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I want Prolog to help 
solve this problem!



What’s a Prolog?
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Commingled Syntax and Control 

• limits uptake to host languages with macros


• obscures simpler, intended interleaving behavior
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My Thesis

A wide class of miniKanren languages are syntactic extensions over 
a small kernel logic programming language with interrelated 
semantics parameterized by their constraint systems, and this 
characterization bolsters the development of useful tools and aids in 
solving important tasks with pure relational programming

a small kernel logic programming language
miniKanren languages are syntactic extensions

parameterized by their constraint systemssemantics
bolsters the development of useful tools and aids in

interrelated

solving important tasks
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(define (unify u v s)
  (cond
    ((eqv? u v) s)
    ((var? u) (ext-s u v s))
    ((var? v) (unify v u s))
    ((and (pair? u) (pair? v))
     (let ((s (unify (find (car u) s) (find (car v) s) s)))
       (and s (unify (find (cdr u) s) (find (cdr v) s) s))))
    (else #f)))

(define ((== u v) s/c)
  (let ((s (car s/c)))
    (let ((s (unify (find u s) (find v s) s)))
      (if s (list `(,s . ,(cdr s/c))) `()))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
  (cond
    ((null? $1) $2)
    ((promise? $1) (delay/name ($append $2 (force $1))))
    (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
  (cond
    ((null? $) `())
    ((promise? $) (delay/name ($append-map (force $) g)))
    (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define (var x) x)
(define (var? x) (number? x))

(define (find u s) 
  (let ((pr (and (var? u) (assv u s))))
    (if pr (find (cdr pr) s) u)))

(define (ext-s x u s)
  (cond
    ((occurs? x u s) #f) 
    (else `((,x . ,u) . ,s))))

(define (occurs? x u s)
  (cond
    ((var? u) (eqv? x u))
    ((pair? u) (or (occurs? x (find (car u) s) s)
                   (occurs? x (find (cdr u) s) s)))
    (else #f)))

(define ((call/fresh f) s/c)
  (let ((c (cdr s/c)))
    ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
  (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
  (cond
    ((null? $) '())
    ((and n (zero? (- n 1))) (list (car $)))
    (else (cons (car $) 
            (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g) 
  (take n (pull (g '(() . 0)))))
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  (cond
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    (else (append (f (car l)) (append-map (cdr l) f)))))

    (else (cons (car l1) (append (cdr l1) l2)))))

(define ((disj g1 g2) s/c) (append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) (append-map (g1 s/c) g2))
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(disj                             ) > (== ‘cat ‘cat)(nevero ‘cat) 

(nevero ‘cat) (== ‘cat ‘cat)>
(Rozplokhas et al. 2019)
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Interleaving DFS

Program’s Relations

Query

= Search Strategy 

DLS ’16, ICLP-DS ‘17
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Macros Functions+
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Over 150 implementations
in 50 languages

(see miniKanren.org)

http://miniKanren.org


(define (unify u v s)
  (cond
    ((eqv? u v) s)
    ((var? u) (ext-s u v s))
    ((var? v) (unify v u s))
    ((and (pair? u) (pair? v))
     (let ((s (unify (find (car u) s) (find (car v) s) s)))
       (and s (unify (find (cdr u) s) (find (cdr v) s) s))))
    (else #f)))

(define ((== u v) s/c)
  (let ((s (car s/c)))
    (let ((s (unify (find u s) (find v s) s)))
      (if s (list `(,s . ,(cdr s/c))) `()))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
  (cond
    ((null? $1) $2)
    ((promise? $1) (delay/name ($append $2 (force $1))))
    (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
  (cond
    ((null? $) `())
    ((promise? $) (delay/name ($append-map (force $) g)))
    (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define (var x) x)
(define (var? x) (number? x))

(define (find u s) 
  (let ((pr (and (var? u) (assv u s))))
    (if pr (find (cdr pr) s) u)))

(define (ext-s x u s)
  (cond
    ((occurs? x u s) #f) 
    (else `((,x . ,u) . ,s))))

