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Commingled Syntax and Control

* [imits uptake to host languages with macros

* obscures simpler, intended interleaving behavior
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microKanren + constraints Inbox  x

William Byrd Mar 25 (5 days ago)
to Jason, Daniel |~

Hey Jason!

What is the state of microKanren + constraints? Is the implementation
able to handle =/=, absento, symbolo, numbero? Can it handle CLP(FD)?
Might it integrate with SMT?

How fast is the impl? Does it use attributed variables?

Could we build evalo/Barliman on top of it?

faster-miniKanren + Barliman is way too unwieldy (5K lines or more),
and the complexity and fragility are starting to seriously slow down
our research, and makes it much harder to teach the ideas.

Thanks!

--Will
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My Thesis

A wide class of miniKanren languages are syntactic extensions over

a small kernel logic programming language with interrelated
semantics parameterized by their constraint systems, and this

characterization bolsters the development of useful tools and aids In
solving Important tasks with pure relational programming
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Language Examples

Welcome to Racket v7.4.

> (define-relation (member x 1ls o)
(fresh (a d)

(== s ‘()a . :d))
(conde

((==x a) (== 1s 0))
((member x d 0)))))
> (run* (gq) (member 'x '(a x c) Qq))

((x ¢))
> (run* (gq) (member g '(a x c) "(x ¢)))

" (x)
>
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RELATIONAL PROGRAMMING IN
MINIKANREN:
TECHNIQUES, APPLICATIONS, AND
IMPLEMENTATIONS

WiLLiaM E. BYRD

SUBMITTED TO THE FACULTY OF THE
UNIVERSITY GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

B




aleanTAP: A Declarative Theorem Prover for
First-Order Classical Logic

Joseph P. Near™, William E. Byrd, and Daniel P. Friedman

Indiana University, Bloomington, IN 47405
{jnear ,webyrd,dfried}@cs.indiana.edu

Abstract. We present aleanZAP, a declarative tableau-based theorem
prover written as a pure relation. Like leanTAP, on which it is based,
aleanAP can prove ground theorems in first-order classical logic. Since
it is declarative, aleanTAP generates theorems and accepts non-ground
theorems and proofs. The lack of mode restrictions also allows the user
to provide guidance in proving complex theorems and to ask the prover
to instantiate non-ground parts of theorems. We present a complete
implementation of alean7AP, beginning with a translation of leanZAP into
aKanren, an embedding of nominal logic programming in Scheme. We

- ™
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miniKanren, Live and Untagged

Quine Generation via Relational Interpreters
(Programming Pearl)

William E. Byrd

Eric Holk

Daniel P. Friedman

School of Informatics and Computing, Indiana University, Bloomington, IN 47405
{webyrd eholk dfried } @cs.indiana.edu

Abstract

We present relational interpreters for several subsets of
Scheme, written in the pure logic programming language
miniKanren. We demonstrate these interpreters running
“backwards”—that is, generating programs that evaluate
to a specified value—and show how the interpreters can
trivially generate quines (programs that evaluate to them-
selves). We demonstrate how to transform environment-
passing interpreters written in Scheme into relational inter-
preters written in miniKanren. We show how constraint ex-

evaluating literals, such as numbers and booleans. A classic
non-trivial quine (Thompson II) is:

(define guine.
({lambda (x)
{list x (list (quote quote) x)))
(quote
{lambda (x)
(list x (list {quote quote) x))})))

We can easily verify that quine. evaluates to itself:
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A Unified Approach to Solving Seven Programming
Problems (Functional Pearl)

WILLIAM E. BYRD, University of Utah, USA
MICHAEL BALLANTYNE, University of Utah, USA
GREGORY ROSENBLATT, Toronto, Ontario, Canada
MATTHEW MIGHT, University of Utah, USA

Absti

We pn

Schemd We present seven programming challenges in Racket, and an elegant, unified approach to solving them using

minika constraint logic programming in miniKanren.

