
Constraint microKanren in the CLP Scheme
Jason Hemann

Chair: Daniel Friedman
Committee: Amr Sabry

Sam Tobin-Hochstadt
Larry Moss 12-20-2019

I want Prolog to help
solve this problem!

What’s a Prolog?

“Kanren Approach”

“Kanren Approach”

“little” LP DSL

“Kanren Approach”

“little” LP DSL

pure

negation free

“Kanren Approach”

“little” LP DSL

pure

negation free

programmed in the completion

“Kanren Approach”

“little” LP DSL

pure

negation free

embedded implementation

shallowly embedded

via pure FP

programmed in the completion

“Kanren Approach”

“little” LP DSL

pure

negation free

embedded implementation

shallowly embedded

via pure FP

with an interleaving search

and additional constraints
programmed in the completion

“Kanren Approach”

“little” LP DSL

pure

negation free

embedded implementation

shallowly embedded

via pure FP

with an interleaving search

and additional constraints

(Elcock 1989)

(Robinson 1981)

(Van Emden & Kowalski 1976)

programmed in the completion
(Clark 1972)

(Robinson 1981)

(Felleisen 1985)

(Hinze 1998, Seres & Spivey 2001)

(Robinson 1981, Seres & Spivey 2001)

(Roussel 1972, Colmerauer 1982)

“Kanren Approach”

“little” LP DSL

pure

negation free

embedded implementation

shallowly embedded

via pure FP

with an interleaving search

and additional constraints

(Elcock 1989)

(Robinson 1981)

(Van Emden & Kowalski 1976)

programmed in the completion
(Clark 1972)

(Robinson 1981)

(Felleisen 1985)

(Hinze 1998, Seres & Spivey 2001)

(Robinson 1981, Seres & Spivey 2001)

(Roussel 1972, Colmerauer 1982)

Commingled Syntax and Control

• limits uptake to host languages with macros

• obscures simpler, intended interleaving behavior

Compounded by “Constraints”

• Describes maybe mK(X)—"Don't be so open minded …"

• Large implementations, unwieldy semantics

• No leveraging of scale or repetition

• Whither negation?

Compounded by “Constraints”

• Describes maybe mK(X)—"Don't be so open minded …"

• Large implementations, unwieldy semantics

• No leveraging of scale or repetition

• Whither negation?

unwieldy

unwieldy
complex

unwieldy
complex
fragile

unwieldy
complex
fragile
seriously slowing research

unwieldy
complex
fragile
seriously slowing research
obscures the basic ideas

My Thesis

A wide class of miniKanren languages are syntactic extensions over
a small kernel logic programming language with interrelated
semantics parameterized by their constraint systems, and this
characterization bolsters the development of useful tools and aids in
solving important tasks with pure relational programming

a small kernel logic programming language
miniKanren languages are syntactic extensions

parameterized by their constraint systemssemantics
bolsters the development of useful tools and aids in

interrelated

solving important tasks

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

Language Examples
Welcome	to	Racket	v7.4.	
>	

		(define-relation	(member	x	ls	o)	
				(fresh	(a	d)	
						(==	ls	`(,a	.	,d))	
						(conde	
								((==	x	a)	(==	ls	o))	
								((member	x	d	o)))))	
>	

Language Examples
Welcome	to	Racket	v7.4.	
>	

	

		(run*	(q)	(member	'x	'(a	x	c)	q))	
'((x	c))	
>	

		(define-relation	(member	x	ls	o)	
				(fresh	(a	d)	
						(==	ls	`(,a	.	,d))	
						(conde	
								((==	x	a)	(==	ls	o))	
								((member	x	d	o)))))	
>	

Language Examples
Welcome	to	Racket	v7.4.	
>	

	

		(run*	(q)	(member	q	'(a	x	c)	'(x	c)))	
'(x)	
>	

	

		(run*	(q)	(member	'x	'(a	x	c)	q))	
'((x	c))	
>	

		(define-relation	(member	x	ls	o)	
				(fresh	(a	d)	
						(==	ls	`(,a	.	,d))	
						(conde	
								((==	x	a)	(==	ls	o))	
								((member	x	d	o)))))	
>	

