Constraint microKanren in the CLP Scheme

Jason Hemann

Chair: Daniel Friedman
Committee: Amr Sabry
Sam Tobin-Hochstadt
Larry Moss 12-20-2019

“Kanren Approach”

“Kanren Approach”

“little” LP DSL

“Kanren Approach”

pure

“little” LP DSL

negation free

“Kanren Approach”

pure

“little” LP DSL

negation free

programmed in the completion

“Kanren Approach”

embedded implementation
pure

shallowly embedded
“little” LP DSL

via pure FP

negation free

programmed in the completion

“Kanren Approach”

embedded implementation
pure

shallowly embedded

“little” LP DSL

via pure FP

negation free

with an interleaving search

programmed in the completion
and additional constraints

“Kanren Approach”

(Robinson 1981)

| 1
(Robinson 1981) embedded implementation

pure

(Felleisen 1985)

(Elcock 1989) shallowly embedded

“little” LP DSL
(Hinze 1998, Seres & Spivey 2001)
via pure FP
(Van Emden & Kowalski 1976)
negation free
(Robinson 1981, Seres & Spivey 2001)
(Clark 1972) with an interleaving search
orogrammed in the completion (Roussel 1972, Colmerauer 1982)

and additional constraints

“Kanren Approach”

(Robinson 1981)

| 1
(Robinson 1981) embedded implementation

pure

(Felleisen 1985)

(Elcock 1989) shallowly embedded

“little” LP DSL
(Hinze 1998, Seres & Spivey 2001)
via pure FP
(Van Emden & Kowalski 1976)
negation free
(Robinson 1981, Seres & Spivey 2001)
(Clark 1972) with an interleaving search
orogrammed in the completion (Roussel 1972, Colmerauer 1982)

and additional constraints

FALLING
ROCKS

CAUTION
AHEAD

Commingled Syntax and Control

* [imits uptake to host languages with macros

* obscures simpler, intended interleaving behavior

Compounded by “Constraints”

Describes maybe mK(X)—"Don't be so open minded ..."

Large implementations, unwieldy semantics
No leveraging of scale or repetition

Whither negation??

Compounded by “Constraints”

Describes maybe mK(X)—"Don't be so open minded ..."

Large implementations, unwieldy semantics
No leveraging of scale or repetition

Whither negation??

microKanren + constraints Inbox x

William Byrd Mar 25 (5 days ago)
to Jason, Daniel |~

Hey Jason!

What is the state of microKanren + constraints? Is the implementation
able to handle =/=, absento, symbolo, numbero? Can it handle CLP(FD)?
Might it integrate with SMT?

How fast is the impl? Does it use attributed variables?

Could we build evalo/Barliman on top of it?

faster-miniKanren + Barliman is way too unwieldy (5K lines or more),
and the complexity and fragility are starting to seriously slow down
our research, and makes it much harder to teach the ideas.

Thanks!

--Will

0 & B
“ v

unwieldy

unwieldy
complex

unwieldy
complex
fragile

unwieldy
complex
fragile
seriously slowing research

unwieldy
complex
fragile
seriously slowing research
obscures the basic ideas

My Thesis

A wide class of miniKanren languages are syntactic extensions over

a small kernel logic programming language with interrelated
semantics parameterized by their constraint systems, and this

characterization bolsters the development of useful tools and aids In
solving Important tasks with pure relational programming

Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks

Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving

Important tasks

Language Examples

Welcome to Racket v7.4.
>

Language Examples

Welcome to Racket v7.4.

> (define-relation (member x 1ls o)
(fresh (a d)

(== s ‘()a . :d))
(conde

((==x a) (== 1ls 0))
((member x d 0)))))

Language Examples

Welcome to Racket v7.4.

> (define-relation (member x 1ls o)
(fresh (a d)

(== s ‘()a . :d))
(conde

((==x a) (== 1s 0))
((member x d 0)))))
> (run* (gq) (member 'x '(a x c) Qq))

((x c))
>

Language Examples

Welcome to Racket v7.4.