“backw

‘o a lsl' CCS Concepts: « Software and its engineering — Functional languages; Constraint and logic lan-

triviall) _ i ="

selves). guages; Automatic programming;

g?ﬁf:}?g Additional Key Words and Phrases: relational programming, program synthesis, miniKanren, Racket, Scheme
— ACM Reference format:

William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A Unified Approach
to Solving Seven Programming Problems (Functional Pearl). Proc. ACM Program. Lang. 1, ICFP, Article 8
(September 2017), 26 pages.

https://doi.org/10.1145/3110252
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(define (var x) x)
(define (var? x) (number? x))

(define ((call/fresh f) s/c)
(let ((c (cdr s/c)))
C(f Qvar c)) (,Ccar s/c) . ,(+ c 1)))))
(define (find u s)
(let ((pr (and (var? u) (assv u s))))

(1f pr (find (cdr pr) s) u)))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/name (g s/c))))

(define (ext-s x u s) (define (pull $) (if (promise? $) (pull (force $)) $))

(cond
(Coccurs? x u s) #f) (define (take n $)
Celse ((,x . ,u) . ,s)))) (cond

((hull? $ 'O)
(define (occurs? x u s) (Cand n (zero? (- n 1))) (list (car $))

(cond (else (cons (car $)
(Cvar? u) (egv? x uw)) (take (and n (- n 1)) (pull Ccdr IO
((pair? u) (or (occurs? x (find (car u) s) s)
Coccurs? x (find (cdr u) s) s))) (define (call/initial-state n g)
(else #f))) (take n (pull (g "CQO . @)))))

(define (unify u v s) (define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(cond (define ((conj gl g2) s/c) ($append-map (gl s/c) g2))
(Cegqv? u v) s)

((var? u) (ext-s u v s))

(Cvar? v) (unify v u s))

(Cand (pair? u) (pair? v))

(let ((s (unify (find (car u) s) (find (car v) s) s)))
(and s (unify (find (cdr u) s) (find (Ccdr v) s) s))))

(else #f)))

(define ((== u v) s/c)

(let ((s (car s/c)))
(let ((s (Cunify (find u s) (find v s) s)))

(if s (list "(,s . ,(Ccdr s/c))) ()

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ "O)
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g))d)))
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(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
(else ($append (g (car $)) ($append-map (cdr $) g)))))



(define ((disj gl g2) s/c) (append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) (append-map (gl s/c) g2))

(define (append 11 12)

(cond
((null? 11) 12)

(else (cons (car 11) (append (cdr 11) 12)))))

(define (append-map 1 f)
(cond
((null? 1) O)
(else (append (f (Ccar 1)) (append-map Ccdr 1) £)))))
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(define ($append $1 $2)
(cond
((null? $1) $2)
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(define ($append-map $ g)
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(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append (force $1) $2)))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ O
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g)))))
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>(dis] (nevero ‘cat) (== ‘cat ‘cat))

(Rozplokhas et al. 2019)
> == ‘cat ‘cat) (nevero ‘cat)
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Interleaving DFS

Program’s Relations

\ Query

= Search Strategy

DLS ’16, ICLP-DS ‘17
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Smalltalk Nu Julia Haskell

Idris Elm Clojure  LFE Coffeescript
, Java miniKanren
Shen Javascript
OCaML Python
Rust
FH+ Prolog Scheme
Dylan
H Y
7 Scala Lua
Rub
Groovy ™-57 Moxie PHP Pony
, Erlang
Purescript Extempore  Elixir ML



Smalltalk Nu Julia Haskell

Idris Elm Clojure  LFE Coffeescript
Java miniKanren
Shen
Over implementations Rust
i N languages
(see )
Groovy " Toxie DN Pony
, Erlang
Purescript Extempore Elixir ML


http://miniKanren.org

(define (var x) x) (define ((call/fresh f) s/c)
(define (var? x) (number? x)) (let ((c (cdr s/c)))

(C(f CQvar c)) (,Ccar s/c) . ,(+ c 1)))))
(define (find u s)

(let (Cpr (Cand (var? u) (assv u s)))) (define-syntax-rule (define-relation (defname . args) g)
(if pr (find (cdr pr) s) u))) (define ((defname . args) s/c) (delay/name (g s/c))))
(define (ext-s x u s) (define (pull $) (if (promise? $) (pull (force $)) $))
(cond
(Coccurs? x u s) #f) (define (take n $)
(else "((,x . ,u) . ,s)))) (cond
((null? $) 'O)
(define (occurs? x u s) (Cand n (zero? (- n 1))) (list (car $))
(cond (else (cons (car $)
(Cvar? u)
((pair? u °
Equality (e Control
(else #f) (take
(define (unify u v s) (define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(cond (define ((conj gl g2) s/c) ($append-map (gl s/c) g2))
(Cegv? u v) s)
((var? u) (ext-s u v s)) (define ($append $1 $2)
(Cvar? v) (unify v u s)) (cond
(Cand (pair? u) (pair? v)) ((null? $1) $2)
(let ((s Cunify (find (car u) s) (find (Ccar v) s) s))) ((promise? $1) (delay/name ($append $2 (force $1))))
(and s (unify (find (cdr u) s) (find (cdr v) s) s)))) (else (cons (car $1) ($append (cdr $1) $2)))))