Language Examples
Welcome	to	Racket	v7.4.	
>	

HOST

`

HOST EDSL

HOST EDSL INTERPRETER

HOST EDSL INTERPRETER

INTERPRETER

INTERPRETER
(RELATIONAL)

INTERPRETER
(RELATIONAL)

INTERPRETER
(RELATIONAL)

 42

INTERPRETER
(RELATIONAL)

 42

INTERPRETER
(RELATIONAL)

 42

INTERPRETER
(RELATIONAL)

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

(define (unify u v s)
 (cond
 ((eqv? u v) s)
 ((var? u) (ext-s u v s))
 ((var? v) (unify v u s))
 ((and (pair? u) (pair? v))
 (let ((s (unify (find (car u) s) (find (car v) s) s)))
 (and s (unify (find (cdr u) s) (find (cdr v) s) s))))
 (else #f)))

(define ((== u v) s/c)
 (let ((s (car s/c)))
 (let ((s (unify (find u s) (find v s) s)))
 (if s (list `(,s . ,(cdr s/c))) `()))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)
 ((promise? $1) (delay/name ($append $2 (force $1))))
 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))
 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define (var x) x)
(define (var? x) (number? x))

(define (find u s)
 (let ((pr (and (var? u) (assv u s))))
 (if pr (find (cdr pr) s) u)))

(define (ext-s x u s)
 (cond
 ((occurs? x u s) #f)
 (else `((,x . ,u) . ,s))))

(define (occurs? x u s)
 (cond
 ((var? u) (eqv? x u))
 ((pair? u) (or (occurs? x (find (car u) s) s)
 (occurs? x (find (cdr u) s) s)))
 (else #f)))

(define ((call/fresh f) s/c)
 (let ((c (cdr s/c)))
 ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
 (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
 (cond
 ((null? $) '())
 ((and n (zero? (- n 1))) (list (car $)))
 (else (cons (car $)
 (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g)
 (take n (pull (g '(() . 0)))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)
 ((promise? $1) (delay/name ($append $2 (force $1))))
 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))
 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)
 ((promise? $1) (delay/name ($append $2 (force $1))))
 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))

 (else ($append (g (car $)) ($append-map (cdr $) g)))))

 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)

(define ($append-map $ g)
 (cond
 ((null? $) `())

 (else (append (f (car l)) (append-map (cdr l) f)))))

 (else (cons (car l1) (append (cdr l1) l2)))))

(define ((disj g1 g2) s/c) (append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) (append-map (g1 s/c) g2))

(define (append l1 l2)
 (cond
 ((null? l1) l2)

(define (append-map l f)
 (cond
 ((null? l) `())

 (else ($append (g (car $)) ($append-map (cdr $) g)))))

 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)

(define ($append-map $ g)
 (cond
 ((null? $) `())

(force $1) ((promise? $1) (delay/name ($append

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)

 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))

)))$2

TRS 2e, 2018

(define-relation (nevero x)
 (nevero x))

Unproductive Relation

TRS 2e, 2018

(define-relation (nevero x)
 (nevero x))

Unproductive Relation

(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query

TRS 2e, 2018

(define-relation (nevero x)
 (nevero x))

Unproductive Relation

(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query>

TRS 2e, 2018

(define-relation (nevero x)
 (nevero x))

Unproductive Relation

(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query>

TRS 2e, 2018

(nevero ‘cat)>

(define-relation (nevero x)
 (nevero x))

Unproductive Relation

(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query>

TRS 2e, 2018

(nevero ‘cat)>
(nevero ‘cat)>

(define-relation (nevero x)
 (nevero x))

Unproductive Relation

(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query>

...

TRS 2e, 2018

(nevero ‘cat)>
(nevero ‘cat)>

(force $1) ((promise? $1) (delay/name ($append

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)

 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))

)))$2

(force $1) ((promise? $1) (delay/name ($append

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)

 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))

$2)))

(define-relation (nevero x)
 (nevero x))

Unproductive Relation

TRS 2e, 2018

(define-relation (nevero x)
 (nevero x))

Unproductive Relation

(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query

TRS 2e, 2018

(disj) > (== ‘cat ‘cat)(nevero ‘cat)

(disj) > (== ‘cat ‘cat)(nevero ‘cat)

(disj) > (== ‘cat ‘cat)(nevero ‘cat) (nevero ‘cat) (== ‘cat ‘cat)