(define (occurs? x u s)
  (cond
    ((var? u) (eqv? x u))
    ((pair? u) (or (occurs? x (find (car u) s) s)
                   (occurs? x (find (cdr u) s) s)))
    (else #f)))

(define ((call/fresh f) s/c)
  (let ((c (cdr s/c)))
    ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
  (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
  (cond
    ((null? $) '())
    ((and n (zero? (- n 1))) (list (car $)))
    (else (cons (car $) 
            (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g) 
  (take n (pull (g '(() . 0)))))

Equality Control



(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
  (cond
    ((null? $1) $2)
    ((promise? $1) (delay/name ($append $2 (force $1))))
    (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
  (cond
    ((null? $) `())
    ((promise? $) (delay/name ($append-map (force $) g)))
    (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((call/fresh f) s/c)
  (let ((c (cdr s/c)))
    ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
  (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
  (cond
    ((null? $) '())
    ((and n (zero? (- n 1))) (list (car $)))
    (else (cons (car $) 
            (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g) 
  (take n (pull (g '(() . 0)))))



• miniKanren, briefly 

•   

•  

• generalizing to constraints

•  

•  

• constraint system framework

•  


  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks



miniKanrens as Syntactic Extensions

macro extension

microKanren



(define-syntax conj+
  (syntax-rules ()
    ((_ g) g)
    ((_ g0 g ...) (conj g0 (conj+ g ...)))))

(define-syntax disj+
  (syntax-rules ()
    ((_ g) g)
    ((_ g0 g ...) (disj g0 (disj+ g ...)))))

(define-syntax-rule (conde (g0 g ...) (g0* g* ...) ...)
  (disj+ (conj+ g0 g ...) (conj+ g0* g* ...) ...))
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(define ($append $1 $2)
  (cond
    ((null? $1) $2)
    ((promise? $1) (delay/name ($append $2 (force $1))))
    (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
  (cond
    ((null? $) `())
    ((promise? $) (delay/name ($append-map (force $) g)))
    (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define (var x) x)
(define (var? x) (number? x))

(define (find u s) 
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  (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
  (cond
    ((null? $) '())
    ((and n (zero? (- n 1))) (list (car $)))
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(define ($append-map $ g)
  (cond
    ((null? $) `())
    ((promise? $) (delay/name ($append-map (force $) g)))
    (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define (var x) x)
(define (var? x) (number? x))

(define (find u s) 
  (let ((pr (and (var? u) (assv u s))))
    (if pr (find (cdr pr) s) u)))

(define (ext-s x u s)
  (cond
    ((occurs? x u s) #f) 
    (else `((,x . ,u) . ,s))))

(define (occurs? x u s)
  (cond
    ((var? u) (eqv? x u))
    ((pair? u) (or (occurs? x (find (car u) s) s)
                   (occurs? x (find (cdr u) s) s)))
    (else #f)))

(define ((call/fresh f) s/c)
  (let ((c (cdr s/c)))
    ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
  (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
  (cond
    ((null? $) '())
    ((and n (zero? (- n 1))) (list (car $)))
    (else (cons (car $) 
            (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g) 
  (take n (pull (g '(() . 0)))))

Equality Control



(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
  (cond
    ((null? $1) $2)
    ((promise? $1) (delay/name ($append $2 (force $1))))
    (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
  (cond
    ((null? $) `())
    ((promise? $) (delay/name ($append-map (force $) g)))
    (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((call/fresh f) s/c)
  (let ((c (cdr s/c)))
    ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
  (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
  (cond
    ((null? $) '())
    ((and n (zero? (- n 1))) (list (car $)))
    (else (cons (car $) 
            (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g) 
  (take n (pull (g '(() . 0)))))X Control
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(define	(listo	u		)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'listo	'(u		))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(==				u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'==				'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(=/=			u	v)	
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CLP Scheme & Constraint Systems X



• A signature Σ for the constraint domain


• The constraints, a class of FO Σ-formulas


• A Σ-theory, the constraints’ logical 
semantics 


• A Σ-structure, the constraints’ intended 
interpretation — algebraic semantics


• A function solve from constraints to {T,F,?} 
— operational semantics


• The theory, structure, and solver agree


• A bit more =, ρ, etc. 