(else #f)))
(define ($append-map $ g)

(define ((== u v) s/c) (cond
(let ((s (car s/c))) ((null? $ O
(let ((s Qunify (find u s) (find v s) s))) ((promise? $) (delay/name ($append-map (force $) g)))

(if s (1list “(,s . ,Ccdr s/c))) "O)))) (else ($append (g (car $)) ($append-map (cdr $) g))d)))




(define ((call/fresh f) s/c)
(let ((c (cdr s/c)))

(C(f Qvar c)) (,(Ccar s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
(cond
((null? $) "OD
(Cand n (zero? (- n 1))) (list (car $))

(else (cons (car $)

(take (and n (- n 1)) (pull Ccdr D))

(define (call/initial-state n g)
(take n (pull (g "COO . @)))))

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

(Cnull? $ "O)
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($Sappend-map (cdr $) g)))))
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parameterized by their constraint systems
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miniKanrens as Syntactic Extensions

macro extension

microKanren



(define-syntax disj+
(syntax-rules ()

(- 9 9
(g0 g ...) (dis] g0 (disj+ g ...)))))

(define-syntax conij+
(syntax-rules ()

(- 9 9
(g0 g ...) (conj g@ (conj+ g ...)))))

(define-syntax-rule (conde (gd g ...) (go* g* ...) ...

(disj+ (conj+ gd g ...) (conjy+ g@* g* ...) ...))
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(define (var x) x)
(define (var? x) (number? x))

(define ((call/fresh f) s/c)
(let ((c (cdr s/c)))
C(f Qvar c)) (,Ccar s/c) . ,(+ c 1)))))
(define (find u s)
(let ((pr (and (var? u) (assv u s))))

(1f pr (find (cdr pr) s) u)))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/name (g s/c))))

(define (ext-s x u s) (define (pull $) (if (promise? $) (pull (force $)) $))

(cond
(Coccurs? x u s) #f) (define (take n $)
Celse ((,x . ,u) . ,s)))) (cond

((hull? $ 'O)
(define (occurs? x u s) (Cand n (zero? (- n 1))) (list (car $))

(cond (else (cons (car $)
(Cvar? u) (egv? x uw)) (take (and n (- n 1)) (pull Ccdr IO
((pair? u) (or (occurs? x (find (car u) s) s)
Coccurs? x (find (cdr u) s) s))) (define (call/initial-state n g)
(else #f))) (take n (pull (g "CQO . @)))))

(define (unify u v s) (define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(cond (define ((conj gl g2) s/c) ($append-map (gl s/c) g2))
(Cegqv? u v) s)

((var? u) (ext-s u v s))

(Cvar? v) (unify v u s))

(Cand (pair? u) (pair? v))

(let ((s (unify (find (car u) s) (find (car v) s) s)))
(and s (unify (find (cdr u) s) (find (Ccdr v) s) s))))

(else #f)))

(define ((== u v) s/c)

(let ((s (car s/c)))
(let ((s (Cunify (find u s) (find v s) s)))

(if s (list "(,s . ,(Ccdr s/c))) ()

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ "O)
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g))d)))



(define (var x) x) (define ((call/fresh f) s/c)
(define (var? x) (number? x)) (let ((c (cdr s/c)))

(C(f CQvar c)) (,Ccar s/c) . ,(+ c 1)))))
(define (find u s)

(let (Cpr (Cand (var? u) (assv u s)))) (define-syntax-rule (define-relation (defname . args) g)
(if pr (find (cdr pr) s) u))) (define ((defname . args) s/c) (delay/name (g s/c))))
(define (ext-s x u s) (define (pull $) (if (promise? $) (pull (force $)) $))
(cond
(Coccurs? x u s) #f) (define (take n $)
(else "((,x . ,u) . ,s)))) (cond
((null? $) 'O)
(define (occurs? x u s) (Cand n (zero? (- n 1))) (list (car $))
(cond (else (cons (car $)
(Cvar? u)
((pair? u °
Equality (e Control
(else #f) (take
(define (unify u v s) (define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(cond (define ((conj gl g2) s/c) ($append-map (gl s/c) g2))
(Cegv? u v) s)
((var? u) (ext-s u v s)) (define ($append $1 $2)
(Cvar? v) (unify v u s)) (cond
(Cand (pair? u) (pair? v)) ((null? $1) $2)
(let ((s Cunify (find (car u) s) (find (Ccar v) s) s))) ((promise? $1) (delay/name ($append $2 (force $1))))
(and s (unify (find (cdr u) s) (find (cdr v) s) s)))) (else (cons (car $1) ($append (cdr $1) $2)))))