> (define-relation (member x 1ls o)
(fresh (a d)

(== s ‘()a . :d))
(conde

((==x a) (== 1s 0))
((member x d 0)))))
> (run* (gq) (member 'x '(a x c) Qq))

((x ¢))
> (run* (gq) (member g '(a x c) "(x ¢)))

" (x)
>

| I
"”.Mmln 't

=
-~
&

_nm\\
ey

I
iyt

! |
TR A

INTERPRETER

! |
TR A

INTERPRETER

INTERPRETER

P L =
- [/
Y hd
3 7
—— =4

l!] || _
Mgy ooy

\

INTERPRETER
RELATIONAL)

. 4.,

! [
LRI

INTERPRETER
(RELATIONAL)

INTERPRETER
(RELATIONAL)

INTERPRETER
(RELATIONAL)

INTERPRETER
(RELATIONAL)

; INTERPRETER
(RELATIONAL)

RELATIONAL PROGRAMMING IN
MINIKANREN:
TECHNIQUES, APPLICATIONS, AND
IMPLEMENTATIONS

WiLLiaM E. BYRD

SUBMITTED TO THE FACULTY OF THE
UNIVERSITY GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

B

aleanTAP: A Declarative Theorem Prover for
First-Order Classical Logic

Joseph P. Near™, William E. Byrd, and Daniel P. Friedman

Indiana University, Bloomington, IN 47405
{jnear ,webyrd,dfried}@cs.indiana.edu

Abstract. We present aleanZAP, a declarative tableau-based theorem
prover written as a pure relation. Like leanTAP, on which it is based,
aleanAP can prove ground theorems in first-order classical logic. Since
it is declarative, aleanTAP generates theorems and accepts non-ground
theorems and proofs. The lack of mode restrictions also allows the user
to provide guidance in proving complex theorems and to ask the prover
to instantiate non-ground parts of theorems. We present a complete
implementation of alean7AP, beginning with a translation of leanZAP into
aKanren, an embedding of nominal logic programming in Scheme. We

- ™

_ 1. _ __rmATY.

T ————

A T™_ _T_ __ 4% _ rm.__ _______ T ____r~

miniKanren, Live and Untagged

Quine Generation via Relational Interpreters
(Programming Pearl)

William E. Byrd

Eric Holk

Daniel P. Friedman

School of Informatics and Computing, Indiana University, Bloomington, IN 47405
{webyrd eholk dfried } @cs.indiana.edu

Abstract

We present relational interpreters for several subsets of
Scheme, written in the pure logic programming language
miniKanren. We demonstrate these interpreters running
“backwards”—that is, generating programs that evaluate
to a specified value—and show how the interpreters can
trivially generate quines (programs that evaluate to them-
selves). We demonstrate how to transform environment-
passing interpreters written in Scheme into relational inter-
preters written in miniKanren. We show how constraint ex-

evaluating literals, such as numbers and booleans. A classic
non-trivial quine (Thompson II) is:

(define guine.
({lambda (x)
{list x (list (quote quote) x)))
(quote
{lambda (x)
(list x (list {quote quote) x))})))

We can easily verify that quine. evaluates to itself:

FaneaadO £ nnel) anilena W\ maslena \ 2 M

T

_ 1 _ _rmAT™Y. A T™_ _1T_ __ _ 4% _ M. _ ______ = T _______r

A Unified Approach to Solving Seven Programming
Problems (Functional Pearl)

WILLIAM E. BYRD, University of Utah, USA
MICHAEL BALLANTYNE, University of Utah, USA
GREGORY ROSENBLATT, Toronto, Ontario, Canada
MATTHEW MIGHT, University of Utah, USA

Absti

We pn

Schemd We present seven programming challenges in Racket, and an elegant, unified approach to solving them using

minika constraint logic programming in miniKanren.

“backw

‘o a lsl' CCS Concepts: « Software and its engineering — Functional languages; Constraint and logic lan-

triviall) _ i ="

selves). guages; Automatic programming;

g?ﬁf:}?g Additional Key Words and Phrases: relational programming, program synthesis, miniKanren, Racket, Scheme
— ACM Reference format:

William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A Unified Approach
to Solving Seven Programming Problems (Functional Pearl). Proc. ACM Program. Lang. 1, ICFP, Article 8
(September 2017), 26 pages.

https://doi.org/10.1145/3110252

_ - _ _rmATY.