(disj) > (== ‘cat ‘cat)(nevero ‘cat)

(nevero ‘cat) (== ‘cat ‘cat)

(disj) > (== ‘cat ‘cat)(nevero ‘cat)

(nevero ‘cat) (== ‘cat ‘cat)>

(disj) > (== ‘cat ‘cat)(nevero ‘cat)

(nevero ‘cat) (== ‘cat ‘cat)>

(disj) > (== ‘cat ‘cat)(nevero ‘cat)

(nevero ‘cat) (== ‘cat ‘cat)>
(Rozplokhas et al. 2019)

DOESN’T ALONE FIX A
PARTICULAR SEARCH

Interleaving DFS

DLS ’16, ICLP-DS ‘17

Interleaving DFS

Program’s Relations

DLS ’16, ICLP-DS ‘17

Interleaving DFS

Program’s Relations

Query

= Search Strategy

DLS ’16, ICLP-DS ‘17

miniKanren

Macros Functions+

microKanren Proliferates

FunctionsMacros |

Functions

Functions

Javascript

Functions

Javascript
Python

Functions

Javascript
Python

Ruby

Functions

Javascript
Python

Ruby
PHP

Functions

Javascript
Python

Ruby
PHP

Java

Functions

Javascript
Python

Ruby
PHP

Erlang

Java

Functions

Javascript
Python

Ruby
PHP

Erlang

Java

Prolog

Functions

Javascript
Python

Ruby
PHP

Erlang

Java

Prolog

Lua

Scheme

Javascript
Python

Ruby
PHP

Erlang

Java

Prolog

Lua

C# Extempore

Smalltalk Haskell

Dylan

Purescript

Clojure

Scala

Shen

ML

miniKanren

F#

Elixir

Rust

LFE

Moxie

Nu

Scheme

Javascript
Python

Ruby
PHP

Erlang

Java

Prolog

Lua

C# Extempore

Smalltalk Haskell

Dylan

Purescript

Clojure

Scala

Shen

ML

miniKanren

F#

Elixir

Rust

LFE

Moxie

Nu

Groovy

Idris Coffeescript

OCaML

Hy

Elm

Pony

Julia

Scheme

Javascript
Python

Ruby
PHP

Erlang

Java

Prolog

Lua

C# Extempore

Smalltalk Haskell

Dylan

Purescript

Clojure

Scala

Shen

ML

miniKanren

F#

Elixir

Rust

LFE

Moxie

Nu

Groovy

Idris Coffeescript

OCaML

Hy

Elm

Pony

Julia

Over 150 implementations
in 50 languages

(see miniKanren.org)

http://miniKanren.org

(define (unify u v s)
 (cond
 ((eqv? u v) s)
 ((var? u) (ext-s u v s))
 ((var? v) (unify v u s))
 ((and (pair? u) (pair? v))
 (let ((s (unify (find (car u) s) (find (car v) s) s)))
 (and s (unify (find (cdr u) s) (find (cdr v) s) s))))
 (else #f)))

(define ((== u v) s/c)
 (let ((s (car s/c)))
 (let ((s (unify (find u s) (find v s) s)))
 (if s (list `(,s . ,(cdr s/c))) `()))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)
 ((promise? $1) (delay/name ($append $2 (force $1))))
 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))
 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define (var x) x)
(define (var? x) (number? x))

(define (find u s)
 (let ((pr (and (var? u) (assv u s))))
 (if pr (find (cdr pr) s) u)))

(define (ext-s x u s)
 (cond
 ((occurs? x u s) #f)
 (else `((,x . ,u) . ,s))))

(define (occurs? x u s)
 (cond
 ((var? u) (eqv? x u))
 ((pair? u) (or (occurs? x (find (car u) s) s)
 (occurs? x (find (cdr u) s) s)))
 (else #f)))

(define ((call/fresh f) s/c)
 (let ((c (cdr s/c)))
 ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
 (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
 (cond
 ((null? $) '())
 ((and n (zero? (- n 1))) (list (car $)))
 (else (cons (car $)
 (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g)
 (take n (pull (g '(() . 0)))))

Equality Control

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)
 ((promise? $1) (delay/name ($append $2 (force $1))))
 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))
 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((call/fresh f) s/c)
 (let ((c (cdr s/c)))
 ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
 (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
 (cond
 ((null? $) '())
 ((and n (zero? (- n 1))) (list (car $)))
 (else (cons (car $)
 (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g)
 (take n (pull (g '(() . 0)))))

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

miniKanrens as Syntactic Extensions

macro extension

microKanren

(define-syntax conj+
 (syntax-rules ()
 ((_ g) g)
 ((_ g0 g ...) (conj g0 (conj+ g ...)))))

