
Mechanically Proving the Equivalence of Unzip

Functions

December 14, 2020

1 Introduction

An association-list (or alist) is a list in which each element is a pair; in ACL2s,
the recognizer alistp is implemented to check that each element of the list is
itself a cons. We give some alist examples below.

’((a . 1) (b . 2) (c . 3))

’((0) (0) (0))

’((a b c) (1 2 3) )

Given an alist, a natural operation is to split apart each of the pairs, sepa-
rating the car of each pair from the cdr and building up two separate lists, one
containing all of the cars and the other containing all of the cdrs. The termi-
nology we use to describe this operation is “unzipping” the alist. Unzipping the
alist examples from above results in:

’((a b c) . (1 2 3))

’((0 0 0) . (nil nil nil))

’((a 1) . ((b c) (2 3)))

Notice that taking the car of the unzipped list returns a list containing all
of the alist’s cars, whereas taking the cdr of the unzipped list returns a list
containing all of the alist’s cdrs. Implementing the unzip operation can be done
in a variety of ways. We have given two such implementations below:

; Given an association list, recursively splits the cars

; and cdrs of each pair and returns as a list.

(definec unzip-lists (al :alist) :tl

(cond

((endp al) (cons nil nil))

(t (let ((res (unzip-lists (cdr al))))

(cons (cons (car (car al)) (car res))

(cons (cdr (car al)) (cdr res)))))))

1



; Recursively accumulates the list of cars in acc1 and the list

; of cdrs in acc2.

(definec unzip-lists2-acc (al :alist acc1 :tl acc2 :tl) :tl

(cond

((endp al) (cons acc1 acc2))

(t (unzip-lists2-acc (cdr al)

(app2 acc1 (list (car (car al))))

(app2 acc2 (list (cdr (car al))))))))

; Starts the accumulators in unzip-lists2-acc as empty lists

(definec unzip-lists2 (al :alist) :tl

(unzip-lists2-acc al ’() ’()))

unzip-lists recursively walks down the alist and builds two parallel lists.
At each step, the function breaks apart the current pair of the alist and attaches
the two elements of the pair to the correct sub-list.

unzip-lists-2 also walks down the alist, but instead, builds two accumu-
lators, one to hold all of the cars, and one to hold all of the cdrs. For each pair
in the alist, the function will break it apart and append each element to the cor-
rect accumulator list. (In addition to the definitions above, we have separately
defined app2 to append two lists together. This implementation has been listed
in the Appendix).

Our goal is to prove the equivalence of unzip-lists and unzip-lists2.
The formal conjecture is:

Conjecture 1.

(implies (alistp a)

(equal (unzip-lists a) (unzip-lists2 a)))

2 Initial Proof Structure

As its definition suggests, the unzip operation can really be reduced to two
separate operations - collecting all of the cars of each pair into one list, and
the cdrs of each pair into another. These can be implemented as two functions
get-cars and get-cdrs. As their names suggest, (get-cars a) will return all
of the cars of each pair in the alist a, whereas (get-cdrs a) will return all of
the cdrs of each pair in the alist a.

Below are the initial recursive implementations of get-cars and get-cdrs.

; Recursively builds a list of all cars in the alist

(definec get-cars (a :alist) :tl

(cond

((endp a) nil)

(t (cons (car (car a)) (get-cars (cdr a))))))

; Recursively builds a list of all cdrs in the alist.

2



(definec get-cdrs (a :alist) :tl

(cond

((endp a) nil)

(t (cons (cdr (car a)) (get-cdrs (cdr a))))))

If we show that both unzip-lists and unzip-lists2 can be written in
terms of the stripped cars and cdrs (Lemmas 1 and 2), then it must be the case
that both versions are equivalent functions by the transitive property, thereby
proving Conjecture 1.

Lemma 1.

(implies (alistp a)

(equal (unzip-lists a)

(cons (get-cars a)

(get-cdrs a)))))

Lemma 2.

(implies (alistp a)

(equal (unzip-lists2 a)

(cons (get-cars a)

(get-cdrs a)))))

3 Proving Conjecture 1

ACL2s can automatically prove Lemma 1, owing to the similar recursive scheme
between unzip-lists, get-cars, and get-cdrs. However, it cannot automat-
ically prove Lemma 2.