(else #f)))
(define ($append-map $ g)

(define ((== u v) s/c) (cond
(let ((s (car s/c))) ((null? $ O
(let ((s Qunify (find u s) (find v s) s))) ((promise? $) (delay/name ($append-map (force $) g)))

(if s (1list “(,s . ,Ccdr s/c))) "O)))) (else ($append (g (car $)) ($append-map (cdr $) g))d)))




(define ((call/fresh f) s/c)
(let ((c (cdr s/c)))

(C(f CQvar c)) (,Ccar s/c) . ,(+ c 1)))))

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/name (g s/c))))

(define (pull $) (if (promise? $) (pull (force $)) $))

(define (take n $)
(cond

(Cnull? $ "O)
(Cand n (zero? (- n 1))) (list (car $))

(else (cons (car $)

Caefire Control

(take

(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))
(define ((conj gl g2) s/c) ($append-map (gl s/c) g2))

(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append $2 (force $1))))
(else (cons (car $1) ($append (cdr $1) $2)))))

(define ($append-map $ g)
(cond

((null? $ "O)
((promise? $) (delay/name ($append-map (force $) g)))

(else ($append (g (car $)) ($append-map (cdr $) g))d)))



Constraints Add More
Problems



Constraints, generically

(define (== u v)
(A (S5/¢)
(let ((S (ext-S (car S/c) '== '"(Uuv))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))



Constraints, generically

(define (== u v)
(A (S/c)
(let ((S (ext-S (car S/c) '== '(u v))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))



Constraints, generically

(define (listo u)
(A (S/c)
(let ((S (ext-S (car S/c) 'listo '(u))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

(define (== u v)
(A (S/c)
(let ((S (ext-S (car S/c) '== '(u v))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

(define (=/= u v)
(A (S/c)
(let ((S (ext-S (car S/c) '=/= '(u v))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))



(define (listo u )
(A (S/c)
(let ((S (ext-S (car S/c) 'listo '"(u ))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))

(define (== uv)
(A (S/c)
(let ((S (ext-S (car S/c) '== (u v))))
(if (invalid? S)
()
(list "(,S . ,(cdr S/c)))))))

(define (=/= u v)
(A (S/c)
(let ((S (ext-S (car S/c) '=/= ‘(uv))))
(if (invalid? S)
()
(list " (,S . ,(cdr S/c)))))))



(define (##sto u v)
(A (S/c)
(let ((S (ext-S (car S/c) 'ZEsto '(u v))))
(if (invalid? S)
()
(1ist "(,S . ,(cdr S/c)))))))



(define (%#sto u v)
(A (S/c)
(let ((S (ext-S (car S/c) '##sto "(u v))))
(if (invalid? S)
()
(1ist "(,S . ,(cdr S/c)))))))



Factor out common portions of
carefully-considered
Implementations




Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks



Interrelated Semantics

Parameterized Lang Class CLP( - )



Interrelated Semanti

Instantiated with a Constraint Domain X



Interrelated Semantics

A Language CLP(X)



Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks



CLP Scheme & Constraint Systems X




CLP Scheme & Constraint Systems X

* A signature Z for the constraint domain
* The constraints, a class of FO 2-formulas

* A 2-theory, the constraints’ logical
semantics

e A 2-structure, the constraints’ intended
interpretation — algebraic semantics

* A function solve from constraints to {I,F,?}
— operational semantics ,

* The theory, structure, and solver agree

A bit more =, p, etc.



How Did We Fit In? (Restrictions)

, c-::—— #7

e total solver

* symbolic constraints

* negative constraints

* n-independent




“miniKanren Constraint” Systems

» disequalities

 sort constraints

» subterm “discontainment”
» “shape” constraints



“miniKanren Constraint” Systems

» disequalities

 sort constraints

* subterm “discontainment”
» “shape” constraints
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Independence of Negative Constraints

P constraints
Q negatable constraints

{p1,..,pn} E 191,..,m} 1mplies {p1,..,pn} = gqi for some 1 < 1 < m



Independence of Negative Constraints
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Roadmap

miniKanren, briefly
a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks
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Constraint CLP Lang
Designer Framework

CLP CLP
Programmer Language



Constraint CLP Lang
Designer Framework

CLP CLP CLP
Programmer Language Program
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Framework Design

