necessary value of a given word. Additionally, as with lettersToNum, every

statement must hold true or the entire statement fails.

 Lastly, the constraint wordNotZero contributes to the word value domain with the

following code.

wordNotZero = [Or(And(Or(num == arr[len(arr)-1], num == remain), len(num) == 1),

 letters[num[0]] != 0) for num in words.keys()]

The constraint wordNotZero prevents all words from being set to a value with a leading zero

unless the word is the last element of the inputted array. The last word in the array of

intermediate can equal 0 because in a long division problem, if there is no remainder, the final

step will result in 0. The propositional logic statement present in the code for wordNotZero is

more complex then prior statements because of the nested operations. As such, it is easier to

understand by analyzing the equivalent statements for the example in Figure 2, which are,

 Or(And(Or(False, False), False), F != 0),
 Or(And(Or(False, False), False), A != 0),
 Or(And(Or(False, False), False), C != 0),
 Or(And(Or(False, True), True), E != 0),
 Or(And(Or(False, False), False), K != 0),
 Or(And(Or(False, False), False), M != 0),
 Or(And(Or(False, False), False), Q != 0),

Skeletal Division SAT Solver 12

 Or(And(Or(False, False), False), S != 0),
 Or(And(Or(False, False), False), U != 0),
 Or(And(Or(True, False), True), False)

The example above shows that wordNotZero sets restrictions on the first letter of a word which

in turn restricts the possible values of the word. Also, by considering the outermost OR, if the

first letter of the word does not equal zero, the statement is evaluated to true. On the other hand,

if the letter does equal zero, it must fit under the accepted list of exceptions for the statement to

evaluate as true. The exception cases are defined by the nested AND and OR operations. In

English, the letter must have a length of one and either be the remainder or the last value in the

array. This constraint along with lettersToNum and wordsToNum successfully control the possible

values of the integer variables in the Z3 solver.

Arithmetic Constraints

Arithmetic constraints define the initial puzzle as an algebraically equivalent series of

sound alphametic cryptarithms. For skeletal division, each puzzle has at least five unique

equational rules. These rules are formed by several sub-equations. The collection of sub-

equations is stored in the list equations which is ultimately used to define the constraint:

checkEquations = [(eval(equ, None, complete) == True) for equ in equations]

The checkEquations constraint contains the individual equations that must hold true for the

current problem. checkEquations in it of itself is conjunction of the equations in equations where

the evaluation of each equation must be true.

 The first category of equations checked by checkEquations place constrains on the value

of the remainder. If a remainder is present (a decimal is in the quotient) then, the value of the

word following the decimal must equal 10 to the power of the length of the word times the mod

of the dividend and divisor divided by the divisor. For example, the remainder equation for the

Skeletal Division SAT Solver 13

example in Figure 2 would be E == (10*(FGHJ%AB))/AB). In the case where a decimal is not

present in the quotient and thus there is no remainder, three different equations are defined. The

first states that the last element in the array must equal zero because if it were any value other

than zero, then the divisor would not go into the dividend evenly and there must be a remainder.

The second equation simply states that since there is no remainder, the mod of the dividend and

divisor must equal zero. The last equation verifies the soundness of the initial division problem

by checking an equivalent multiplication problem: divisor * quotient = dividend.

 The purpose of the second category of equations checked by checkEquations is to verify

the validity of the overall division problem. Simply, the one equation states that the dividend

divided by the divisor must equal the quotient. If a remainder is present, it removes the

remainder from both sides of the equation.

 The objective of the next set of equations is to dictate that the difference between the

divisor and first member of the array must equal the second member of the array. For Figure2 the

equation for this constraint is (FGHJ - FGHJ%1)/1 - KL6*10 == MNP. Notice that the equation is

not as simple as the equivalent step in long division is. The members of the array needed to be

adequately shifted along with the dividend. The process of determining a general equation for the

proper shift in terms of given data resolved to be very difficult. In fact, defining a general

equation to define each subtraction step in the long division proved particularly hard. In the end,

there was no single constant equation that could be uniformly applied to every possible input.