Our revised strategy is to write new accumulator versions of get-cars and
get-cdrs that closely mirror the recursive scheme of unzip-lists2 and use
those when reasoning with unzip-lists2. Below are the implementations of
the new get-cars2 and get-cdrs2 functions.

; Accumulates a list of all cars in the alist

(definec get-cars2-acc (a :alist acc :tl) :tl

(cond

((endp a) acc)

(t (get-cars2-acc (cdr a) (app2 acc (list (car (car a))))))))

; Starts the accumulator in get-cars2-acc

(definec get-cars2 (a :alist) :tl

(get-cars2-acc a ’()))

; Accumulates a list of all cdrs in the alist.

(definec get-cdrs2-acc (a :alist acc :tl) :tl

(cond

((endp a) acc)

3



(t (get-cdrs2-acc (cdr a) (app2 acc (list (cdr (car a))))))))

; Starts the accumulator in get-cdrs2-acc

(definec get-cdrs2 (a :alist) :tl

(get-cdrs2-acc a ’()))

Using these new definitions, we can rewrite Lemma 2 as follows:

Lemma 2a.

(implies (alistp a)

(equal (unzip-lists2 a)

(cons (get-cars2 a)

(get-cdrs2 a)))))

Now, if we can prove that get-cars2 and get-cdrs2 are equivalent to their
non-accumulator counterparts, we can use Lemma 2a and Lemma 2 interchange-
ably. Thus, we want to be able to prove the following:

Lemma 3.

(implies (alistp a)

(equal (get-cars a) (get-cars2 a)))

Lemma 4.

(implies (alistp a)

(equal (get-cdrs a) (get-cdrs2 a)))

ACL2s cannot prove these on its own, so we must specify a general theorem
that relates the accumulator function get-cars2-acc to get-cars. To that
end, we introduce the following lemmas:

Lemma 5.

(implies (and (alistp a)

(tlp acc))

(equal (get-cars2-acc a acc) (app2 acc (get-cars a)))))

Lemma 6.

(implies (and (alistp a)

(tlp acc))

(equal (get-cdrs2-acc a acc) (app2 acc (get-cdrs a)))))

Knowing that get-cars2 and get-cdrs2 merely initialize their respective
accumulators as nil, it is clear by the substitution ((acc nil)) that
(app2 acc (get-cars a)) will return (get-cars a). Therefore, Lemmas 5
and 6 are sufficient to show that get-cars2 and get-cdrs2 are equivalent to
get-cars and get-cdrs, respectively. We confirm this in ACL2s; including
these two lemmas as defthms (which are automatically provable) sets up the
appropriate rewrite-rules that allow ACL2s to also prove Lemma 3 and Lemma
4.

4



We have shown that Lemma 2a and Lemma 2 are equivalent; all that remains
is to prove Lemma 2a itself, which ACL2s cannot do just yet.

Lemma 2a tries to relate unzip-lists2 to get-cars2 and get-cdrs2. How-
ever, unzip-lists2 only sets up an accumulator for the real work-horse func-
tion unzip-lists2-acc, which proves to be a challenge for ACL2s to reason
with. As is standard when reasoning about accumulators, we have to set up a
lemma that directly relates unzip-lists2-acc to get-cars2 and get-cdrs2,
as follows:

Lemma 7.

(implies (and (alistp a)

(tlp acc1)

(tlp acc2))

(equal (unzip-lists2-acc a acc1 acc2)

(cons (app2 acc1 (get-cars2 a))

(app2 acc2 (get-cdrs2 a))))))

ACL2s manages to automatically prove Lemma 7 with some help from the
rewrite-rules given by Lemmas 5 and 6, which allow statements of the form
(get-cars2-acc a acc) to be written as (app2 acc (get-cars a))).

The rewrite rule obtained from proving Lemma 7 allows ACL2s to prove
Lemma 2a under the substitutions ((acc1 nil) (acc2 nil)), completing the
final missing link of the proof. Since we have shown equivalence between
get-cars and get-cars2 (resp. cdrs) in Lemmas 3 and 4, we now can prove
Lemma 2.