Constraint Defns
C o D+
* Solver

Violation Conditions

Implicit Equalities




Framework Design

W%o Lines of Code

~

Violation Conditions

Implicit Equalities



Solving, Generally




Solving, Generally

1. Solve explicit equality constraints



Solving, Generally

1. Solve explicit equality constraints

2. Sequentially solve any implicit equalities



Solving, Generally

1. Solve explicit equality constraints
2. Sequentially solve any implicit equalities

3. Check n-wise constraint violation conditions



Roadmap

miniKanren, briefly

a small kernel logic programming language

miniKanren languages are syntactic extensions

generalizing to constraints

Interrelated semantics

parameterized by their constraint systems

constraint system framework

bolsters the development of useful tools and aids in solving
Important tasks
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AE D

env

D~ AX.e I <Ax.e 1n p>



(define-relation (not-in-envo x env)

(conde
A [(== " env)]
¢e""—p [(fresh (y _ rest)
D~ AX.e I <AX.e 1h p> = "((G,y ,.) . ,rest) env)
(=/=Yy x)

(not-1n-envo x rest))]))



(define-relation (not-in-envo x env)

(conde
A [(== " env)]
¢e""—p [(fresh (y _ rest)
D~ AX.e I <AX.e 1h p> = "((G,y ,.) . ,rest) env)
(=/=Yy x)

(not-1n-envo x rest))]))



(define-relation (=/= ni nz)
(conde

| (fresh (pnz)

(== nz (s . ,pnz)) (define-relation (not-in-envo x env)

(== n1 "O))] (CEfo ') em)]
[(fresh (pni) -
(== n1 (s . ,pni)) [(fFeSh\Cy _ rest)
(== n2 '()))], —= CC,y a—) . ,FGSt) env)

(=/=y x)

[(fresh (pna1 pnz) (not-in-envo x rest))]))

(==n1 (s . ,pni))
(==nz (s . ,pnz))
(=/= pn1 pnz))1))



RELATIONAL SYLLOGISTIC LOGIC PROGRAMS

(define-relation (A ¢ [ prf)
(matche ¢

[CV ,a ,a) (== ¢ prf)]

[ ,x (membero x ')

(== prf (,x 1n-T))]

LCY ,n ,q)

(fresh (p prfl prf2)
== ((,prfl ,prf2) => ,p) prf)
(A (V ,n ,p) I prfl)
(A (Y ,p ,q) I prt2))]))




RELATIONAL SYLLOGISTIC LOGIC PROGRAMS

(define-relation (A @ I prf)

(matche ¢
[(V ,a ,a) (== ¢ prf)] Ax1iom
[ ,x (membero x ') Lookup
(== prf (,x 1n-T))]
[(V ,n ,q) “Barbara” inference

(fresh (p prfl prf2)
== ((,prfl ,prf2) => ,p) prf)
(A (V ,n ,p) I prfl)
(A (Y ,p ,q) I prt2))]))



(define-relation (un-atomo a)
(fresh (sym)
(symbolo sym) Still relying on primitives!
(==a (-2 . ,sym)))) Adding tags!



Results




Results

1. Characterize classes of "miniKanren constraints"



Results

1. Characterize classes of "miniKanren constraints"

2. Connect our constraints to prior work in negation in logic programming



Results

1. Characterize classes of "miniKanren constraints”
2. Connect our constraints to prior work in negation in logic programming

3. A parameterized family of constraint miniKanren languages



Results

1. Characterize classes of "miniKanren constraints”
2. Connect our constraints to prior work in negation in logic programming
3. A parameterized family of constraint miniKanren languages

4. Racket macro-generate these constraint mK language implementations



1

2.

3

Results

. Characterize classes of "miniKanren constraints”
Connect our constraints to prior work in negation in logic programming

. A parameterized family of constraint miniKanren languages

. Racket macro-generate these constraint mK language implementations

Implementing constraint systems via macros



1

2.

3

Results

. Characterize classes of "miniKanren constraints”

Connect our constraints to prior work in negation in logic programming
. A parameterized family of constraint miniKanren languages

. Racket macro-generate these constraint mK language implementations
Implementing constraint systems via macros

Introduce new constraints to minikanren languages



1

2.

3

Results

. Characterize classes of "miniKanren constraints”

Connect our constraints to prior work in negation in logic programming
. A parameterized family of constraint miniKanren languages

Racket macro-generate these constraint mK language implementations
Implementing constraint systems via macros

Introduce new constraints to minikanren languages

miniKanren over microkanren



Thanks! R

macro extension

Constraint microKanren