Abst)

We pri
Scheme
minikKa
“backw
to a sj
triviall)
selves),
passing
preters

- —

A T™_ _T_ __ 4% _ rm.__ _______ T ____r~

A Unified Approach to Sol\
Problems (Functional Pear|

WILLIAM E. BYRD, University of Utah, Ut

l t .
MICHAEL BALLANTYNE, University of

GREGORY ROSENBLATT, Toronto, Ontario, Canada —
MATTHEW MIGHT, University of Utah, USA

We present seven programming challenges in Racket, and an elegant, unified approach to solving them using
constraint logic programming in miniKanren.

CCS Concepts: « Software and its engineering — Functional languages; Constraint and logic lan-
guages; Automatic programming;

Additional Key Words and Phrases: r¢ eme

@
|
ACM Reference format:

William E. Byrd, Michael Ballantyne ~ b Th re dr D Rl D ach
to Solving Seven Programming Prol @ Valwan Analysis & Threat Intelligence le 8
(September 2017), 26 pages.

https://doi.org/10.1145/3110252 | — —

Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks

(define (var x) x)
(define (var? x) (number? x))

(define ((call/fresh f) s/c)
(let ((c (cdr s/c)))
C(f Qvar c)) (,Ccar s/c) . ,(+ c 1)))))
(define (find u s)
(let ((pr (and (var? u) (assv u s))))

(1f pr (find (cdr pr) s) u)))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/name (g s/c))))

(define (ext-s x u s) (define (pull $) (if (promise? $) (pull (force $)) $))

(cond
(Coccurs? x u s) #f) (define (take n $)
Celse ((,x . ,u) . ,s)))) (cond

((hull? $ 'O)
(define (occurs? x u s) (Cand n (zero? (- n 1))) (list (car $))

(cond (else (cons (car $)
(Cvar? u) (egv? x uw)) (take (and n (- n 1)) (pull Ccdr IO
((pair? u) (or (occurs? x (find (car u) s) s)
Coccurs? x (find (cdr u) s) s))) (define (call/initial-state n g)
(else #f))) (take n (pull (g "CQO . @)))))

(define (unify u v s) (define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(cond (define ((conj gl g2) s/c) ($append-map (gl s/c) g2))
(Cegqv? u v) s)

((var? u) (ext-s u v s))

(Cvar? v) (unify v u s))

(Cand (pair? u) (pair? v))

(let ((s (unify (find (car u) s) (find (car v) s) s)))
(and s (unify (find (cdr u) s) (find (Ccdr v) s) s))))

(else #f)))

(define ((== u v) s/c)

(let ((s (car s/c)))
(let ((s (Cunify (find u s) (find v s) s)))

(if s (list "(,s . ,(Ccdr s/c))) ()

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ "O)
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g))d)))

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
(else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((disj gl g2) s/c) (append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) (append-map (gl s/c) g2))

(define (append 11 12)

(cond
((null? 11) 12)

(else (cons (car 11) (append (cdr 11) 12)))))

(define (append-map 1 f)
(cond
((null? 1) O)
(else (append (f (Ccar 1)) (append-map Ccdr 1) £)))))

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
(else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append (force $1) $2)))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g)))))

TRS 2e, 2018

(define-relation (nevero x) Unproductive Relation
(nevero x))

(define-relation (nevero x) Unproductive Relation
(nevero x))

(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query

(define-relation (nevero x) Unproductive Relation
(nevero x))

>(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query

(define-relation (nevero x) Unproductive Relation
(nevero x))

>(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query
> (nevero ‘cat)

(define-relation (nevero x) Unproductive Relation
(nevero x))

>(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query
> (nevero ‘cat)
> (nevero ‘cat)

(define-relation (nevero x) Unproductive Relation
(nevero x))

>(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query
> (nevero ‘cat)
> (nevero ‘cat)

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append (force $1) $2)))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g)))))

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g)))))

(define-relation (nevero x) Unproductive Relation
(nevero x))

(define-relation (nevero x) Unproductive Relation
(nevero x))

(disj (nevero ‘cat) (== ‘cat ‘cat)) Disjunctive Query

> (dis] (nevero ‘cat) (== ‘cat ‘cat))

> (dis] (nevero ‘cat) (== ‘cat ‘cat))

>(dis] (nevero ‘cat) (== ‘cat ‘cat))

>(dis] (nevero ‘cat) (== ‘cat ‘cat))

‘cat) (nevero ‘cat)

>(dis] (nevero ‘cat) (== ‘cat ‘cat))

‘cat) (nevero ‘cat)

>(dis] (nevero ‘cat) (== ‘cat ‘cat))