Instead, the following equations was written with the variables shift and powerOfTen adjusted

depending on the characteristics of the given puzzle.

equDiffBase = '((' + dividen + '-(' + dividen + '%pow(10,' + str(powOfTen) +

')))/pow(10,' + str(powOfTen) + '))-(' + arr[0] + '*' + str(shift) + ')==' + arr[1]

Skeletal Division SAT Solver 14

The powerOfTen in the equation above was determined by the difference between the length of

the first element in the array and the length of the divisor. The shift was determined by the

difference between the length of the dividend and the length of the quotient. Fortunately, this

equation is only used for the base case, dividend minus first element in the array. For the

subsequent cases of subtraction, the element in the array which represents the expected

difference is shortened to the necessary values rather than shifting the subtrahend and minuend.

To better understand the purpose of these equations, examine the example from Figure 2:

(MNP - QR == S),

(ST - UV == 0)

Notice from the equations that instead of applying modular arithmetic to shift the values of the

subtrahend and minuend, the difference is truncated to the necessary length.

 The final group of equations contained within the checkEquations constraint aim to

structure the relationship between the digits of the quotient and the divisor. Generally, the

product of a single digit in the quotient and the divisor must equal the corresponding long

division step. Therefore, in terms of Figure 2,

(C*AB == KL6),

(D*AB == QR),

(E*AB == UV)

The equations of the form above are relatively straight-forward in terms of their encoding and

derivation. With all the equations defined, the checkEquations constraint is asserted in the solver

along with the three domain constraints.

Skeletal Division SAT Solver 15

Results

As stated previously, our metric for success is based on whether the source code can take

the example skeletal division provided in Figure 2 and correctly identify the single valid

solution. Consequently, Figure 4 below displays the output of our source code when Figure 2

was inputted.

Figure 4: Source code output for the input from Figure 2

Figure 4 clearly shows that our source code successfully produces the solution. Additionally, the

program recognizes that there are no other valid solutions. From the results in Figure 4 along

with numerous subsequent tests, it can be concluded that the logic built into our code is effective

in computing a skeletal division problem. Given these results, our project was a success.

Summary

In conclusion, we were able to successfully encode the constraints of a skeletal division

problem. By examining the lesser known variant of cryptarithmic puzzles, we provided a novel

encoding to a problem not previously solved using Boolean SAT and SMT. Because skeletal

arithmetic is a constraint satisfaction problem, identifying the constraints of a skeletal division

allows the reader to gain a better understanding of constraint programming, which can be used to

tackle more difficult problems within SAT. There still remain open problems within SAT which

are posed as a series of decision problem. By understanding a simple, novel puzzle, this

Skeletal Division SAT Solver 16

understanding can hopefully be transferred forward into more difficult and non-trivial problems

in SAT.

Skeletal Division SAT Solver 17

References

[1] Cryptarithmetic Puzzles | OR-Tools | Google Developers. (n.d.). Retrieved November 10,

2020, from https://developers.google.com/optimization/cp/cryptarithmetic

[2] The American Agriculturalist. (2011). Retrieved November 10, 2020, from

https://archive.org/stream/americanagricult23unse

[3] Eppstein, D. (2000, June 8). On the NP-Completeness of Cryptarithms. Retrieved 2020, from

https://www.ics.uci.edu/~eppstein/pubs/Epp-SN-87.pdf

[4] Stuart Jonathan Russell; Peter Norvig (2010). Artificial Intelligence: A Modern Approach.

Prentice Hall. p. Chapter 6. ISBN 9780136042594.

[5] Smock, J. (Writer). (2016). A Peek Inside SAT Solvers [Video file]. Retrieved 2020, from

https://www.youtube.com/watch?v=d76e4hV1iJY&ab_channel=ClojureTV

[6] Baseel, C. (2020, February 14). Can you solve this crazy difficult, super satisfying math

puzzle from a Japanese middle schooler? Retrieved November 10, 2020, from

https://soranews24.com/2020/02/13/can-you-solve-this-crazy-difficult-super-satisfying-

math-puzzle-from-a-japanese-middle-schooler/

[7] Compose Conference (Producer). (2016). Analyzing Programs with Z3 [Video file].

Retrieved 2020, from https://www.youtube.com/watch?v=ruNFcH-

KibY&ab_channel=ComposeConference

[8] Feynman's Division Problem. (2014, August 16). Retrieved November 10, 2020, from

https://beyondmathsolutions.wordpress.com/2014/08/22/soln-feynmans-division-problem/