(define-syntax disj+
 (syntax-rules ()
 ((_ g) g)
 ((_ g0 g ...) (disj g0 (disj+ g ...)))))

(define-syntax-rule (conde (g0 g ...) (g0* g* ...) ...)
 (disj+ (conj+ g0 g ...) (conj+ g0* g* ...) ...))

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

(define (unify u v s)
 (cond
 ((eqv? u v) s)
 ((var? u) (ext-s u v s))
 ((var? v) (unify v u s))
 ((and (pair? u) (pair? v))
 (let ((s (unify (find (car u) s) (find (car v) s) s)))
 (and s (unify (find (cdr u) s) (find (cdr v) s) s))))
 (else #f)))

(define ((== u v) s/c)
 (let ((s (car s/c)))
 (let ((s (unify (find u s) (find v s) s)))
 (if s (list `(,s . ,(cdr s/c))) `()))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)
 ((promise? $1) (delay/name ($append $2 (force $1))))
 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))
 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define (var x) x)
(define (var? x) (number? x))

(define (find u s)
 (let ((pr (and (var? u) (assv u s))))
 (if pr (find (cdr pr) s) u)))

(define (ext-s x u s)
 (cond
 ((occurs? x u s) #f)
 (else `((,x . ,u) . ,s))))

(define (occurs? x u s)
 (cond
 ((var? u) (eqv? x u))
 ((pair? u) (or (occurs? x (find (car u) s) s)
 (occurs? x (find (cdr u) s) s)))
 (else #f)))

(define ((call/fresh f) s/c)
 (let ((c (cdr s/c)))
 ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
 (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
 (cond
 ((null? $) '())
 ((and n (zero? (- n 1))) (list (car $)))
 (else (cons (car $)
 (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g)
 (take n (pull (g '(() . 0)))))

(define (unify u v s)
 (cond
 ((eqv? u v) s)
 ((var? u) (ext-s u v s))
 ((var? v) (unify v u s))
 ((and (pair? u) (pair? v))
 (let ((s (unify (find (car u) s) (find (car v) s) s)))
 (and s (unify (find (cdr u) s) (find (cdr v) s) s))))
 (else #f)))

(define ((== u v) s/c)
 (let ((s (car s/c)))
 (let ((s (unify (find u s) (find v s) s)))
 (if s (list `(,s . ,(cdr s/c))) `()))))

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)
 ((promise? $1) (delay/name ($append $2 (force $1))))
 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))
 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define (var x) x)
(define (var? x) (number? x))

(define (find u s)
 (let ((pr (and (var? u) (assv u s))))
 (if pr (find (cdr pr) s) u)))

(define (ext-s x u s)
 (cond
 ((occurs? x u s) #f)
 (else `((,x . ,u) . ,s))))

(define (occurs? x u s)
 (cond
 ((var? u) (eqv? x u))
 ((pair? u) (or (occurs? x (find (car u) s) s)
 (occurs? x (find (cdr u) s) s)))
 (else #f)))

(define ((call/fresh f) s/c)
 (let ((c (cdr s/c)))
 ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
 (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
 (cond
 ((null? $) '())
 ((and n (zero? (- n 1))) (list (car $)))
 (else (cons (car $)
 (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g)
 (take n (pull (g '(() . 0)))))

Equality Control

(define ((disj g1 g2) s/c) ($append (g1 s/c) (g2 s/c)))
(define ((conj g1 g2) s/c) ($append-map (g1 s/c) g2))