> == ‘cat ‘cat) (nevero ‘cat)

>(dis] (nevero ‘cat) (== ‘cat ‘cat))

(Rozplokhas et al. 2019)
> == ‘cat ‘cat) (nevero ‘cat)

DOESN’T ALONE FIX A
PARTICULAR SEARCH

Interleaving DFS

DLS ’16, ICLP-DS ‘17

Interleaving DFS

Program’s Relations

DLS ’16, ICLP-DS ‘17

Interleaving DFS

Program’s Relations

\ Query

= Search Strategy

DLS ’16, ICLP-DS ‘17

minikanren

Macros + Functions

microKanren Proliferates

Macros | Functions

Functions

Javascript

Functions

Javascript
Python

Functions

Javascript
Python

Functions

Ruby

Javascript
Python

Functions

Ruby

ava
Javascript J

Python
Functions

Ruby

ava
Javascript J

Python
Functions

Ruby

Erlang

ava
Javascript J

Python
Prolog Functions

Ruby

Erlang

ava
Javascript J

Python
Prolog Functions

Lua
Ruby

PHP
Erlang

Smalltalk Nu Haskell

Clojure LFE
Sh Javascript Java miniKanren
en
Python e
F# Prolog Scheme us
Dylan
Scala Lua
Ruby |
o Moxie PHP
- rlang
Purescript xtempore Eir ML

Smalltalk Nu Julia Haskell

Idris Elm Clojure LFE Coffeescript
, Java miniKanren
Shen Javascript
OCaML Python
Rust
FH+ Prolog Scheme
Dylan
H Y
7 Scala Lua
Rub
Groovy ™-57 Moxie PHP Pony
, Erlang
Purescript Extempore Elixir ML

Smalltalk Nu Julia Haskell

Idris Elm Clojure LFE Coffeescript
Java miniKanren
Shen
Over implementations Rust
i N languages
(see)
Groovy " Toxie DN Pony
, Erlang
Purescript Extempore Elixir ML

http://miniKanren.org

(define (var x) x) (define ((call/fresh f) s/c)
(define (var? x) (number? x)) (let ((c (cdr s/c)))

(C(f CQvar c)) (,Ccar s/c) . ,(+ c 1)))))
(define (find u s)

(let (Cpr (Cand (var? u) (assv u s)))) (define-syntax-rule (define-relation (defname . args) g)
(if pr (find (cdr pr) s) u))) (define ((defname . args) s/c) (delay/name (g s/c))))
(define (ext-s x u s) (define (pull $) (if (promise? $) (pull (force $)) $))
(cond
(Coccurs? x u s) #f) (define (take n $)
(else "((,x . ,u) . ,s)))) (cond
((null? $) 'O)
(define (occurs? x u s) (Cand n (zero? (- n 1))) (list (car $))
(cond (else (cons (car $)
(Cvar? u)
((pair? u °
Equality (e Control
(else #f) (take
(define (unify u v s) (define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(cond (define ((conj gl g2) s/c) ($append-map (gl s/c) g2))
(Cegv? u v) s)
((var? u) (ext-s u v s)) (define ($append $1 $2)
(Cvar? v) (unify v u s)) (cond
(Cand (pair? u) (pair? v)) ((null? $1) $2)
(let ((s Cunify (find (car u) s) (find (Ccar v) s) s))) ((promise? $1) (delay/name ($append $2 (force $1))))
(and s (unify (find (cdr u) s) (find (cdr v) s) s)))) (else (cons (car $1) ($append (cdr $1) $2)))))

(else #f)))
(define ($append-map $ g)

(define ((== u v) s/c) (cond
(let ((s (car s/c))) ((null? $ O
(let ((s Qunify (find u s) (find v s) s))) ((promise? $) (delay/name ($append-map (force $) g)))

(if s (1list “(,s . ,Ccdr s/c))) "O)))) (else ($append (g (car $)) ($append-map (cdr $) g))d)))

(define ((call/fresh f) s/c)
(let ((c (cdr s/c)))

(C(f Qvar c)) (,(Ccar s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
(cond
((null? $) "OD
(Cand n (zero? (- n 1))) (list (car $))

(else (cons (car $)

(take (and n (- n 1)) (pull Ccdr D))

(define (call/initial-state n g)
(take n (pull (g "COO . @)))))

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

(Cnull? $ "O)
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($Sappend-map (cdr $) g)))))

Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks

miniKanrens as Syntactic Extensions

macro extension

microKanren

(define-syntax disj+
(syntax-rules ()

(- 9 9
(g0 g ...) (dis] g0 (disj+ g ...)))))