With Lemmas 1 through 4, we show that unzip-lists and unzip-lists2

both reduce to get-cars and get-cdrs. From here, ACL2s can easily prove
Conjecture 1 and conclude that unzip-lists and unzip-lists2 are equivalent
functions.

4 Introducing Another Version of unzip-lists

For further enrichment, we used a similar strategy to show that the following
implementation of unzip is equivalent to the ones we already have.

; Accumulates caars and cdars in acc1 and acc2 respectively, but

; in reverse order

(definec unzip-lists3-acc (al :alist acc1 :tl acc2 :tl) :tl

(cond

((endp al) (cons (rev2 acc1) (rev2 acc2)))

(t (unzip-lists3-acc (cdr al)

(cons (car (car al)) acc1)

(cons (cdr (car al)) acc2)))))

; Calls the accumulator version of the function with empty

; accumulators

5



(definec unzip-lists3 (al :alist) :tl

(unzip-lists3-acc al nil nil))

This implementation intentionally accumulates the cars and cdrs of a given
alist in reverse order, but remedies this in the base case of the recursion by
calling rev2 on each of the accumulators to correct the ordering (see Appendix
for the implementation of rev2). The following conjecture is our new goal.

Conjecture 2.

(implies (alistp a)

(equal (unzip-lists a) (unzip-lists3 a)))

To adhere to the same strategy used to prove Conjecture 1, we want to show
that unzip-lists3 reduces to some form of get-cars and get-cdrs. Specifi-
cally, we will show that unzip-lists3 reduces to get-cars2 and get-cdrs2.

Lemma 8.

(implies (alistp a)

(equal (unzip-lists3 a)

(cons (get-cars2 a)

(get-cdrs2 a)))))

We can follow the same methodology as in Section 3 to define a new set of
get-cars and get-cdrs functions with the same recursive structure of unzip-lists3,
and reason about these new functions instead. The implementations of get-cars3
and get-cdrs3 are as follows:

; Accumulates all the caars of the alist in acc, but in reverse order

(definec get-cars3-acc (al :alist acc :tl) :tl

(cond

((endp al) (rev2 acc))

(t (get-cars3-acc (cdr al) (cons (car (car al)) acc)))))

; Calls get-cars3-acc with an empty accumulator

(definec get-cars3 (al :alist) :tl

(get-cars3-acc al ’()))

; Accumulates all the cdars of the alist in acc, but in reverse order

(definec get-cdrs3-acc (al :alist acc :tl) :tl

(cond

((endp al) (rev2 acc))

(t (get-cdrs3-acc (cdr al) (cons (cdr (car al)) acc)))))

; Calls get-cdrs3-acc with an empty accumulator

(definec get-cdrs3 (al :alist) :tl

(get-cdrs3-acc al ’()))

6



Proving the following sub-goals will therefore be sufficient to prove Lemma
8. If we can show Lemma 8, then Conjecture 2 trivially follows by our previous
work relating unzip-lists to get-cars2 and get-cdrs2.

Lemma 9.

(implies (alistp a)

(equal (unzip-lists3 a)

(cons (get-cars3 a)

(get-cdrs3 a)))))

Lemma 10.

(implies (alistp a)

(equal (get-cars3 a) (get-cars2 a))))

Lemma 11.

(implies (alistp a)

(equal (get-cdrs3 a) (get-cdrs2 a))))

We begin the proof by attempting to prove Lemmas 10 and 11. Since both
versions 2 and 3 of get-cars and get-cdrs rely on accumulator functions, the
first step is to set up a rewrite rule relating these accumulators (resp cdrs).

Lemma 12.

(implies (and (alistp a)

(tlp acc))

(equal (get-cars3-acc a (rev2 acc))

(get-cars2-acc a acc))))

Lemma 13.

(implies (and (alistp a)

(tlp acc))

(equal (get-cdrs3-acc a (rev2 acc))

(get-cdrs2-acc a acc)))

In Section 3, we set up the similar Lemmas 5 and 6 to get ACL2s to define
rewrite-rules relating get-cars and get-cars2. ACL2s proved Lemmas 5 and
6 without any additional assistance, but it could not do the same for Lemmas
12 and 13. After inspecting the failed proof attempts, we realized that including
a call to rev2 in the goal “distracted” ACL2s - it did not have any information
about rev2 and app2 outside of their definition and contract rules, and it got
stuck trying to prove statements about rev2 and app2 inside of the larger proof
structure.