(define ($append $1 $2)
 (cond
 ((null? $1) $2)
 ((promise? $1) (delay/name ($append $2 (force $1))))
 (else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
 (cond
 ((null? $) `())
 ((promise? $) (delay/name ($append-map (force $) g)))
 (else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((call/fresh f) s/c)
 (let ((c (cdr s/c)))
 ((f (var c)) `(,(car s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
 (define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
 (cond
 ((null? $) '())
 ((and n (zero? (- n 1))) (list (car $)))
 (else (cons (car $)
 (take (and n (- n 1)) (pull (cdr $)))))))

(define (call/initial-state n g)
 (take n (pull (g '(() . 0)))))X Control

Constraints Add More
Problems

Constraints, generically

(define	(==	u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'==	'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

Constraints, generically

(define	(==	u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'==	'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

Constraints, generically

(define	(==	u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'==	'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(listo	u)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'listo	'(u))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(=/=	u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'=/=	'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(listo	u)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'listo	'(u))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(==				u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'==				'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(=/=			u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'=/=			'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(listo	u)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'listo	'(u))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(==				u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'==				'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(=/=			u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'=/=			'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(listo	u)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'listo	'(u))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(==				u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'==				'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

(define	(=/=			u	v)	
		(λ	(S/c)	
				(let	((S	(ext-S	(car	S/c)	'=/=			'(u	v))))	
						(if	(invalid?	S)		
										'()		
										(list	`(,S	.	,(cdr	S/c)))))))

Factor out common portions of
carefully-considered

implementations

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

Interrelated Semantics

Parameterized Lang Class CLP(·)

Interrelated Semantics

Instantiated with a Constraint Domain X

Interrelated Semantics

A Language CLP(X)

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

CLP Scheme & Constraint Systems X

• A signature Σ for the constraint domain

• The constraints, a class of FO Σ-formulas

• A Σ-theory, the constraints’ logical
semantics

• A Σ-structure, the constraints’ intended
interpretation — algebraic semantics

• A function solve from constraints to {T,F,?}
— operational semantics

• The theory, structure, and solver agree

• A bit more =, ρ, etc.

CLP Scheme & Constraint Systems X

How Did We Fit In? (Restrictions)

• total solver

• symbolic constraints

• negative constraints

• n-independent

“miniKanren Constraint” Systems

• disequalities
• sort constraints
• subterm “discontainment”
• “shape” constraints

SW ’16, WFLP '15

“miniKanren Constraint” Systems

• disequalities
• sort constraints
• subterm “discontainment”
• “shape” constraints

SW ’16, WFLP '15

w

w ⊑ x

w ⊑ x ⊑ y

w ⊑ x ⊑ y ⊑ z

w ⊑ x ⊑ y ⊑ z ⊑⋯⋯

w ⊑
x⊑

y⊑
z⊑

w =
x=

y=
z
=

Independence of Negative Constraints

{p₁,…,pₙ} ⊨ {q₁,…,qₘ} implies {p₁,…,pₙ} ⊨ qᵢ for some 1 < i ≤ m

P constraints

Q negatable constraints

Independence of Negative Constraints

Heterogenous
Collections

of

Q

⨉

equations P

R

S
⨉

⨉

⨉

⋮

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

We

We

+
Racket

We

+
Racket

CLP Lang
Framework

We

+
Racket

CLP Lang
Framework

+
Constraint
Designer

We

+
Racket

CLP Lang
Framework

+
Constraint
Designer

CLP
Language

We

+
Racket

CLP Lang
Framework

+
Constraint
Designer

+
CLP

Programmer
CLP

Language

We

+
Racket

CLP Lang
Framework

+
Constraint
Designer

+
CLP

Programmer
CLP

Language
CLP

Program

Framework Design

Constraint Defns

Framework Design

Constraint Defns

+

Framework Design

Constraint Defns

+Term Lang

Violation Conditions

Implicit Equalities

Term Lang

Framework Design

Constraint Defns

Violation Conditions

+

Constraints

Solver

Implicit Equalities

Term Lang

Framework Design

Constraint Defns

Violation Conditions

+

Constraints

Solver

mK(X)

+

Implicit Equalities

Term Lang

Framework Design

Constraint Defns

Violation Conditions

+

Constraints

Solver

mK(X)

+

Implicit Equalities

Term Lang

Framework Design

Constraint Defns

Violation Conditions

+

Constraints

Solver

mK(X)