(define-syntax conij+
(syntax-rules ()

(- 9 9
(g0 g ...) (conj g@ (conj+ g ...)))))

(define-syntax-rule (conde (gd g ...) (go* g* ...) ...

(disj+ (conj+ gd g ...) (conjy+ g@* g* ...) ...))

Roadmap

miniKanren, briefly
a small kernel logic programming language

miniKanren languages are syntactic extensions
generalizing to constraints
Interrelated semantics

parameterized by their constraint systems
constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks

(define (var x) x)
(define (var? x) (number? x))

(define ((call/fresh f) s/c)
(let ((c (cdr s/c)))
C(f Qvar c)) (,Ccar s/c) . ,(+ c 1)))))
(define (find u s)
(let ((pr (and (var? u) (assv u s))))

(1f pr (find (cdr pr) s) u)))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/name (g s/c))))

(define (ext-s x u s) (define (pull $) (if (promise? $) (pull (force $)) $))

(cond
(Coccurs? x u s) #f) (define (take n $)
Celse ((,x . ,u) . ,s)))) (cond

((hull? $ 'O)
(define (occurs? x u s) (Cand n (zero? (- n 1))) (list (car $))

(cond (else (cons (car $)
(Cvar? u) (egv? x uw)) (take (and n (- n 1)) (pull Ccdr IO
((pair? u) (or (occurs? x (find (car u) s) s)
Coccurs? x (find (cdr u) s) s))) (define (call/initial-state n g)
(else #f))) (take n (pull (g "CQO . @)))))

(define (unify u v s) (define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(cond (define ((conj gl g2) s/c) ($append-map (gl s/c) g2))
(Cegqv? u v) s)

((var? u) (ext-s u v s))

(Cvar? v) (unify v u s))

(Cand (pair? u) (pair? v))

(let ((s (unify (find (car u) s) (find (car v) s) s)))
(and s (unify (find (cdr u) s) (find (Ccdr v) s) s))))

(else #f)))

(define ((== u v) s/c)

(let ((s (car s/c)))
(let ((s (Cunify (find u s) (find v s) s)))

(if s (list "(,s . ,(Ccdr s/c))) ()

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ "O)
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g))d)))

(define (var x) x) (define ((call/fresh f) s/c)
(define (var? x) (number? x)) (let ((c (cdr s/c)))

(C(f CQvar c)) (,Ccar s/c) . ,(+ c 1)))))
(define (find u s)

(let (Cpr (Cand (var? u) (assv u s)))) (define-syntax-rule (define-relation (defname . args) g)
(if pr (find (cdr pr) s) u))) (define ((defname . args) s/c) (delay/name (g s/c))))
(define (ext-s x u s) (define (pull $) (if (promise? $) (pull (force $)) $))
(cond
(Coccurs? x u s) #f) (define (take n $)
(else "((,x . ,u) . ,s)))) (cond
((null? $) 'O)
(define (occurs? x u s) (Cand n (zero? (- n 1))) (list (car $))
(cond (else (cons (car $)
(Cvar? u)
((pair? u °
Equality (e Control
(else #f) (take
(define (unify u v s) (define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(cond (define ((conj gl g2) s/c) ($append-map (gl s/c) g2))
(Cegv? u v) s)
((var? u) (ext-s u v s)) (define ($append $1 $2)
(Cvar? v) (unify v u s)) (cond
(Cand (pair? u) (pair? v)) ((null? $1) $2)
(let ((s Cunify (find (car u) s) (find (Ccar v) s) s))) ((promise? $1) (delay/name ($append $2 (force $1))))
(and s (unify (find (cdr u) s) (find (cdr v) s) s)))) (else (cons (car $1) ($append (cdr $1) $2)))))

(else #f)))
(define ($append-map $ g)

(define ((== u v) s/c) (cond
(let ((s (car s/c))) ((null? $ O
(let ((s Qunify (find u s) (find v s) s))) ((promise? $) (delay/name ($append-map (force $) g)))

(if s (1list “(,s . ,Ccdr s/c))) "O)))) (else ($append (g (car $)) ($append-map (cdr $) g))d)))