To remedy this, we introduced the following lemma (inspired by one of the
HW proofs) to provide ACL2s with a catch-all rewrite-rule relating nested rev2

and app2 calls.

Lemma 14.

(implies (and (tlp a)

7



(tlp b))

(equal (rev2 (app2 a b)) (app2 (rev2 b) (rev2 a))))

With Lemma 14 in its back pocket, ACL2s has all it needs to prove Lemmas
12 and 13. From there, it can also show Lemmas 10 and 11 by the substitution
((acc nil)) into Lemmas 12 and 13.

Thus, all that is left is to show Lemma 9, which relates unzip-lists3 to
get-cars3 and get-cdrs3. As with Lemma 2a in Section 3, ACL2s can’t
directly show Lemma 9 on its own, so we can introduce another lemma to
relate the accumulator function unzip-lists3-acc with get-cars3 and get-cdrs3

instead.

Lemma 15.

(implies (and (alistp a)

(tlp acc1)

(tlp acc2))

(equal (unzip-lists3-acc a acc1 acc2)

(cons (app2 (rev2 acc1) (get-cars3 a))

(app2 (rev2 acc2) (get-cdrs3 a)))))

ACL2s can prove Lemma 15 without any further assistance, and it is clear by
the substitutions ((acc1 nil) (acc2 nil)) we can now prove Lemma 9 to ar-
rive at the conclusion that unzip-lists3 reduces to get-cars3 and get-cdrs3.

Since we have shown Lemmas 9, 10, and 11, ACL2s now has everything
it needs to prove Lemma 8. By our work in proving Conjecture 1, we know
that unzip-lists2 also reduces to get-cars2 and get-cdrs2 and thus can
prove Conjecture 2, showing that all three implementations of unzip-lists are
equivalent functions.

5 Personal Progress

Initially, we attempted to prove the equivalence of unzip-lists and unzip-lists2

outright, without resorting to the reduction to get-cars and get-cdrs. We im-
mediately recognized that we had to reason about unzip-lists2’s accumulator
rather than unzip-lists2 itself - a pretty standard approach when reasoning
about functions with accumulators and a strategy we had seen on other assign-
ments.

Naturally, one of the first things we attempted was to get ACL2s to relate
the unzip-lists function directly to unzip-lists2-acc, in a similar fashion
to how we related get-cars to get-cars2 in Lemmas 5 and 6. We mostly tried
to push the lemma through by brute force - when the proof inevitably got stuck
on some subgoal, we would make that subgoal into another lemma, try to push
the top-level lemma through again, and repeat the cycle. After a few hours of
this, it was clear we weren’t making much progress - we knew we had to relate
unzip-lists2-acc to unzip-lists somehow, but we didn’t have a set path to
get there.

8



We hypothesized that this initial failure stemmed from not giving ACL2s
the right tools to reason about the recursion in unzip-lists. Specifically, we
weren’t sure if ACL2s could recognize that (car (unzip-lists al)) returned
all the cars in the alist al (resp. cdrs). This fact is especially important to
the definition of unzip-lists, which relies on breaking apart the recursive call
to (unzip-lists (cdr al)) using the car and cdr destructors to access the
appropriate sub-lists.

At this point, we recognized that we could think of unzipping an alist as two
distinct operations - collecting all of the cars in the alist, and collecting all of
the cdrs - and reason about each operation separately. Using this realization,
we changed our proof structure, the idea being that if we could show that any
implementation of unzip-lists reduces to collecting the cars and collecting the
cdrs, then the unzip-lists implementations must be equivalent.