CLP Scheme & Constraint Systems X



How Did We Fit In? (Restrictions)

• total solver


• symbolic constraints


• negative constraints


• n-independent
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Independence of Negative Constraints

{p₁,…,pₙ} ⊨ {q₁,…,qₘ} implies {p₁,…,pₙ} ⊨ qᵢ for some 1 < i ≤ m 

P constraints

Q negatable constraints




Independence of Negative Constraints
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CLP  Lang 
Framework
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Constraint 
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+
CLP  

Programmer
CLP   

Language
CLP   

Program
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Term Lang

Framework Design

Constraint Defns

Violation Conditions

+

Constraints

Solver

mK(X)

+

Implicit Equalities

~250 Lines of Code 
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Solving, Generally

1. Solve explicit equality constraints

2. Sequentially solve any implicit equalities

3. Check n-wise constraint violation conditions
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INTERPRETER
(RELATIONAL)
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(define-relation (not-in-envo x env)
  (conde
    [(== '() env)]
    [(fresh (y _ rest)
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       (not-in-envo x rest))]))



∈/ env
ρλ

ρ ⊢ λx.e ⇓ <λx.e in ρ>

(define-relation (not-in-envo x env)
  (conde
    [(== '() env)]
    [(fresh (y _ rest)
       (== `((,y ,_) . ,rest) env)
       (=/= y x)
       (not-in-envo x rest))]))



(define-relation (=/= n₁ n₂)
  (conde
    [(fresh (pn₂)
       (== n₂ `(s . ,pn₂))
       (== n₁ '()))]
    [(fresh (pn₁)
       (== n₁ `(s . ,pn₁))
       (== n₂ '()))]
    [(fresh (pn₁ pn₂)
       (== n₁ `(s . ,pn₁))
       (== n₂ `(s . ,pn₂))
       (=/= pn₁ pn₂))]))

(define-relation (not-in-envo x env)
  (conde
    [(== '() env)]
    [(fresh (y _ rest)
       (== `((,y ,_) . ,rest) env)
       (=/= y x)
       (not-in-envo x rest))]))



RELATIONAL SYLLOGISTIC LOGIC PROGRAMS

(define-relation (A φ Γ prf)
  (matche φ
    [(∀ ,a ,a) (== φ prf)]       
    [,x (membero x Γ)                  
     (== prf `(,x in-Γ))]    
    [(∀ ,n ,q)                   
     (fresh (p prf1 prf2)
       (== `((,prf1 ,prf2) => ,φ) prf)
       (A `(∀ ,n ,p) Γ prf1)
       (A `(∀ ,p ,q) Γ prf2))]))



RELATIONAL SYLLOGISTIC LOGIC PROGRAMS

(define-relation (A φ Γ prf)
  (matche φ
    [(∀ ,a ,a) (== φ prf)]                           Axiom
    [,x (membero x Γ)                                Lookup       
     (== prf `(,x in-Γ))]    
    [(∀ ,n ,q)                                      “Barbara” inference
     (fresh (p prf1 prf2)
       (== `((,prf1 ,prf2) => ,φ) prf)
       (A `(∀ ,n ,p) Γ prf1)
       (A `(∀ ,p ,q) Γ prf2))]))



(define-relation (un-atomo a)
  (fresh (sym)
    (symbolo sym)
    (== a `(-2 . ,sym))))

                                  

Still relying on primitives! 
Adding tags!
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Results
1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming 

3. A parameterized family of constraint miniKanren languages

4. Racket macro-generate these constraint mK language implementations 

5. Implementing constraint systems via macros

6. Introduce new constraints to miniKanren languages

7. miniKanren over microKanren



Thanks!

macro extension

Constraint microKanren

Domain 