(define ((call/fresh f) s/c)
(let ((c (cdr s/c)))

(C(f CQvar c)) (,Ccar s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
(cond

(Cnull? $ "O)
(Cand n (zero? (- n 1))) (list (car $))

(else (cons (car $)

Caefire Control

(take

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ "O)
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g))d)))

Constraints Add More
Problems

Constraints, generically

(define (== u v)
(A (S5/¢)
(let ((S (ext-S (car S/c) '== '"(Uuv))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

Constraints, generically

(define (== u v)
(A (S/c)
(let ((S (ext-S (car S/c) '== '(u v))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

Constraints, generically

(define (listo u)
(A (S/c)
(let ((S (ext-S (car S/c) 'listo '(u))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

(define (== u v)
(A (S/c)
(let ((S (ext-S (car S/c) '== '(u v))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

(define (=/= u v)
(A (S/c)
(let ((S (ext-S (car S/c) '=/= '(u v))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

(define (listo u)
(A (S/c)
(let ((S (ext-S (car S/c) 'listo '"(u))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

(define (== uv)
(A (S/c)
(let ((S (ext-S (car S/c) '== (u v))))
(if (invalid? S)
()
(list "(,S . ,(cdr S/c)))))))

(define (=/= u v)
(A (S/c)
(let ((S (ext-S (car S/c) '=/= ‘(uv))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

(define (##sto u v)
(A (S/c)
(let ((S (ext-S (car S/c) 'ZEsto '(u v))))
(if (invalid? S)
()
(1ist "(,S . ,(cdr S/c)))))))

(define (%#sto u v)
(A (S/c)
(let ((S (ext-S (car S/c) '##sto "(u v))))
(if (invalid? S)
()
(1ist "(,S . ,(cdr S/c)))))))

Factor out common portions of
carefully-considered
Implementations

Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks

Interrelated Semantics

Parameterized Lang Class CLP(-)

Interrelated Semanti

Instantiated with a Constraint Domain X

Interrelated Semantics

A Language CLP(X)

Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks

CLP Scheme & Constraint Systems X

CLP Scheme & Constraint Systems X

* A signature Z for the constraint domain
* The constraints, a class of FO 2-formulas

* A 2-theory, the constraints’ logical
semantics

e A 2-structure, the constraints’ intended
interpretation — algebraic semantics

* A function solve from constraints to {I,F,?}
— operational semantics ,

* The theory, structure, and solver agree

A bit more =, p, etc.

How Did We Fit In? (Restrictions)

, c-::—— #7

e total solver

* symbolic constraints

* negative constraints

* n-independent

“miniKanren Constraint” Systems

» disequalities

 sort constraints

» subterm “discontainment”
» “shape” constraints

“miniKanren Constraint” Systems

» disequalities

 sort constraints

* subterm “discontainment”
» “shape” constraints

I

I

I

I

53
Lo

-
PR
’

-

e T
"

M -ﬁsn
o.""
I‘.
-

¥
5 2

N .'4
» ::\.
2

-’.
-

w
*{
e

P "5:’ ‘
AR

w AN

La7Y
!i‘t..
"l.'l;‘.-

-
L

X
e

s
e
-
ave

Independence of Negative Constraints

P constraints
Q negatable constraints

{p1,..,pn} E 191,..,m} 1mplies {p1,..,pn} = gqi for some 1 < 1 < m

Independence of Negative Constraints

BT P RS

»

P » -+ 1 . v{’ -l
oW, § uﬁxn& O
N A R AR R T

o #20

Heterogenous
Collections
of

equations P

. X O X I X O X

Roadmap

miniKanren, briefly
a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks

We

CLP Lang
Framework

Constraint CLP Lang
Designer Framework

Constraint CLP Lang
Designer Framework

=

CLP
Language

Constraint CLP Lang
Designer Framework

CLP CLP
Programmer Language

Constraint CLP Lang
Designer Framework

CLP CLP CLP
Programmer Language Program

Framework Design

Constraint Defns

Framework Design

Constraint Defns

+

Framework Design

Constraint Defns
+

Violation Conditions

Implicit Equalities

Framework Design

Constraint Defns
C o D+
* Solver

Violation Conditions

Implicit Equalities

Framework Design

Constraint Defns
C o D+
* Solver

Violation Conditions

Implicit Equalities

Framework Design

Constraint Defns
C o D+
* Solver

Violation Conditions

Implicit Equalities

Framework Design

W%o Lines of Code

~

Violation Conditions

Implicit Equalities

Solving, Generally

Solving, Generally

1. Solve explicit equality constraints

Solving, Generally

1. Solve explicit equality constraints

2. Sequentially solve any implicit equalities

Solving, Generally

1. Solve explicit equality constraints
2. Sequentially solve any implicit equalities

3. Check n-wise constraint violation conditions

Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks

P L =
- [/
Y hd
3 7
—— =4

l!] || _
Mgy ooy

\

INTERPRETER
RELATIONAL)