As a proof of concept, we defined get-cars and get-cdrs recursively (i.e.
without accumulators, so the recursive structure was similar to unzip-lists),
and asked ACL2s to prove the following:

(implies (alistp a)

(equal (unzip-lists a)

(cons (get-cars a)

(get-cdrs a)))))

In our overall proof, this statement became Lemma 1, and, as we mentioned
in Section 3, ACL2s proved it without any assistance. We also tried to prove
Lemma 2, which failed, but we defined new versions of get-cars and get-cdrs

which made reasoning about unzip-lists2 easier. The rest of the proof fol-
lowed as described in Section 3; after we redefined our overall proof strategy
to show how the unzip-lists versions we give all reduce to get-cars and
get-cdrs, the mechanics of the proof quickly fell into place.

Overall, we had one key breakthrough on the journey to successfully proving
Conjecture 1. We realized that unzip-lists could be redefined in terms of
get-cars and get-cdrs, which led to a fundamental shift in our overall proof
strategy. We used this strategy to prove Conjecture 2 as well, which involved a
more complicated implementation of unzip-lists.

6 Conclusion

In this paper, we introduced three distinct functions that can unzip the pairs
of a given alist. We proved equivalence between all three implementations by
expressing the fundamental behavior of unzip as the pairing of a list containing
all the cars of the alist with another containing all the cdrs.

For each unzip version, we wrote two functions, get-cars and get-cdrs, to
extract these car and cdr lists from the original alist, and we proved that all
versions of get-cars and get-cdrs were equivalent. Then, by proving that each
version of unzip could be reduced to the pairing of its corresponding versions

9



of get-cars and get-cdrs, we could prove that the two versions of unzip were
equivalent:

Conjecture 1.

(implies (alistp a)

(equal (unzip-lists a) (unzip-lists2 a)))

We applied this strategy to show that another implementation of unzip,
using rev2, was equivalent to the two original implementations. In other words,
we also showed the following alternate conjecture:

Conjecture 2.

(implies (alistp a)

(equal (unzip-lists a) (unzip-lists3 a)))

Many of the definitions and lemmas necessary to show Conjecture 2 had
parallels to the definitions and lemmas necessary to show Conjecture 1.

Since both of our proofs are based on abstracting the general unzip operation
as the pairing of two smaller operations, it also provides an intuitive explana-
tion for why these unzip versions are equivalent. Our proof does more than
just mechanically show that the different functions will always return the same
result; it shows that the functions are the same because they perform the same
fundamental tasks involved in unzipping an alist.

10



7 Appendix

7.1 Conjectures

Conjecture 1.

(thm (implies (alistp a)

(equal (unzip-lists a) (unzip-lists2 a))))

Conjecture 2.

(thm (implies (alistp a)

(equal (unzip-lists3 a) (unzip-lists a))))

7.2 Function Definitions

Definition app2

(definec app2 (x :tl y :tl) :tl

(if (endp x)

y

(cons (first x) (app2 (rest x) y))))

Definition rev2

(definec rev2 (x :tl) :tl

(if (endp x)

x

(app2 (rev2 (cdr x)) (list (car x)))))

Definition unzip-lists

(definec unzip-lists (al :alist) :tl

(cond

((endp al) (cons nil nil))

(t (let ((res (unzip-lists (cdr al))))

(cons (cons (car (car al)) (car res))

(cons (cdr (car al)) (cdr res)))))))

Definition unzip-lists2-acc

(definec unzip-lists2-acc (al :alist acc1 :tl acc2 :tl) :tl

(cond

((endp al) (cons acc1 acc2))

(t (unzip-lists2-acc (cdr al)

(app2 acc1 (list (car (car al))))

(app2 acc2 (list (cdr (car al))))))))

Definition unzip-lists2

(definec unzip-lists2 (al :alist) :tl

(unzip-lists2-acc al ’() ’()))

11



Definition unzip-lists3-acc

(definec unzip-lists3-acc (al :alist acc1 :tl acc2 :tl) :tl

(cond

((endp al) (cons (rev2 acc1) (rev2 acc2)))

(t (unzip-lists3-acc (cdr al)

(cons (car (car al)) acc1)

(cons (cdr (car al)) acc2)))))

Definition unzip-lists3

(definec unzip-lists3 (al :alist) :tl

(unzip-lists3-acc al nil nil))

Definition get-cars

(definec get-cars (a :alist) :tl

(cond

((endp a) nil)

(t (cons (car (car a)) (get-cars (cdr a))))))