+

Implicit Equalities

~250 Lines of Code

Solving, Generally

Solving, Generally

1. Solve explicit equality constraints

Solving, Generally

1. Solve explicit equality constraints

2. Sequentially solve any implicit equalities

Solving, Generally

1. Solve explicit equality constraints

2. Sequentially solve any implicit equalities

3. Check n-wise constraint violation conditions

• miniKanren, briefly

•

•

• generalizing to constraints

•

•

• constraint system framework

•

  

bolsters the development of useful tools and aids in

semanticsinterrelated
parameterized by their constraint systems

a small kernel logic programming language
miniKanren languages are syntactic extensions

Roadmap

solving
important tasks

INTERPRETER
(RELATIONAL)

∈/ env
ρλ

ρ ⊢ λx.e ⇓ <λx.e in ρ>

∈/ env
ρλ

ρ ⊢ λx.e ⇓ <λx.e in ρ>

(define-relation (not-in-envo x env)
 (conde
 [(== '() env)]
 [(fresh (y _ rest)
 (== `((,y ,_) . ,rest) env)
 (=/= y x)
 (not-in-envo x rest))]))

∈/ env
ρλ

ρ ⊢ λx.e ⇓ <λx.e in ρ>

(define-relation (not-in-envo x env)
 (conde
 [(== '() env)]
 [(fresh (y _ rest)
 (== `((,y ,_) . ,rest) env)
 (=/= y x)
 (not-in-envo x rest))]))

(define-relation (=/= n₁ n₂)
 (conde
 [(fresh (pn₂)
 (== n₂ `(s . ,pn₂))
 (== n₁ '()))]
 [(fresh (pn₁)
 (== n₁ `(s . ,pn₁))
 (== n₂ '()))]
 [(fresh (pn₁ pn₂)
 (== n₁ `(s . ,pn₁))
 (== n₂ `(s . ,pn₂))
 (=/= pn₁ pn₂))]))

(define-relation (not-in-envo x env)
 (conde
 [(== '() env)]
 [(fresh (y _ rest)
 (== `((,y ,_) . ,rest) env)
 (=/= y x)
 (not-in-envo x rest))]))

RELATIONAL SYLLOGISTIC LOGIC PROGRAMS

(define-relation (A φ Γ prf)
 (matche φ
 [(∀ ,a ,a) (== φ prf)]
 [,x (membero x Γ)
 (== prf `(,x in-Γ))]
 [(∀ ,n ,q)
 (fresh (p prf1 prf2)
 (== `((,prf1 ,prf2) => ,φ) prf)
 (A `(∀ ,n ,p) Γ prf1)
 (A `(∀ ,p ,q) Γ prf2))]))

RELATIONAL SYLLOGISTIC LOGIC PROGRAMS

(define-relation (A φ Γ prf)
 (matche φ
 [(∀ ,a ,a) (== φ prf)] Axiom
 [,x (membero x Γ) Lookup
 (== prf `(,x in-Γ))]
 [(∀ ,n ,q) “Barbara” inference
 (fresh (p prf1 prf2)
 (== `((,prf1 ,prf2) => ,φ) prf)
 (A `(∀ ,n ,p) Γ prf1)
 (A `(∀ ,p ,q) Γ prf2))]))

(define-relation (un-atomo a)
 (fresh (sym)
 (symbolo sym)
 (== a `(-2 . ,sym))))

Still relying on primitives!
Adding tags!

Results

Results
1. Characterize classes of "miniKanren constraints"

Results
1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming

Results
1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming

3. A parameterized family of constraint miniKanren languages

Results
1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming

3. A parameterized family of constraint miniKanren languages

4. Racket macro-generate these constraint mK language implementations

Results
1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming

3. A parameterized family of constraint miniKanren languages

4. Racket macro-generate these constraint mK language implementations

5. Implementing constraint systems via macros

Results
1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming

3. A parameterized family of constraint miniKanren languages

4. Racket macro-generate these constraint mK language implementations

5. Implementing constraint systems via macros

6. Introduce new constraints to miniKanren languages

Results
1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming

3. A parameterized family of constraint miniKanren languages

4. Racket macro-generate these constraint mK language implementations

5. Implementing constraint systems via macros

6. Introduce new constraints to miniKanren languages

7. miniKanren over microKanren

Thanks!

macro extension

Constraint microKanren

Domain