AE D

env

D~ AX.e I <Ax.e 1n p>

(define-relation (not-in-envo x env)

(conde
A [(== " env)]
¢e""—p [(fresh (y _ rest)
D~ AX.e I <AX.e 1h p> = "((G,y ,.) . ,rest) env)
(=/=Yy x)

(not-1n-envo x rest))]))

(define-relation (not-in-envo x env)

(conde
A [(== " env)]
¢e""—p [(fresh (y _ rest)
D~ AX.e I <AX.e 1h p> = "((G,y ,.) . ,rest) env)
(=/=Yy x)

(not-1n-envo x rest))]))

(define-relation (=/= ni nz)
(conde

| (fresh (pnz)

(== nz (s . ,pnz)) (define-relation (not-in-envo x env)

(== n1 "O))] (CEfo ') em)]
[(fresh (pni) -
(== n1 (s . ,pni)) [(fFeSh\Cy _ rest)
(== n2 '()))], —= CC,y a—) . ,FGSt) env)

(=/=y x)

[(fresh (pna1 pnz) (not-in-envo x rest))]))

(==n1 (s . ,pni))
(==nz (s . ,pnz))
(=/= pn1 pnz))1))

RELATIONAL SYLLOGISTIC LOGIC PROGRAMS

(define-relation (A ¢ [prf)
(matche ¢

[CV ,a ,a) (== ¢ prf)]

[,x (membero x ')

(== prf (,x 1n-T))]

LCY ,n ,q)

(fresh (p prfl prf2)
== ((,prfl ,prf2) => ,p) prf)
(A (V ,n ,p) I prfl)
(A (Y ,p ,q) I prt2))]))

RELATIONAL SYLLOGISTIC LOGIC PROGRAMS

(define-relation (A @ I prf)

(matche ¢
[(V ,a ,a) (== ¢ prf)] Ax1iom
[,x (membero x ') Lookup
(== prf (,x 1n-T))]
[(V ,n ,q) “Barbara” inference

(fresh (p prfl prf2)
== ((,prfl ,prf2) => ,p) prf)
(A (V ,n ,p) I prfl)
(A (Y ,p ,q) I prt2))]))

(define-relation (un-atomo a)
(fresh (sym)
(symbolo sym) Still relying on primitives!
(==a (-2 . ,sym)))) Adding tags!

Results

Results

1. Characterize classes of "miniKanren constraints"

Results

1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming

Results

1. Characterize classes of "miniKanren constraints”
2. Connect our constraints to prior work in negation in logic programming

3. A parameterized family of constraint miniKanren languages

Results

1. Characterize classes of "miniKanren constraints”
2. Connect our constraints to prior work in negation in logic programming
3. A parameterized family of constraint miniKanren languages

4. Racket macro-generate these constraint mK language implementations

1

2.

3

Results

. Characterize classes of "miniKanren constraints”
Connect our constraints to prior work in negation in logic programming

. A parameterized family of constraint miniKanren languages

. Racket macro-generate these constraint mK language implementations

Implementing constraint systems via macros

1

2.

3

Results

. Characterize classes of "miniKanren constraints”

Connect our constraints to prior work in negation in logic programming
. A parameterized family of constraint miniKanren languages

. Racket macro-generate these constraint mK language implementations
Implementing constraint systems via macros

Introduce new constraints to minikanren languages

1

2.

3

Results

. Characterize classes of "miniKanren constraints”

Connect our constraints to prior work in negation in logic programming
. A parameterized family of constraint miniKanren languages

Racket macro-generate these constraint mK language implementations
Implementing constraint systems via macros

Introduce new constraints to minikanren languages

miniKanren over microkanren

Thanks! R

macro extension

Constraint microKanren