Definition get-cars2-acc

(definec get-cars2-acc (a :alist acc :tl) :tl

(cond

((endp a) acc)

(t (get-cars2-acc (cdr a) (app2 acc (list (car (car a))))))))

Definition get-cars2

(definec get-cars2 (a :alist) :tl

(get-cars2-acc a ’()))

Definition get-cdrs

(definec get-cdrs (a :alist) :tl

(cond

((endp a) nil)

(t (cons (cdr (car a)) (get-cdrs (cdr a))))))

Definition get-cdrs2-acc

(definec get-cdrs2-acc (a :alist acc :tl) :tl

(cond

((endp a) acc)

(t (get-cdrs2-acc (cdr a) (app2 acc (list (cdr (car a))))))))

Definition get-cdrs2

(definec get-cdrs2 (a :alist) :tl

(get-cdrs2-acc a ’()))

Definition get-cars3-acc

(definec get-cars3-acc (al :alist acc :tl) :tl

12



(cond

((endp al) (rev2 acc))

(t (get-cars3-acc (cdr al) (cons (car (car al)) acc)))))

Definition get-cars3

(definec get-cars3 (al :alist) :tl

(get-cars3-acc al ’()))

Definition get-cdrs3-acc

(definec get-cdrs3-acc (al :alist acc :tl) :tl

(cond

((endp al) (rev2 acc))

(t (get-cdrs3-acc (cdr al) (cons (cdr (car al)) acc)))))

Definition get-cdrs3

(definec get-cdrs3 (al :alist) :tl

(get-cdrs3-acc al ’()))

7.3 Lemmata

Lemma 1.

(implies (alistp a)

(equal (unzip-lists a)

(cons (get-cars a)

(get-cdrs a)))))

Lemma 2.

(implies (alistp a)

(equal (unzip-lists2 a)

(cons (get-cars a)

(get-cdrs a)))))

Lemma 2a.

(implies (alistp a)

(equal (unzip-lists2 a)

(cons (get-cars2 a)

(get-cdrs2 a)))))

Lemma 3.

(implies (alistp a)

(equal (get-cars a) (get-cars2 a)))

Lemma 4.

(implies (alistp a)

(equal (get-cdrs a) (get-cdrs2 a)))

Lemma 5.

(implies (and (alistp a)

13



(tlp acc))

(equal (get-cars2-acc a acc) (app2 acc (get-cars a)))))

Lemma 6.

(implies (and (alistp a)

(tlp acc))

(equal (get-cdrs2-acc a acc) (app2 acc (get-cdrs a)))))

Lemma 7.

(implies (and (alistp a)

(tlp acc1)

(tlp acc2))

(equal (unzip-lists2-acc a acc1 acc2)

(cons (app2 acc1 (get-cars2 a))

(app2 acc2 (get-cdrs2 a))))))

Lemma 8.

(thm (implies (alistp a)

(equal (unzip-lists3 a)

(cons (get-cars2 a)

(get-cdrs2 a)))))

Lemma 9.

(implies (alistp a)

(equal (unzip-lists3 a)

(cons (get-cars3 a)

(get-cdrs3 a)))))

Lemma 10.

(implies (alistp a)

(equal (get-cars3 a) (get-cars2 a))))

Lemma 11.

(implies (alistp a)

(equal (get-cdrs3 a) (get-cdrs2 a))))

Lemma 12.

(implies (and (alistp a)

(tlp acc))

(equal (get-cars3-acc a (rev2 acc))

(get-cars2-acc a acc))))

Lemma 13.

(implies (and (alistp a)

(tlp acc))

14



(equal (get-cdrs3-acc a (rev2 acc))

(get-cdrs2-acc a acc)))

Lemma 14.

(implies (and (tlp a)

(tlp b))

(equal (rev2 (app2 a b)) (app2 (rev2 b) (rev2 a))))

Lemma 15.

(implies (and (alistp a)

(tlp acc1)

(tlp acc2))

(equal (unzip-lists3-acc a acc1 acc2)

(cons (app2 (rev2 acc1) (get-cars3 a))

(app2 (rev2 acc2) (get-cdrs3 a)))))

15




